Qaynayotgan suv reaktori xavfsizligi tizimlari - Boiling water reactor safety systems - Wikipedia

Qaynayotgan suv reaktori xavfsizligi tizimlari bor yadro xavfsizligi tizimlari ichida qurilgan qaynoq suv reaktorlari baxtsiz hodisa yoki tabiiy ofat paytida atrof-muhit va sog'liq uchun xavfni oldini olish yoki kamaytirish maqsadida.

Kabi bosimli suv reaktori, BWR reaktor yadrosi dan issiqlik ishlab chiqarishni davom ettiradi radioaktiv parchalanish keyin bo'linish reaktsiyalar to'xtadi, a asosiy zarar Barcha xavfsizlik tizimlari ishlamay qolganda va yadro sovutish suvini qabul qilmasa, voqea sodir bo'lishi mumkin. Bosimli suv reaktori singari, qaynoq suv reaktori ham salbiy ta'sir ko'rsatadi bekor koeffitsienti, ya'ni reaktor ichida bug'ning suyuq suvga nisbati oshgani sayin reaktorning neytron (va termal) chiqishi kamayadi.

Biroq, reaktor yadrosida bug 'bo'lmagan bosimli suv reaktoridan farqli o'laroq, BWR bug' bosimining keskin ko'tarilishi (masalan, reaktordan asosiy bug 'ajratuvchi valf (MSIV) ishga tushishi natijasida) reaktor ichidagi bug'ning suyuq suvga nisbati pasayishi. Suv va bug 'nisbati ortishi neytron moderatsiyasining oshishiga olib keladi va bu o'z navbatida reaktorning quvvati oshishiga olib keladi. Ushbu turdagi hodisalar "bosim o'tkinchi" deb nomlanadi.

Xavfsizlik tizimlari

BWR bosim o'tkazuvchanliklariga javob berish uchun maxsus ishlab chiqilgan bo'lib, "bosimni bostirish" turiga ega bo'lib, "namlik" deb nomlanuvchi suyuq suv havzasi sathidan pastda xavfsizlik relefli klapanlar yordamida ortiqcha bosimni chiqarib yuboradi. torus "yoki" bostirish havzasi ". Barcha BWRlar haddan tashqari bosim uchun bir qator xavfsizlik / o'chirish vanalaridan foydalanadilar, shulardan 7 tasi Avtomatik bosimni pasaytirish tizimining (ADS) tarkibiy qismidir.[1] va ABWR modellarida 18 ta ortiqcha bosimni kamaytirish vanalari,[2] vaqtinchalik bosimning ko'tarilishini to'xtatish uchun ulardan faqat bittasi ishlashi kerak. Bunga qo'shimcha ravishda, vaqtinchalik RPVga ta'sir qilishidan oldin (quyida joylashgan Reaktorni Himoya qilish tizimi bo'limida aytib o'tilganidek), reaktor allaqachon tezda o'chirilgan bo'ladi.[3])

BWR-larda ushbu ta'sir tufayli, operatsion komponentlar va xavfsizlik tizimlari hech qanday ishonchli stsenariy tizimning quvvati oshib ketadigan bosimni va quvvatni oshirishni reaktorni yoqilg'iga yoki reaktor sovutish suyuqligi bo'lgan qismlarga zarar etkazilishidan oldin tezda o'chirib qo'yish qobiliyatiga olib kelmasligi niyatida ishlab chiqilgan. ATWS (Kutilmasdan o'tadigan vaqtinchalik) buzilishining cheklangan holatida yuqori neytron quvvat darajalari (~ 200%) bir soniyadan kam vaqt davomida sodir bo'lishi mumkin, shundan so'ng SRVlarning ishga tushirilishi bosimning tez pasayishiga olib keladi. Neytronik quvvat nominal quvvatdan ancha pastroq bo'ladi (aylanishning to'xtashi bilan 30% oralig'i va shu sababli bo'sh bo'shliq) ARI yoki SLCS ishga tushishidan oldin ham. Issiqlik quvvati deyarli ta'sir qilmaydi.

Barcha xavfsizlik tizimlarini o'chirib qo'yadigan favqulodda vaziyat yuzaga kelganda, har bir reaktor a bilan o'ralgan qamoqxona binosi 1,2-2,4 m (3,9-7,9 fut) po'lat bilan mustahkamlangan, oldindan reaktivni atrof-muhitdan yopish uchun mo'ljallangan betondan iborat.

Biroq, yopiq bino butun yoqilg'i aylanish jarayonida yoqilg'ini himoya qilmaydi. Eng muhimi, sarflangan yoqilg'i uzoq vaqt davomida asosiy saqlanish joyidan tashqarida bo'ladi. Odatda ishlatilgan yonilg'i saqlash basseynida yadro yoqilg'isining taxminan besh baravari ko'p bo'lishi mumkin. Qayta yuklanishlar odatda yadroning uchdan bir qismini bo'shatib yuborganligi sababli, hovuzda saqlangan sarflangan yoqilg'ining katta qismi parchalanish vaqtiga ega bo'ladi. Ammo agar basseyndan suv oqadigan bo'lsa, avvalgi ikkita yonilg'i quyishdagi bo'shatilgan yoqilg'i chirigan issiqlik ostida erishi uchun hali ham "yangi" bo'lar edi. Biroq, bu yoqilg'ining tsirkaloy qoplamasi issiqlik paytida yoqilishi mumkin. Olingan yong'in, ehtimol, hovuzdagi yoqilg'ining ko'piga yoki barchasiga tarqalishi mumkin. Yonish issiqligi va parchalanadigan issiqlik bilan birgalikda "chegara yoshdagi" yoqilg'ini eritilgan holatga keltirishi mumkin. Bundan tashqari, agar olov kislorod och qolsa (bunday chuqurning tubida joylashgan yong'in ehtimoli katta bo'lsa), issiq zirkonyum kislorodni uran dioksidi metall uran, zirkonyum, oksidlangan zirkonyum va erigan uran dioksidning suyuq aralashmasini hosil qiluvchi yoqilg'i. Bu eritilgan yoqilg'i bilan taqqoslanadigan yoqilg'i matritsasidan parchalanish mahsulotlarini chiqarilishiga olib keladi. Bunga qo'shimcha ravishda, cheklangan bo'lsa ham, BWR ishlatilgan yonilg'i basseynlari deyarli har doim asosiy saqlanish joyidan tashqarida joylashgan. Jarayon davomida vodorod hosil bo'lishi, ehtimol portlashga olib kelishi mumkin, ikkilamchi yopilish binosiga zarar etkazishi mumkin. Shunday qilib, atmosferaga chiqish reaktor yadrosi bilan taqqoslanadigan baxtsiz hodisalarga qaraganda ancha katta.[4]

Reaktorni himoya qilish tizimi (RPS)

Reaktorni himoya qilish tizimi (RPS) - bu BWRning keyingi modellarida kompyuterlashtirilgan tizim bo'lib, u avtomatik ravishda, tezkor va to'liq o'chirilishi va xavfsizligini ta'minlash uchun mo'ljallangan (NSSS - reaktor bosimli idish, nasoslar va suv / rezervuarning xavfli ish holatiga tushishiga olib keladigan ba'zi bir hodisa ro'y bersa). Bundan tashqari, RPS bir nechta signallarni aniqlagandan so'ng avtomatik ravishda Favqulodda yadro sovutish tizimini (ECCS) aylantirishi mumkin. Uning ishlashi uchun inson aralashuvi talab qilinmaydi. Biroq, agar kerak bo'lsa, reaktor operatorlari RPS qismlarini bekor qilishi mumkin. Agar operator yomonlashayotgan holatni bilsa va avtomatik xavfsizlik tizimi ishga tushishini bilsa, ular xavfsizlik tizimini oldindan faollashtirishga o'rgatilgan.

Agar reaktor quvvatga ega bo'lsa yoki quvvatga ko'tarilsa (ya'ni reaktor superkritik bo'lsa; boshqaruv tayoqchalari reaktor singdirgandan ko'ra ko'proq neytron ishlab chiqaradigan darajaga qaytarib olinadi), tezkorlikni talab qiladigan xavfsizlik bilan bog'liq kutilmagan holatlar mavjud. reaktorning yopilishi yoki G'arbning atom tilida aytganda "SCRAM ". SCRAM - bu qo'lda yoki avtomatik ravishda ishga tushiriladigan barchani tezkor kiritish boshqaruv tayoqchalari reaktorga kiradi, bu reaktorni o'nlab soniya ichida issiqlik quvvati darajasini pasayishiga olib keladi. ≈ 0,6% neytronlar bo'linish mahsulotlaridan chiqadiganligi sababli ("kechiktirilgan" neytronlar ) bo'linishdan bir necha soniya yoki bir necha daqiqa o'tgach tug'iladi, barcha bo'linishlarni bir zumda to'xtatish mumkin emas, ammo tez orada yonilg'i issiqlik quvvati darajasiga qaytadi. Qo'lda SCRAM-lar reaktor operatorlari tomonidan, avtomatik SCRAM-lar esa quyidagilarda ishga tushirilishi mumkin:

  1. Turbinani to'xtatish valfi yoki turbinani boshqarish valfini yopish.
    1. Agar turbinalarni himoya qilish tizimlari sezilarli anomaliyani aniqlasa, bug'ning qabul qilinishi to'xtatiladi. Reaktorning tez o'chirilishi reaktivlikni oshirishi mumkin bo'lgan bosim o'tishini kutmoqda.
    2. Generator yukni rad etish Bundan tashqari, turbinali klapanlarning yopilishi va RPS ishdan chiqishi mumkin.
    3. Ushbu safar faqat taxminan 1/3 reaktor quvvatidan yuqori. Ushbu miqdordan past bo'lgan bypass bug 'tizimi yadroda reaktivlik vaqtini keltirib chiqarmasdan reaktor bosimini boshqarishga qodir.
  2. Saytdan tashqari quvvatni yo'qotish (LOOP)
    1. Oddiy ishlash vaqtida reaktorni himoya qilish tizimi (RPS) joydan tashqari quvvat bilan ishlaydi
      1. Joydan tashqaridagi quvvatni yo'qotish RPSdagi barcha o'rni ochilishiga olib keladi va shu bilan barcha o'chirish signallari ortiqcha keladi.
      2. RPS xavfsiz emasligi sababli MSIV yopilishiga olib keladi; Bug'ning asosiy tanaffusi maydon tashqarisidagi quvvatni yo'qotish bilan bir vaqtga to'g'ri keladi.
  3. Neytron monitorining uchishlari - bu sayohatlarning maqsadi ishga tushirish vaqtida neytron va issiqlik quvvatining bir tekis o'sishini ta'minlashdir.
    1. Manba oralig'idagi monitor (SRM) yoki o'rta darajadagi monitor (IRM) yuqori darajali:
      1. Asbobni kalibrlash paytida ishlatilgan SRM, kritikgacha va termik bo'lmagan kritiklik va quvvatga ko'tarilish paytida ishlatiladigan IRM, o'rta / kech issiqlik bo'lmagan va erta yoki o'rta termal bosqichlarda, har ikkalasida ham to'siqlar mavjud reaktor kuchli reaktiv bo'lganida reaktor davridagi tez pasayishlar (masalan, bo'shliqlar bo'lmaganida, suv sovuq va suv zich bo'lganda), bu davrda bunday pasayishlar ularning niyatlari ekanligi to'g'risida operatorning ijobiy tasdig'isiz. Safarlardan oldin, agar oldindan belgilangan darajalar haddan tashqari oshirilsa, operatorlarning hushyorligini ta'minlash uchun novda harakatlanish bloklari faollashtiriladi.
    2. O'rtacha quvvat oralig'i monitorining (APRM) yuqori darajasi:
      1. Reaktorning ishga tushirilishi tugagandan so'ng ijobiy operator tomonidan tasdiqlangunga qadar reaktorning ish paytida neytron quvvatining maksimal darajasidan yoki nisbiy maksimal darajadan oshib ketishining oldini oladi, reaktor holati "Ishga tushirish" holatiga o'tadi.
    3. O'rtacha quvvat oralig'i monitor / sovutish suvi oqimining termal safari:
      1. Reaktorni ushbu darajadagi mavjud bo'lgan sovutish suvi oqimisiz o'zgaruvchan quvvat darajasidan yuqori bo'lishiga yo'l qo'ymaydi.
    4. Tebranish quvvat diapazoni monitor
      1. Kam oqimli yuqori quvvat sharoitida reaktor quvvatining tez tebranishini oldini oladi.
  4. Reaktorning suv darajasi past:
    1. Sovutish suyuqligining kutilmagan holatini yo'qotish (LOCA)
    2. Tegishli ozuqa suvini yo'qotish (LOFW)
    3. Agar suv darajasi bug 'ajratuvchi va bug' quritgich stakidan past bo'lsa, turbinani haddan tashqari namlik o'tkazilishidan himoya qiladi.
  5. Suvning yuqori darajasi (BWR6 o'simliklarida)
    1. Asosiy bug 'liniyalarini suv bosishini oldini oladi va turbin uskunalarini himoya qiladi.
    2. Sovuq suvni idishga qo'shish tezligini cheklaydi, shu sababli ortiqcha oziqlanadigan vaqt o'tishi bilan reaktor quvvatining o'sishini cheklaydi.
  6. Quruq quduqning yuqori bosimi
    1. Sovutish suyuqligining kutilmagan holatini yo'qotish ko'rsatkichi
    2. Shuningdek, in'ektsiya uchun ruxsat beruvchi vositalar tozalanganidan keyin yadro in'ektsiyasiga tayyorgarlik ko'rish uchun ECCS tizimlarini boshlaydi.
  7. Asosiy bug ' izolyatsiya klapani yopilish (MSIV)
    1. Reaktivlik vaqtini keltirib chiqaradigan yadro ichidagi bosim o'tkazuvchisidan himoya qiladi
    2. Vana 8% dan kattaroq yopilganda faqat har bir kanal uchun tetikler
    3. Bir valf reaktorning harakatlanishini boshlamasdan yopilishi mumkin.
  8. Yuqori RPV bosimi:
    1. MSIV yopilishining ko'rsatkichi.
    2. Yuqori bosim tufayli qaynoq bo'shliq qulashi o'rnini qoplash uchun reaktivlikni pasaytiradi.
    3. Bosim o'chirish vanalarining ochilishini oldini oladi.
    4. Turbinali sayohat kabi bir nechta boshqa sayohatlar uchun zaxira sifatida xizmat qiladi.
  9. Past RPV bosimi:
    1. Bug 'tunnelida yoki yuqori quruq bosimni keltirib chiqarmaydigan boshqa joyda chiziq uzilishining ko'rsatkichi
    2. Avtomatik skram signalisiz bosim va sovutish rejimini ta'minlash uchun reaktor Ishlash rejimida bo'lmaganida chetlab o'tiladi
  10. Seysmik hodisa
    1. Umuman olganda, faqat yuqori seysmik zonalardagi o'simliklar ushbu sayohatni amalga oshirishga imkon beradi.
  11. Scram deşarj hajmi baland
    1. Scram gidravlik deşarj hajmi to'ldirila boshlagan taqdirda, bu reaktorni hajmni to'ldirishdan oldin scram qiladi. Bu gidravlik qulfni oldini oladi, bu esa boshqaruv tayoqchalarini kiritishiga to'sqinlik qilishi mumkin. Bu ATWSning oldini olish uchun (Kutilmagan vaqtinchalik skramm).

Favqulodda yadroli sovutish tizimi (ECCS)

Umumiy BWR reaktori bosimli idishining diagrammasi

Reaktorni himoya qilish tizimi reaktorni o'chirish uchun mo'ljallangan bo'lsa, ECCS etarli yadroli sovutishni ta'minlash uchun mo'ljallangan. ECCS - bu reaktor bosimi idishi ichidagi yoqilg'ini "reaktor yadrosi" deb ataladigan, haddan tashqari issiqlikdan himoya qilish uchun mo'ljallangan o'zaro bog'liq xavfsizlik tizimlari to'plami. ECCS uchun beshta mezon yonilg'i qoplamasining eng yuqori harorati 2200 ° F dan yuqori bo'lishiga yo'l qo'ymaslik, yoqilg'i qoplamasining 17% dan ortiq oksidlanishiga yo'l qo'ymaslik, metall-suv tsirkloloy reaktsiyasi tufayli maksimal nazariy vodorod hosil bo'lishining 1% oldini olish. sovutiladigan geometriya va uzoq muddatli sovutishga imkon beradi.[5]ECCS tizimlari bunga reaktor bosimli idishni (RPV) sovutadigan suv sathini ushlab turish yoki agar imkonsiz bo'lsa, yadroni to'g'ridan-to'g'ri sovutish suvi bilan to'ldirish orqali erishiladi.

Ushbu tizimlar uchta asosiy turga ega:

  1. Yuqori bosimli tizimlar: Bular suv sathining pasayishi bilan yoqilg'ining qoplanishiga yo'l qo'ymaslik uchun ko'p miqdorda suv quyib yadroni himoya qilish uchun mo'ljallangan. Odatda, yopiq xavfsizlik klapanlari, yordamchi quvurlarning kichik tanaffuslari va ayniqsa, turbinani ishdan chiqarishi va asosiy bug 'izolyatsiyalovchi valfining yopilishi natijasida yuzaga keladigan zo'ravonlik bilan o'tadigan vaqtlarda qo'llaniladi. Agar suv sathini faqat yuqori bosimli tizimlar bilan ushlab turishning iloji bo'lmasa (suv sathi yuqori bosimli tizimlar to'liq burg'ulash bilan belgilangan darajadan pastga tushib ketsa), keyingi tizimlar javob beradi.
  2. Bosimsizlantirish tizimlari: Ushbu tizimlar reaktor bosimini xavfsizlik chegaralarida ushlab turish uchun mo'ljallangan. Bundan tashqari, agar reaktorning suv sathini faqat yuqori bosimli sovutish tizimlari bilan ushlab turish mumkin bo'lmasa, bosimni pasaytirish tizimi reaktor bosimini past bosimli sovutish tizimlari ishlashi mumkin bo'lgan darajaga tushirishi mumkin.
  3. Past bosimli tizimlar: Ushbu tizimlar bosimni pasaytirish tizimlari ishlagandan keyin ishlashga mo'ljallangan. Ular yuqori bosimli tizimlar bilan taqqoslaganda katta quvvatlarga ega va bir nechta, ortiqcha quvvat manbalari bilan ta'minlanadi. Ular har qanday saqlanadigan suv sathini saqlab turadilar va yadro ostidagi eng yomon turdagi quvurlar katta singan bo'lsa, vaqtincha yonilg'i tayoqchasi "ochilmasligiga" olib keladi, yonilg'i qizdirilgunga qadar bu holatni yadro yetguncha tez yumshatish uchun zarar etkazilishi mumkin.

Yuqori bosimli sovutish suvi quyish tizimi (HPCI)

Yuqori bosimli sovutish suvi quyish tizimi favqulodda yadroli sovutish tizimidagi birinchi himoya vositasidir. HPCI avtomatik bosimni pasaytirish, yadro purkagich va past bosimli sovutish suvi quyish tizimlarining faollashishini oldini olish uchun yuqori bosim ostida bo'lganida, reaktorga katta miqdordagi suv quyish uchun mo'ljallangan. HPCI reaktordan bug 'bilan ishlaydi va boshlang'ich signalidan aylanish uchun taxminan 10 soniya vaqt ketadi va yadroga 6,8 atm (690 kPa) dan yuqori bo'lgan har qanday yadro bosimida taxminan 19,000 L / min (5000 AQSh gal / min) etkazib berishi mumkin. , 100 psi). Bu, odatda, avtomatik bosimning pasayishiga yo'l qo'ymaslik uchun suv sathini etarli darajada ushlab turish uchun etarli bo'ladi, masalan, bo'yanish suv liniyasida katta tanaffus. HPCI, shuningdek, "bosimni boshqarish rejimida" ishlashga qodir, bu erda HPCI turbinasi reaktor idishiga suv quymasdan ishlaydi. Bu HPCI ga reaktordan bug'ni olib tashlash va xavfsizlik yoki o'chirish vanalarini ishlatmasdan asta-sekin bosimini pasaytirishga imkon beradi. Bu relef vanalarining ishlashini minimallashtiradi va ochilib qolishi va kichik LOCA paydo bo'lishini kamaytiradi.

Versiya nusxasi: Ba'zi BWR / 5s va ​​BWR / 6 bug 'turbinalarida ishlaydigan HPCI nasosini o'zgaruvchan tok bilan ishlaydigan yuqori bosimli yadro purkagichiga (HPCS) almashtiradi; ABWR HPCI-ni quyida tavsiflanganidek, RCIC tizimining rejimi bo'lgan yuqori bosimli yadroli toshqin (HPCF) bilan almashtiradi. (E) SBWR-da unga teng keladigan tizim mavjud emas, chunki u asosan passiv xavfsizlikni sovutish tizimlaridan foydalanadi, ammo ESBWR passiv tizimni to'ldirish uchun Control Rod Drive System (CRDS) ning ish rejimidan foydalangan holda alternativ faol yuqori bosimli in'ektsiya usulini taklif qiladi.

Izolyatsiya kondensatori (IC)

Ba'zi reaktorlar, shu jumladan ba'zi BWR / 2 va BWR / 3 qurilmalari va (E) SBWR seriyali reaktorlar Izolyatsiya Kondensatori deb nomlangan passiv tizimga ega. Bu atmosferaga ochiq suv havzasida joylashgan yuqorida joylashgan issiqlik almashinuvchisi. Faollashtirilganda parchalanadigan issiqlik bug'ni qaynatadi, u issiqlik almashinuvchisiga tortiladi va quyultiriladi; keyin u tortishish kuchi bilan reaktorga tushadi. Ushbu jarayon sovutish suvini reaktorda ushlab turadi va quvvatli suv nasoslaridan foydalanishning hojati yo'q. Ochiq hovuzdagi suv asta-sekin qaynab, atmosferaga toza bug 'chiqaradi. Bu issiqlikni yo'qotish uchun mexanik tizimlarni ishlatishni keraksiz holga keltiradi. Vaqti-vaqti bilan hovuzni to'ldirish kerak, bu o't o'chirish mashinasi uchun oddiy vazifadir. (E) SBWR reaktorlari hovuzdagi uch kunlik suvni ta'minlaydi.[6] Ba'zi eski reaktorlarda IC tizimlari, jumladan Fukusima Dai-ichi reaktori 1 mavjud, ammo ularning suv havzalari unchalik katta bo'lmasligi mumkin.

Oddiy sharoitlarda IC tizimi faollashtirilmaydi, lekin IC kondensatorining yuqori qismi ochiq valf orqali reaktorning bug 'liniyalariga ulanadi. IC avtomatik ravishda past suv sathida yoki yuqori bug 'bosimi ko'rsatkichlarida boshlanadi. Ishga tushgandan so'ng, bug 'kondensatoriga kiradi va u suv bilan to'ldirilgunga qadar quyiladi. IC tizimi ishga tushirilganda, IC kondansatörünün pastki qismida, reaktorning pastki maydoniga ulanadigan valf ochiladi. Suv tortish kuchi bilan reaktorga tushadi, bu esa kondensatorni bug 'bilan to'ldirishga imkon beradi, keyin u quyuqlashadi. Ushbu tsikl pastki valf yopilguncha doimiy ishlaydi.[7]

Reaktor yadrosi izolyatsion sovutish tizimi (RCIC)

Reaktor yadrosi izolyatsiyalashni sovutish tizimi favqulodda yadroli sovutish tizimi emas, lekin u normal issiqlik cho'kish qobiliyatini yo'qotganda reaktorni sovutishga yordam beradigan xavfsizligi uchun muhim vazifani bajargani uchun kiritilgan; yoki barcha elektr quvvati yo'qolganda. BWR-ning ilg'or versiyalarida qo'shimcha funktsiyalar mavjud.

RCIC favqulodda vaziyatlarda foydalanish uchun mo'ljallangan yordamchi ozuqa suv nasosidir. U yuqori bosim ostida sovutgich suvini reaktorga quyishi mumkin. U reaktor yadrosiga taxminan 2000 L / min (600 gpm) yuboradi. HPCI tizimidan boshlash uchun kamroq vaqt talab etiladi, boshlang'ich signalidan taxminan 30 soniya. Qoldiq parchalanib ketgan issiqlik bilan qaynatilgan sovutadigan suvni almashtirish uchun etarli imkoniyatga ega va hatto kichik qochqinlarni ushlab turishi mumkin.

RCIC tizimi reaktorning o'zidan chiqadigan yuqori bosimli bug 'ustida ishlaydi va shu bilan boshqarish vanalarini boshqarish uchun akkumulyator quvvatidan boshqa elektr quvvatsiz ishlaydi. Ular reaktorda suv sathini to'g'ri ushlab turish uchun zarur bo'lganda RCICni yoqadi va o'chiradi. (Agar doimiy ravishda ishlasa, RCIC reaktorni haddan tashqari to'ldiradi va suvni o'z bug 'ta'minot tarmog'iga tushiradi.) Stantsiyani o'chirish paytida (joydan tashqaridagi barcha quvvat yo'qolgan va dizel generatorlari ishlamay qolgan joyda) RCIC tizimi "qora boshlangan" bo'lishi mumkin AC yo'q va qo'lda faollashtirilgan. RCIC tizimi o'z bug'ini reaktorni bostirish havzasiga quyadi. RCIC ushbu suv yo'qotilishini ikki manbadan birini qoplashi mumkin: tashqarida joylashgan kosmetik suv idishi yoki sersuvning o'zi. RCIC LOCA yoki boshqa qochqin paytida reaktor suvi darajasini ushlab turish uchun mo'ljallanmagan. HPCI singari, RCIC turbinasi reaktordan bug'ni olib tashlash va reaktorni bosimini pasaytirishga yordam berish uchun resirkulyatsiya rejimida ishga tushirilishi mumkin.[8]

Versiya nusxasi: RCIC va HPCF ABWR-larga birlashtirilgan bo'lib, HPCF RCICning yuqori quvvatli rejimini namoyish etadi. Fukusima Unit 1 va Drezden kabi eski BWRlar hamda yangi (E) SBWR RCIC tizimiga ega emas va buning o'rniga Izolyatsiya Kondensatori tizimiga ega.

Avtomatik bosimni pasaytirish tizimi (ADS)

Avtomatik bosimni pasaytirish tizimi sovutish tizimining bir qismi emas, lekin ECCS uchun muhim qo'shimcha hisoblanadi. U idishga yuqori bosimli sovutishni yo'qotishi yoki yuqori bosimli sovutish tizimlari RPV suv sathini ushlab tura olmasa faollashishi uchun mo'ljallangan. ADS qo'lda yoki avtomatik ravishda ishga tushirilishi mumkin. ADS avtomatik ravishda ishga tushirish signalini olganida, suv past-past-past suv sathidagi signalni o'rnatish darajasiga yetganda. Keyin ADS past signalli suv darajasi bilan tasdiqlaydi, kamida 1 ta past bosimli sovutish nasosining ishlashini tekshiradi va 105 soniyali taymerni ishga tushiradi. Taymer tugagandan so'ng yoki ADS-ni ishga tushirish tugmachalari bosilganda, tizim RPV-dan bosimni bostirish havzasidagi suv sathidan pastroqqa (torus / wetwell) quyiladigan quvurlar orqali bug 'shaklida tezlik bilan chiqaradi. past bosimdagi sovutish tizimlarini (LPCS / LPCI / LPCF / GDCS) yaratishga imkon beradigan, reaktor idishini 32 atmdan (3200 kPa, 465 psi) pastroq qilib, ADS yoki boshqa xavfsizlik klapanining faollashishi natijasida chiqarilgan bug 'kondensatsiyasi uchun mo'ljallangan. reaktorning suv darajasini tiklash. ADS zarbasi paytida reaktordan chiqarilgan bug 'yadro yopilgan bo'lsa ham etarli yadro sovishini ta'minlash uchun etarli. Reaktorning bosimi pasayganda reaktor ichidagi suv tezda bug 'hosil qiladi va yashirin bug'lanish issiqligini olib ketadi va butun reaktor uchun sovishini ta'minlaydi. Past bosimli ECCS tizimlari favqulodda vaziyat tugaguniga qadar yadroni qayta to'ldiradi va butun tadbir davomida yadro etarli darajada sovishini ta'minlaydi.

Past bosimli yadroli purkagich tizimi (LPCS)

Past bosimli yadroli purkagich tizimi katta favqulodda vaziyat natijasida hosil bo'lgan bug'ni bostirish uchun mo'ljallangan. Shunday qilib, bu reaktor idishining bosimini LPCI va LPCS samarasiz bo'lgan nuqtadan yuqori bo'lishiga to'sqinlik qiladi, ya'ni 32 atmdan yuqori (3200 kPa, 465 psi). U ushbu darajadan pastroqda faollashadi va yadroning yuqori qismidan toshqinda taxminan 48000 L / min (12500 AQSh gal / min) suv etkazib beradi. Yadro purkagich tizimi yadro ustidagi bug 'bo'shliqlarini yiqitadi, yoqilg'i qoplanganda reaktor bosimini pasayishiga yordam beradi va reaktor shu qadar katta tanaffusga ega bo'lsa, suv sathini saqlab bo'lmaydi, yadro purkagich yonilg'ining shikastlanishining oldini olishga qodir. chirigan issiqlikni yo'qotish uchun yoqilg'ining etarli darajada püskürtülmesini ta'minlash. BWR ning oldingi versiyalarida (BWR 1 yoki 2 o'simliklari) LPCS tizimi yagona ECCS edi va yadro to'liq yopiq bo'lsa ham, yadro purkagich bilan etarli darajada sovutilishi mumkin edi. Drezden 2 va 3 agregatlaridan boshlab, yadro purkagich tizimi HPCI / LPCI tizimlari tomonidan kengaytirilib, purkagichni sovutish va yadro toshqinini ta'minlash uchun etarli yadro sovishini ta'minlash mumkin edi.

Versiya nusxasi: ABWR va (E) SBWRlarda quruq suv havzasini va bostirish havzasini sovutish uchun qo'shimcha suv purkagich tizimlari mavjud.

Past bosimli sovutish suvi quyish tizimi (LPCI)

Past bosimli sovutish suvi quyish funktsiyasi - Issiqlikni qoldiq bilan olib tashlash (RHR) tizimining favqulodda holati. LPCI funktsiyasi 465 psi dan past bo'lgan reaktor idishlari bosimida ishlashi mumkin. LPCI yadroga 150,000 L / min (40,000 US gal / min) suv quyish imkoniyatiga ega bo'lgan bir nechta nasoslardan iborat. Bug 'bosimini past darajada ushlab turish uchun Core Spray tizimi bilan birgalikda LPCI yadroni sovutish suyuqligi bilan tez va to'liq suv bosishi bilan kutilmagan holatlarni bostirish uchun mo'ljallangan. LPCI tizimi birinchi bo'lib Drezden 2 va 3 agregatlari bilan tanishtirildi. LPCI tizimi, shuningdek, RHR issiqlik almashinuvchisidan reaktordagi parchalanadigan issiqlikni olib tashlash va sovuqni sovutishni sovutish uchun ishlatishi mumkin. LPCI tizimining dastlabki versiyalari aylanma tsikllar orqali yoki pastga tushadigan joyga quyiladi. BWR ning keyingi versiyalari yadroni qayta to'ldirish vaqtini minimallashtirish uchun LOCA paytida yadroning eng yuqori haroratini pasaytirish uchun in'ektsiya nuqtasini to'g'ridan-to'g'ri yadro kafanining ichiga ko'chirdi.

Versiya nusxasi: ABWR LPCI o'rnini shu kabi printsiplardan foydalangan holda past bosimli yadroli toshqin (LPCF) bilan almashtiradi. (E) SBWR LPCI o'rnini DPVS / PCCS / GDCS bilan almashtiradi, quyida aytib o'tilganidek.

Bosimsizlanish klapanlari tizimi (DPVS) / passiv saqlovchi sovutish tizimi (PCCS) / tortishish kuchi bilan ishlaydigan sovutish tizimi (GDCS)

(E) SBWR to'liq passiv, juda noyob va sezilarli darajada yaxshilanadigan qo'shimcha ECCS quvvatiga ega chuqur mudofaa. Ushbu tizim RPV ichidagi suv darajasi 1-darajaga etganida faollashadi. Ushbu vaqtda orqaga hisoblash taymeri ishga tushiriladi.

Reaktor bosimli idishning yuqori qismida joylashgan bir nechta yirik bosimni pasaytirish klapanlari mavjud. Ular DPVSni tashkil qiladi. Bu (E) SBWR-ga kiritilgan ADS-ga qo'shimcha imkoniyatdir. DPVS ushbu sakkiztadan iborat bo'lib, to'rttasi asosiy bug 'o'tkazgichlarida, ular ishga tushirilganda quruq maydonga chiqadi va to'rttasi to'g'ridan-to'g'ri nam suv havzasiga chiqadi.

Agar sanoq boshlangandan keyin 50 soniya ichida 1-daraja qayta to'ldirilmasa, DPVS yonadi va reaktor bosimi idishi tarkibidagi bug 'tez quruq maydonga chiqadi. Bu RPV ichidagi suvning hajmini ko'payishiga olib keladi (bosimning pasayishi tufayli), bu yadroni sovutish uchun mavjud suvni ko'paytiradi. Bunga qo'shimcha ravishda, bosimni pasaytirish, to'yinganlik haroratini pasaytiradi va fazani almashtirish orqali issiqlikni ketkazadi. (Aslida, ikkalasi ham ESBWR va ABWR Shunday qilib ishlab chiqilganki, hatto kutilayotgan maksimal favqulodda vaziyatda ham yadro suv sovutish qatlamini hech qachon yo'qotmaydi.)

Agar DPVS ishga tushirilgandan keyin 100 soniya ichida 1-daraja hali qayta tiklanmasa, u holda GDCS klapanlari yonadi. GDCS - bu quruq suv havzasi ichida joylashgan reaktor bosimli idishning yuqori qismida va yon tomonida joylashgan juda katta suv idishlari. Ushbu vanalar yonib ketganda, GDCS to'g'ridan-to'g'ri RPV ga ulanadi. Yana 50 soniya bosimdan so'ng GDCS ichidagi bosim RPV va quruq quduqning bosimi bilan tenglashadi va GDCS suvi RPVga tusha boshlaydi.

RPV ichidagi suv parchalanadigan issiqdan bug'ga aylanadi va tabiiy konveksiya uning yuqoriga qarab quruq maydonga, bug'ni to'rtta katta issiqlik almashinuvchiga olib boradigan shiftdagi truboprovodlarga o'tishiga olib keladi - passiv konteyner sovutish tizimi ( PCCS) - quruq quduq ustida joylashgan - chuqur suv havzalarida. Bug 'sovutiladi va yana suyuq suvga quyiladi. Suyuq suv issiqlik almashinuvchidan yana GDCS basseyniga oqib tushadi va u erda yana RPVga oqib o'tib, chirigan issiqlik bilan qaynatilgan qo'shimcha suvni to'ldirishi mumkin. Bundan tashqari, agar GDCS chiziqlari uzilib qolsa, RPV va quruq quduqning shakli RPV tubini (va uning ichidagi yadroni) cho'ktiradigan suyuq suvdan iborat "ko'l" hosil bo'lishini ta'minlaydi.

PCCS issiqlik almashinuvchilarini 72 soat davomida sovutish uchun etarli suv mavjud. Shu nuqtada, faqat PCCS issiqlik almashinuvini sovutadigan basseynlarni to'ldirish kerak, bu ko'chma yong'in pompasi va shlanglari bilan bajarilishi mumkin bo'lgan nisbatan ahamiyatsiz operatsiya.

GE o'z veb-saytidagi quvurlarni buzish paytida ESBWR qanday ishlashini kompyuterlashtirilgan animatsiyaga ega.[9]

Kutish rejimida suyuqlikni boshqarish tizimi (SLCS)

SLCS - bu reaktorni himoya qilish tizimining zaxira nusxasi. Agar RPS biron sababga ko'ra reaktorni qirib tashlay olmasa, SLCS reaktiv idishida suyuq bor eritmasini in'ektsiya qilish yoki reaktor idishi chegaralaridan oshib ketishdan oldin uni kafolatlangan o'chirish holatiga keltiradi. Kutish rejimidagi suyuqlikni boshqarish tizimi 86 gpm ekvivalenti 13% og'irlikdagi natriy pentaborat eritmasini 251 dyuymli BWR reaktor idishiga etkazib berishga mo'ljallangan. SLCS, muqobil tayoq qo'shish tizimi bilan birgalikda, avtomatik sirkulyatsiya pompasi safari va yadrodagi suv sathini pasaytirish bo'yicha operatorning qo'l harakatlari reaktor idishi ASME kod chegaralaridan oshmasligini, yoqilg'i yadroga zarar etkazadigan beqarorliklarga duchor qilinmasligini ta'minlaydi, va eng yuqori quvvatli skramning ishlamay qolishi paytida haddan tashqari bosim tufayli saqlanish ishlamay qolmaydi.

SLCS o'z ichiga olgan tankdan iborat zerikarli suv kabi neytron yutuvchi, portlatilgan holda ochilgan klapanlar va ortiqcha nasoslar bilan himoyalangan, ichidagi har qanday bosimga qarshi zerikarli suvni reaktorga quyish imkonini beradi; zerikarli suv reaktorni o'chiradi va uni to'xtatib turadi. SLCS shuningdek, LOCA yoki yonilg'i qoplamasi bilan to'kilgan reaktor sovutish suyuqligining ph-ni sozlamasligi va ba'zi radioaktiv materiallarning tarqalishini oldini olish paytida AOK qilinishi mumkin.

Versiya nusxasi: SLCS - bu boshqa barcha choralar bajarilmasa, hech qachon faollashtirilmaydigan tizim. BWR / 1 - BWR / 6 da uning faollashishi o'simlikka etarlicha zarar etkazishi mumkin, chunki u eski BWRlarni to'liq ta'mirlamasdan ishlamay qolishi mumkin. ABWR va (E) SBWR kelishi bilan operatorlar SLCS-ni faollashtirishga unchalik istamasliklari shart emas, chunki bu reaktorlarda borni tozalash uchun mo'ljallangan reaktor suvini tozalash tizimi (RWCS) mavjud - reaktor barqarorlashgandan so'ng, RPV ichidagi zerikarli suvni ushbu tizim orqali filtrlab, tarkibidagi eruvchan neytron yutuvchilarni zudlik bilan olib tashlash va shu bilan o'simlik ichki qismiga zarar etkazmaslik mumkin.

Saqlash tizimi

Har bir BWR ichidagi va tashqarisidagi yakuniy xavfsizlik tizimi bu reaktorni tashqi dunyodan himoya qiladigan va tashqi dunyoni reaktordan himoya qiladigan ko'plab jismoniy himoya darajalari.

Himoyalashning beshta darajasi mavjud:

  1. Reaktor bosimli idish ichidagi yonilg'i tayoqchalari qalin bilan qoplangan Zirkaloy ekranlash;
  2. Reaktor bosimli idishning o'zi 6 dyuym qalinlikdagi (150 mm) po'latdan, juda yuqori harorat, tebranish va korroziyaga chidamli jarrohlik zanglamaydigan po'latdan yasalgan. 316L sinf ichki va tashqi tomondan plastinka;
  3. Asosiy qamrab olish tuzilishi 1 dyuym qalinlikdagi po'latdan yasalgan;
  4. Ikkilamchi izolyatsiya tuzilishi po'lat bilan mustahkamlangan, oldindan kuchlanishli 1,2-2,4 metr (3,9-7,9 fut) qalinlikdagi betondan qilingan.
  5. Reaktor binosi (qalqon devori / raketa qalqoni) qalinligi 0,3 dan 1 m gacha (0,98 dan 3,28 fut) gacha bo'lgan temir bilan mustahkamlangan, oldindan kuchlanishli betondan qilingan.

Agar xavfsiz ishlash va yadro ziyonlari o'rtasidagi har qanday chora-tadbirlar bajarilmasa, atrof-muhitni muhrlab qo'yish mumkin va bu atrof-muhitga deyarli har qanday sharoitda radiatsiya tarqalishini oldini oladi.

BWR tarkibidagi turlarning turlari

Yuqoridagi tizimlarning tavsiflarida ko'rsatilgandek, BWRlar PWR-larning dizaynida juda xilma-xildir. Odatda PWR-dan farqli o'laroq, umuman taxmin qilinadigan tashqi izolyatsiya dizayni (silindr ustidagi stereotipik gumbaz), BWR tarkibini tashqi ko'rinishida har xil, ammo ularning ichki o'ziga xosligi PWR-ga nisbatan juda ajoyib. BWR tarkibidagi beshta asosiy navlar mavjud:

Garigliano atom stansiyasi, zamonaviy "quruq" izolyatsiyadan foydalangan holda
  • "Premodern" (I avlod); bug 'baraban ajratgichi yoki RPVdan tashqarida bo'lgan bug' ajratgichi va past bosimli bug 'uchun issiqlik almashinuvchisi bo'lgan sharsimon shaklga ega, hozirda bu eskirgan va hech qanday operatsion reaktor tomonidan ishlatilmaydi.
I Containment-ni belgilang
Mark I Containment qurilmoqda
  • to'rtburchaklar temir-beton konstruktsiyadan tashkil topgan I markali izolyatsiya, shuningdek po'lat bilan qoplangan silindrli quruq quduqni va quyida po'lat bilan qoplangan bosimni bostirish torusini o'rab turgan qo'shimcha temir-beton qatlami. Mark I keng qamrovda bo'lgan eng qadimgi yopilish turi edi va Mark Is bilan ishlaydigan ko'plab reaktorlar bugungi kunda ham xizmat qilmoqda. Yil davomida ushbu turdagi izolyatsiyani xavfsizlikning ko'plab yangilanishlari amalga oshirildi, ayniqsa, cheklangan nosozlikdagi bosim tufayli to'siq yukini tartibli ravishda kamaytirish. Mark I reaktori binosi odatda temir betonning to'rtburchaklar shaklidagi katta konstruktsiyasi shaklida bo'ladi.
  • Mark II-ga o'xshash, ammo quruq qavatning reaktor bo'lmagan bo'shliq qismidan pastda silindrsimon suvli quduq foydasiga aniq bosimni to'xtatish torusini qoldirib. Suvli va quruq qavatning ikkalasi ham Mark Ida bo'lgani kabi po'latning birlamchi izolyatsiya tuzilishiga ega, shuningdek Mark I ning temir-beton beton qatlamlari tashqi birlamchi izolyatsiya tuzilishi va reaktor binosining tashqi devori orasidagi ikkilamchi izolyatsiyani tashkil etadi. . Mark II reaktori binosi odatda tepasi silindr shaklida bo'ladi.
  • the Mark III containment, generally similar in external shape to the stereotypical PWR, and with some similarities on the inside, at least on a superficial level. For example, rather than having a slab of concrete that staff could walk upon while the reactor was not being refueled covering the top of the primary containment and the RPV directly underneath, the Mark III takes the BWR in a more PWR-like direction by placing a water pool over this slab. Additional changes include abstracting the wetwell into a pressure-suppression pool with a weir wall separating it from the drywell.
ESBWR Containment
  • Advanced containments; the present models of BWR containments for the ABWR and the ESBWR are harkbacks to the classical Mark I/II style of being quite distinct from the PWR on the outside as well as the inside, though both reactors incorporate the Mark III-ish style of having non-safety-related buildings surrounding or attached to the reactor building, rather than being overtly distinct from it. These containments are also designed to take far more stress than previous containments were, providing advanced safety. In particular, GE regards these containments as being able to withstand a direct hit by a tornado beyond Level 5 on the Old Fujita Scale with winds of 330+ miles per hour. Such a tornado has never been measured on earth. They are also designed to withstand seismic accelerations of .2 G, or nearly 2 meters per second2 har qanday yo'nalishda.

Containment Isolation System

Many valves passing in and out of the containment are required to be open to operate the facility. During an accident where radioactive material may be released, these valves must shut to prevent the release of radioactive material or the loss of reactor coolant. The containment isolation system is responsible for automatically closing these valves to prevent the release of radioactive material and is an important part of a plant's safety analysis. The isolation system is separated into groups for major system functions. Each group contains its own criteria to trigger an isolation. The isolation system is similar to reactor protection system in that it consists of multiple channels, it is classified as safety-related, and that it requires confirmatory signals from multiple channels to issue an isolation to a system. An example of parameters which are monitored by the isolation system include containment pressure, acoustic or thermal leak detection, differential flow, high steam or coolant flow, low reactor water level, or high radiation readings in the containment building or ventilation system. These isolation signals will lock out all of the valves in the group after closing them and must have all signals cleared before the lockout can be reset.

Isolation valves consist of 2 safety-related valves in series. One is an inboard valve, the other is an outboard valve. The inboard is located inside the containment, and the outboard is located just outside the containment. This provides redundancy as well as making the system immune to the single failure of any inboard or outboard valve operator or isolation signal. When an isolation signal is given to a group, both the inboard and outboard valves stroke closed. Tests of isolation logic must be performed regularly and is a part of each plant's technical specifications. The timing of these valves to stroke closed is a component of each plant's safety analysis and failure to close in the analyzed time is a reportable event.

Examples of isolation groups include the main steamlines, the reactor water cleanup system, the reactor core isolation cooling (RCIC) system, shutdown cooling, and the residual heat removal system. For pipes which inject water into the containment, two safety-related check valves are generally used in lieu of motor operated valves. These valves must be tested regularly as well to ensure they do indeed seal and prevent leakage even against high reactor pressures.

Hydrogen management

During normal plant operations and in normal operating temperatures, the hydrogen generation is not significant. When the nuclear fuel overheats, zirkonyum yilda Zircaloy cladding used in fuel rods oxidizes in reaction with steam:[10]

Zr + 2H2O → ZrO2 + 2H2

When mixed with air, hydrogen is flammable, and hydrogen detonation or deflagration may damage the reactor containment. In reactor designs with small containment volumes, such as in Mark I or II containments, the preferred method for managing hydrogen is pre-inerting with inert gas—generally nitrogen—to reduce the oxygen concentration in air below that needed for hydrogen combustion, and the use of thermal recombiners. Pre-inerting is considered impractical with larger containment volumes where thermal recombiners and deliberate ignition are used.[11] Mark III containments have hydrogen igniters and hydrogen mixers which are designed to prevent the buildup of hydrogen through either pre-ignition prior to exceeding the lower explosive limit of 4%, or through recombination with Oxygen to make water.

The safety systems in action: the Design Basis Accident

The Design Basis Accident (DBA) for a nuclear power plant is the most severe possible single accident that the designers of the plant and the regulatory authorities could reasonably expect. It is, also, by definition, the accident the safety systems of the reactor are designed to respond to successfully, even if it occurs when the reactor is in its most vulnerable state. The DBA for the BWR consists of the total rupture of a large coolant pipe in the location that is considered to place the reactor in the most danger of harm—specifically, for older BWRs (BWR/1-BWR/6), the DBA consists of a "guillotine break" in the coolant loop of one of the recirculation jet pumps, which is substantially below the core waterline (LBLOCA, large break loss of coolant accident) combined with loss of feedwater to make up for the water boiled in the reactor (LOFW, loss of proper feedwater), combined with a simultaneous collapse of the regional power grid, resulting in a loss of power to certain reactor emergency systems (LOOP, loss of offsite power). The BWR is designed to shrug this accident off without core damage.[iqtibos kerak ]

The description of this accident is applicable for the BWR/4.

The immediate result of such a break (call it time T+0) would be a pressurized stream of water well above the boiling point shooting out of the broken pipe into the drywell, which is at atmospheric pressure. As this water stream flashes into steam, due to the decrease in pressure and that it is above the water boiling point at normal atmospheric pressure, the pressure sensors within the drywell will report a pressure increase anomaly within it to the reactor protection system at latest T+0.3. The RPS will interpret this pressure increase signal, correctly, as the sign of a break in a pipe within the drywell. As a result, the RPS immediately initiates a full SCRAM, closes the main steam isolation valve (isolating the containment building), trips the turbines, attempts to begin the spinup of RCIC and HPCI, using residual steam, and starts the diesel pumps for LPCI and CS.

Now let us assume that the power outage hits at T+0.5. The RPS is on a float uzluksiz quvvat manbai, so it continues to function; its sensors, however, are not, and thus the RPS assumes that they are all detecting emergency conditions. Within less than a second from power outage, auxiliary batteries and compressed air supplies are starting the Emergency Diesel Generators. Power will be restored by T+25 seconds.

Let us return to the reactor core. Due to the closure of the MSIV (complete by T+2), a wave of backpressure will hit the rapidly depressurizing RPV but this is immaterial, as the depressurization due to the recirculation line break is so rapid and complete that no steam voids will likely collapse to liquid water. HPCI and RCIC will fail due to loss of steam pressure in the general depressurization, but this is again immaterial, as the 2,000 L/min (600 US gal/min) flow rate of RCIC available after T+5 is insufficient to maintain the water level; nor would the 19,000 L/min (5,000 US gal/min) flow of HPCI, available at T+10, be enough to maintain the water level, if it could work without steam. Da T+10, the temperature of the reactor core, at approximately 285 °C (545 °F) at and before this point, begins to rise as enough coolant has been lost from the core that voids begin to form in the coolant between the fuel rods and they begin to heat rapidly. By T+12 seconds from the accident start, fuel rod uncovery begins. Taxminan T+18 areas in the rods have reached 540 °C (1,004 °F). Some relief comes at T+20 or so, as the negative temperature coefficient and the negative void coefficient slows the rate of temperature increase. T+25 sees power restored; however, LPCI and CS will not be online until T+40.

Da T+40, core temperature is at 650 °C (1,202 °F) and rising steadily; CS and LPCI kick in and begins deluging the steam above the core, and then the core itself. First, a large amount of steam still trapped above and within the core has to be knocked down first, or the water will be flashed to steam prior to it hitting the rods. This happens after a few seconds, as the approximately 200,000 L/min (3,300 L/s, 52,500 US gal/min, 875 US gal/s) of water these systems release begin to cool first the top of the core, with LPCI deluging the fuel rods, and CS suppressing the generated steam until at approximately T+100 seconds, all of the fuel is now subject to deluge and the last remaining hot-spots at the bottom of the core are now being cooled. The peak temperature that was attained was 900 °C (1,650 °F) (well below the maximum of 1,200 °C (2,190 °F) established by the NRC) at the bottom of the core, which was the last hot spot to be affected by the water deluge.

The core is cooled rapidly and completely, and following cooling to a reasonable temperature, below that consistent with the generation of steam, CS is shut down and LPCI is decreased in volume to a level consistent with maintenance of a steady-state temperature among the fuel rods, which will drop over a period of days due to the decrease in fission-product decay heat within the core.

After a few days of LPCI, decay heat will have sufficiently abated to the point that defueling of the reactor is able to commence with a degree of caution. Following defueling, LPCI can be shut down. A long period of physical repairs will be necessary to repair the broken recirculation loop; overhaul the ECCS; diesel pumps; and diesel generators; drain the drywell; fully inspect all reactor systems, bring non-conformal systems up to spec, replace old and worn parts, etc. At the same time, different personnel from the licensee working hand in hand with the NRC will evaluate what the immediate cause of the break was; search for what event led to the immediate cause of the break (the root causes of the accident); and then to analyze the root causes and take corrective actions based on the root causes and immediate causes discovered. This is followed by a period to generally reflect and post-mortem the accident, discuss what procedures worked, what procedures didn't, and if it all happened again, what could have been done better, and what could be done to ensure it doesn't happen again; and to record lessons learned to propagate them to other BWR licensees. When this is accomplished, the reactor can be refueled, resume operations, and begin producing power once more.

The ABWR and ESBWR, the most recent models of the BWR, are not vulnerable to anything like this incident in the first place, as they have no liquid penetrations (pipes) lower than several feet above the waterline of the core, and thus, the reactor pressure vessel holds in water much like a deep swimming pool in the event of a feedwater line break or a steam line break. The BWR 5s and 6s have additional tolerance, deeper water levels, and much faster emergency system reaction times. Fuel rod uncovery will briefly take place, but maximum temperature will only reach 600 °C (1,112 °F), far below the NRC safety limit.

According to a report by the U.S. Nuclear Regulatory Commission into the Fukushima Daiichi yadroviy halokati, mart 2011 Txoku zilzilasi va tsunami that caused that disaster was an event "far more severe than the design basis for the Fukushima Daiichi atom elektr stantsiyasi ".[12] The reactors at this plant were BWR 3 and BWR 4 models. Their primary containment vessels had to be flooded with seawater containing boric acid, which will preclude any resumption of operation[iqtibos kerak ] and was not anticipated in the DBA scenario. In addition, nothing similar to the chemical explosions that occurred at the Fukushima Daiichi plant [13] was anticipated by the DBA.

Prior to the Fukushima Daiichi disaster, no incident approaching the DBA or even a LBLOCA in severity had occurred with a BWR[iqtibos kerak ]. There had been minor incidents involving the ECCS, but in those circumstances it had performed at or beyond expectations. The most severe incident that had previously occurred with a BWR was in 1975 due to a fire caused by extremely flammable urethane foam installed in the place of yong'inga qarshi materials at the Brauns Feribot Atom Elektr Stantsiyasi; for a short time, the control room's monitoring equipment was cut off from the reactor, but the reactor shut down successfully, and, as of 2009, is still producing power for the Tennessi vodiysi boshqarmasi, having sustained no damage to systems within the containment. The fire had nothing to do with the design of the BWR – it could have occurred in any power plant, and the lessons learned from that incident resulted in the creation of a separate backup control station, compartmentalization of the power plant into fire zones and clearly documented sets of equipment which would be available to shut down the reactor plant and maintain it in a safe condition in the event of a worst-case fire in any one fire zone. These changes were retrofitted into every existing US and most Western nuclear power plants and built into new plants from that point forth.

Notable activations of BWR safety systems

General Electric defended the design of the reactor, stating that the station blackout caused by the 2011 Txoku zilzilasi va tsunami edi "beyond-design-basis " event which led to Fukusima I yadro hodisalari.[14] According to the Nuclear Energy Institute, "Coincident long-term loss of both on-site and off-site power for an extended period of time is a beyond-design-basis event for the primary containment on any operating nuclear power plant".[15]

The reactors shut down as designed after the earthquake. However, the tsunami disabled four of the six sets of switchgear and all but three of the diesel backup generators which operated the emergency cooling systems and pumps. Pumps were designed to circulate hot fluid from the reactor to be cooled in the wetwell, but only units 5 and 6 had any power. Units 1, 2 and 3 reactor cores overheated and melted. Radioactivity was released into the air as fuel rods were damaged due to overheating by exposure to air as water levels fell below safe levels. As an emergency measure, operators resorted to using firetrucks and salvaged car batteries to inject seawater into the drywell to cool the reactors, but only achieved intermittent success and three cores overheated. Reactors 1–3, and by some reports 4 all suffered violent hydrogen explosions March 2011 which damaged or destroyed their top levels or lower suppression level (unit 2).[16]

As emergency measures, helicopters attempted to drop water from the ocean onto the open rooftops. Later water was sprayed from fire engines onto the roof of reactor 3. A concrete pump was used to pump water into the spent fuel pond in unit 4.

Ga binoan NISA, the accident released up to 10 petekekerellar of radioactiveiodine-131 per hour in the initial days, and up to 630 PBq total, about one eighth the 5200 PBq released at Chernobyl.[17]However, in view of the later scandals, NISA's data should perhaps be treated with caution.[18]

Adabiyotlar

  1. ^ Staff, USNRC Technical Training Center (September 27, 2002). GE Technology Manual (R-304B). 3rd (of 8 files) (Revision 0197 ed.). Chattanuga, Tennessi, United States of America: Office for Analysis and Evaluation of Operational Data, AQSh yadroviy tartibga solish komissiyasi. p. 2.5.2. Olingan 15-noyabr, 2009.[doimiy o'lik havola ]
  2. ^ Various GE promotional slideshows & ABWR Tier 2 Design Control Document, USNRC
  3. ^ Youngborg, L.H.; , "Retrofits to BWR safety and nonsafety systems using digital technology," Nuclear Science Symposium and Medical Imaging Conference, 1992., Conference Record of the 1992 IEEE, vol., no., pp. 724–726 vol. October 2, 25–31, 1992
  4. ^ "NRC: Resolution of Generic Safety Issues: Issue 82: Beyond Design Basis Accidents in Spent Fuel Pools (Rev. 3) (NUREG-0933, Main Report with Supplements 1–33)". Nrc.gov. 2010 yil 3-noyabr. Olingan 18 mart, 2011.
  5. ^ "Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors". NRC. 2012 yil. Olingan 29 may, 2012.
  6. ^ "Status report 100 - Economic Simplified Boiling Water Reactor (ESBWR)". Vashington, DC: Xalqaro atom energiyasi agentligi. 2011. Olingan 30 iyun, 2011.[doimiy o'lik havola ]
  7. ^ David Lochbaum (May 24, 2011). "Fukushima Dai-Ichi Unit 1: The First 30 Minutes" (PDF). Vashington, DC: Union of Concerned Scientists. Olingan 30 iyun, 2011.
  8. ^ David Lochbaum (2011). "Fukushima Dai-Ichi Unit 2: The First 60 Minutes" (PDF). Vashington, DC: Union of Concerned Scientists. Olingan 30 iyun, 2011.
  9. ^ http://www.ge-energy.com/products_and_services/products/nuclear_energy/esbwr_nuclear_reactor.jsp (click the arrow button in the "MEDIA GALLERY" in order to start the animation)
  10. ^ Nuclear Fuel Behaviour in Loss-of-coolant Accident (LOCA) Conditions (PDF). Nuclear Energy Agency, OECD. 2009. p. 141. ISBN  978-92-64-99091-3.
  11. ^ "Mitigation of hydrogen hazards in water cooled power reactors" (PDF). IAEA. 2001 yil fevral.
  12. ^ Recommendations for Enhancing Reactor Safety in the 21st Century: The Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident (PDF), U.S. Nuclear Regulatory Commission, 2011, SECY-11-0093, 2012 yil iyul oyida olingan Sana qiymatlarini tekshiring: | kirish tarixi = (Yordam bering)
  13. ^ "Japan Earthquake: Radiation Leaking After Fukushima Nuclear Plant Explodes – ABC News". Abcnews.go.com. 2011 yil 14 mart. Olingan 18 mart, 2011.
  14. ^ " General Electric Defends Nuclear Plant Design, ABC News
  15. ^ "NEI report" (PDF). Arxivlandi asl nusxasi (PDF) 2011 yil 26 aprelda. Olingan 21 aprel, 2011.
  16. ^ Helman, Christopher (March 15, 2011). "Explainer: What caused the incident at Fukushima-Daiichi". Blogs.forbes.com. Olingan 7 aprel, 2011.
  17. ^ Q&A: Is Fukushima as bad as Chernobyl? By Thair Shaikh, CNN April 13, 2011
  18. ^ "NISA admits it was negligent, apologizes for shoddy management", Asaxi Shimbun, June 19, 2012, archived from asl nusxasi 2014 yil 23 mayda, olingan 20 may, 2014

Tashqi havolalar

Bilan bog'liq ommaviy axborot vositalari Schemata of boiling water reactor Vikimedia Commons-da