CSNK1D - CSNK1D

CSNK1D
Protein CSNK1D PDB 1cki.png
Mavjud tuzilmalar
PDBOrtholog qidiruvi: PDBe RCSB
Identifikatorlar
TaxalluslarCSNK1D, ASPS, CKIdelta, FASPS2, HCKID, kazein kinaz 1 deltasi, CKId, CKI-delta
Tashqi identifikatorlarOMIM: 600864 MGI: 1355272 HomoloGene: 74841 Generkartalar: CSNK1D
EC raqami2.7.11.26
Gen joylashuvi (odam)
17-xromosoma (odam)
Chr.17-xromosoma (odam)[1]
17-xromosoma (odam)
CSNK1D uchun genomik joylashuv
CSNK1D uchun genomik joylashuv
Band17q25.3Boshlang82,239,023 bp[1]
Oxiri82,273,731 bp[1]
RNK ekspressioni naqsh
PBB GE CSNK1D 207945 s at fs.png

PBB GE CSNK1D 208774 at fs.png
Qo'shimcha ma'lumotni ifodalash ma'lumotlari
Ortologlar
TurlarInsonSichqoncha
Entrez
Ansambl
UniProt
RefSeq (mRNA)

NM_001893
NM_139062
NM_001363749

NM_027874
NM_139059

RefSeq (oqsil)

NP_001884
NP_620693
NP_001350678

NP_082150
NP_620690

Joylashuv (UCSC)Chr 17: 82.24 - 82.27 MbChr 11: 120.96 - 120.99 Mb
PubMed qidirmoq[3][4]
Vikidata
Insonni ko'rish / tahrirlashSichqonchani ko'rish / tahrirlash

Kasein kinaz I izoform deltasi shuningdek, nomi bilan tanilgan CKI-deltasi yoki CK1δ bu ferment odamlarda kodlanganligi gen CSNK1D, 17-xromosomada joylashgan (17q25.3). Bu a'zosi CK1 (avval kazein kinaz 1 deb nomlangan) serin / treoninli o'ziga xos ökaryotik oqsillar oilasi kinazlar ettita izoformani (CK1a, -1-3, b, d), shuningdek transkripsiyadan keyin qayta ishlangan qo'shilish variantlarini (transkripsiya variantlari, televizorlar) o'z ichiga oladi sutemizuvchilar.[5][6][7] Shu bilan birga, CK1δ gomologik oqsillari o'xshash organizmlardan ajratib olingan xamirturush, basidiomitsetalar, o'simliklar, suv o'tlari va protozoa.[8][9][10][11][12][13][14]

Genetik kodlash

1993 yilda CK1δ ning genlar ketma-ketligi dastlab Graves va boshq. kalamush moyaklaridan CDNKni ajratib olgan. Genning ketma-ketligi va tavsifidan so'ng, konstruktsiya 1284 nukleotidlar ketma-ketligi deb ta'riflandi, natijada transkripsiyadan so'ng 428 aminokislotadan iborat oqsil paydo bo'ldi. Tegishli oqsilning molekulyar og'irligi 49 kDa sifatida nashr etilgan.[15] Uch yil o'tgach, odamlarda xuddi shu gen aniqlandi. Inson CSNK1D 1245 nukleotidni o'z ichiga oladi va 415 aminokislotadan iborat oqsilga o'tkaziladi.[16]

O'shandan beri CK1δ turli hayvonlarda, o'simliklarda, shuningdek parazitlarda o'rganilgan va tavsiflangan (Caenorhabditis elegans, 1998;[17] Drosophila melanogaster, 1998;[18] Muskul mushak, 2002;[19] Ksenopus laevis, 2002.[20])

Transkripsiya variantlari

Hozirgacha odamlarda CK1δ uchun uch xil transkripsiya variantlari (televizorlar) tasvirlangan (Homo sapiens), sichqonlar (Muskul mushak) va kalamushlar (Rattus norvegicus), ular juda gomologik. Barcha organizmlarning barcha CK1δ ketma-ketliklari tenglashishi birinchi 399 aminokislotada yuqori homologiyani ko'rsatadi, faqat 381-pozitsiya bundan mustasno. Inson transkripsiyasi variantlari izolösinni ishlatganda, sichqon va kalamushlar ketma-ketligi o'rniga valinni qo'shadi. Faqatgina istisno - bu sichqoncha TV3, u ham nukleotidlar ketma-ketligini izoleysinga o'tkazadi.

399-pozitsiyadan keyin uch xil umumiy tuzilmani kuzatish mumkin. Birinchi variant barcha uchta organizmda 415 ta aminokislotadan iborat bo'lib, odam va kalamushlarda TV1 deb nomlanadi, murin hamkasbi CRAa deb nomlanadi. Eng qisqa ketma-ketliklar guruhi 409 aminokislotadan iborat: odamlarda va kalamushlarda TV2, sichqonlardagi CRAc. Eng uzun variant kalamush (TV3) va sichqonlar (CRAb) tarkibidagi 428 aminokislotadan iborat bo'lsa, odam (TV3) variantida oxirgi aminokislotaning (treonin) ikkinchi borligi etishmayapti, natijada uzunligi 427 aminokislotadan iborat oqsil hosil bo'ladi.

Turli xil transkripsiya variantlari kodlangan eksonlardan boshqacha foydalanishga asoslangan CSNK1D. Butun gen o'n bir xil ekszondan iborat bo'lib, odamlarda 17-xromosomada 17q25.3 holatida joylashgan. CSNK1D uzunligi 35kb va gen bilan bir-biriga to'g'ri keladi Slc16a3. Kesishuvchi qism ekzon 10 bo'lib, u ekson 10 ning quyi qismida joylashgan, ammo bu unga xalaqit bermaydi Slc16a3 chunki u kodlanmaydigan joyda joylashgan.

TV1 va TV2 2002 yilda odam va murin genlarini erta tahlil qilish paytida joylashtirilgan.[21] Ikkala transkripsiya variantlari ham birinchi 399 ta aminokislotani taqsimlaydi, ammo TV1 uchun quyidagi 16 ta aminokislotadan va TV2 uchun o'nta aminokislotadan farq qiladi. Bu eksondan foydalanish bilan bog'liq. Ular birinchi sakkizta ekzizlarni baham ko'rishganda, TV1 o'zlarining ketma-ketligini yakunlash uchun exon 10 va TV2 exon 9 dan foydalanmoqdalar. Uchinchi transkripsiya varianti 2014 yilda ma'lumotlar banki tahlilidan so'ng e'lon qilindi.[22] Taklif etilgan ketma-ketlik birinchi 399 ta aminokislotani TV1 va TV2 bilan bo'lishadi, ammo kelgusi 28 ta aminokislotada farq qiladi. TV3-ning ekzondan foydalanilishi 1 dan 8 gacha bo'lgan eksondan iborat bo'lib, undan keyin ketma-ketlikni tugatish uchun 11-sonli ekon keladi.

Uch xil transkripsiya variantlarining turli xil ketma-ketliklaridan tashqari, variantlar Mixailis-Menten kinetik parametrlari (Km va Vmaksimal) ularning kanonik (a-kazein), shuningdek kanonik bo'lmagan (GST-b-katenin) fosforilat qilish potentsiali bo'yicha1-181) substratlar (Xu va boshq, 2019). TV3 TV1 va TV2 bilan taqqoslaganda ikkala substratning fosforillanishining ko'payishini ko'rsatadi, bu statistik jihatdan ahamiyatlidir. Ushbu farqlarni transkripsiya variantlarining turli darajadagi avtofosforillanishi bilan izohlash mumkin.[23]

Poliadenilatsiya

MRNK ketma-ketliklarini dasturiy tahlili asosida transkripsiya variantlari uchun turli xil poliadenillanish naqshlari aniqlanishi mumkin.[24] TV1 va TV2 xuddi shu modelni 10-eksonda joylashgan bo'lib, 1246-pozitsiyadan boshlanib, 32 nukleotid motifiga olib keladi (AGUAGAGUCUGCGCUGUGACCUUCUGUUGGGC). TV3 ekzondagi 11-rasmda 320 pozitsiyasida motifdan foydalanadi. Shuningdek, motif 32 nukleotidga teng, ammo TV1 / 2 (AGUGGCUUGUUCUCCACUCUCCCCCCAUCUAAC) tomonidan qo'llaniladigan ketma-ketlikdan farq qiladi. Poliadenilatatsiya ketma-ketligidagi farq, taxmin qilingan RNK katlama tuzilmalarining (-28.70 kkal / mol, TV1 va TV2 va -16.03 kkal / mol, TV3) minimal erkin energiya qiymatlari o'zgarishiga olib keladi, bu esa turli uzunliklarga olib kelishi mumkin. Poly-A quyruq. Barqaror ikkilamchi tuzilmalar ma'lum joyning poliadenilatsiyasini pasayishiga olib keladi, degan kuzatishlarga asoslanib,[25] bu TV1 va TV2 ning TV3 ga nisbatan kamroq poliadenillanganligini ko'rsatishi mumkin.

Tuzilishi

1-rasm: Insonning uch o'lchovli tuzilishi CK1δ. N-lobning tuzilishi asosan b-varaqli iplardan iborat bo'lsa, kattaroq C-terminal lob asosan a-spirallar va tsikl tuzilmalaridan iborat. DFG motifi L-89 ko'chadan ichida joylashgan. Fosforillangan substratlarni bog'lash uchun tanib olish motifi W1 bilan ko'rsatilgan volfram bilan bog'lovchi domenni aniqlash orqali aniqlandi. Katalitik tsiklning holati (L-67) yulduzcha bilan belgilanadi.[26][27] Raqam Ben-Neriah va boshqalar tomonidan yaratilgan CK1δ kristallanish ma'lumotlari yordamida yaratilgan.[28] ID 6GZM bilan oqsil ma'lumotlari bankida (PDB) saqlanadi.

Eukaryotik oqsil kinazalari (ePKs) singari ning izoformalari CK1 oila N-terminal va C-terminal lobdan iborat (navbati bilan N- va C-lob), ular menteşe mintaqasi orqali bog'langan. N-lob asosan b-varaq iplari bilan tuzilgan bo'lsa, kattaroq C-lob asosan a-spiral va tsikli tuzilmalardan iborat. Ikkala lob o'rtasida kinaz reaktsiyasi uchun substrat va ATP joylashadigan katalitik yoriq hosil bo'ladi.[26][27]

Substratlar va qo'shimcha substratlarning bog'lanishi

Fosforlangan substratlarning C-lobning aniq mintaqalari bilan birikishi ilgari volfram hosilasini (fosfat analogi sifatida) bog'lash orqali aniqlangan. Fosfor bilan ishlangan substrat o'rniga, CK1δ ning C-terminal regulyatsion domeni ham avtoregulyatsiya funktsiyasi uchun ushbu holatga bog'lanishi mumkin.[26] Majburiy ATP asosan glitsinga boy P-tsikl (L-12, ko'prik iplari -1 va -2) orqali vositachilik qiladi, bu WTP bog'lash joyining ustki qopqog'ini va katalitik tsikl (L-67) deb ataladi.[29][27][30] Aktivizatsiya tsikliga ta'sir ko'rsatadigan konformatsion o'zgarishlar (L-9D) kinaz faolligini tartibga solish bilan bog'liq. Aktivizatsiya tsikli katalitik joydan chiqib ketganda katalitik jihatdan ahamiyatli DFG motifi (Asp-149, Phe-150 va Gly-151) ichki holatga o'tadi. Aspartat qoldig'i Mg ni xelatlaydi2+ ATPni to'g'ri bog'lash va yo'naltirishga imkon beradigan ion.[31][26][27] Aslida kinaz faolligini boshqarishda ishtirok etadigan, ammo u bilan o'zaro aloqalarni shakllantirishda ishtirok etadigan yana bir qoldiq kichik molekula inhibitörler, Met-82, bu darvozabon qoldig'i deb ataladi. To'g'ridan-to'g'ri ATP ulanish cho'ntagida joylashgan bo'lib, ushbu qoldiq kirishni boshqaradi kichik molekulalar darvozabon pozitsiyasidan tashqarida joylashgan ba'zi majburiy cho'ntaklarga (selektiv cho'ntaklar).[32]

Qo'shimcha funktsional domenlar

To'g'ridan-to'g'ri katalitik faollik bilan shug'ullanadigan domenlardan tashqari, keyingi funktsional domenlar CK1δ oqsilida mavjud. Kinazin domenida kinesin homologiyasi (KHD), shuningdek, taxminiy dimerizatsiya domeni (DD) mavjud.[33] KHD imkon beradi CK1 sitoskeletning tarkibiy qismlari bilan ta'sir o'tkazish uchun izoformalar.[34][35][27] DD tartibga solishda ishtirok etishi kerak kinaz faoliyat (pastga qarang). C-lobida, shuningdek, yadro lokalizatsiya signalini (NLS), shuningdek sentrosomani lokalizatsiya signalini (CLS) topish mumkin. Ammo birinchisi CK1δ ni yadroga topish uchun etarli emas.[15][36][37]

Ifoda va faoliyatni tartibga solish

CK1δ ifodasini qattiq boshqarish va kinaz faolligi muhim uyali signal uzatish yo'llarida ishtirok etishi sababli juda muhimdir. Odatda, CK1δ ning bazal ekspression darajasi turli to'qimalar, hujayralar turlari va fiziologik holatlar o'rtasida farq qiladi.[38] CK1δ mRNA ning ekspression darajalari hujayralarni etopozid va kemptotsin kabi DNKga zarar etkazuvchi moddalar bilan davolashdan keyin yoki b-nurlanish bilan aniqlanishi mumkin, CK1 ga xos faollik esa hujayralarni insulin bilan stimulyatsiya qilishdan keyin yoki virusli transformatsiyadan keyin kuzatiladi.[34][39][40][41]

Subcellular sekvestratsiya

Yoqilgan oqsil darajasida, CK1δ faolligi kinazni hujayra funktsiyasiga rahbarlik qilish uchun alohida substrat havzalari bilan birlashtirib, alohida subcellular bo'linmalarga sekvestratsiya qilish yo'li bilan tartibga solinishi mumkin.[42][43][13] Ushbu sekvestratsiyani odatda iskala oqsillari osonlashtiradi, ular o'zaro ta'sir qiluvchi kinaz faolligini allosterik tarzda boshqarishi kerak.[44][45] CK1δ subcellular sekestratsiyasi uchun A-kinaz anker oqsili (AKAP) 450, X bilan bog'langan DEAD-box RNK helikaz 3 (DDX3X), kazein kinaz-1 bog'laydigan oqsil (CK1BP) vositachiligi va tartibga soluvchi va kompleks - 14-3-3 molec molekulasini qurish / boshlash.[46][47][36][42][48][49] AKAP450 hujayra tsiklini boshqarish sharoitida sentrosomaga xos funktsiyalarni bajarish uchun CK1δ va ε ni sentrosomaga jalb qiladi.[36][42] DDX3X kanonik Wnt yo'lidagi Disheveled (Dvl) ning CK1b-vositachiligidagi fosforillanishiga yordam beradi, ammo CK1δ- va b-spesifik kinaz faolligini besh darajaga qadar rag'batlantirishi ham isbotlangan.[46][50] Aksincha, CK1BP bilan homolog bo'lgan oqsillar (masalan, disbindin yoki BLOC-1 [lizozoma bilan bog'liq organoidlar kompleksining biogenezi-1]) dozaga bog'liq holda CK1δ kinaz faolligini inhibe qilishga qodir.[48]

Dimerizatsiya

CK1δ ning dimerizatsiyasi, shuningdek, CK1δ ning DD tarkibidagi o'zaro ta'sir interfeysi orqali tartibga solish mexanizmi sifatida tavsiflangan. Dimerizatsiyadan so'ng, Arg-13 adenin bilan bog'laydigan cho'ntagiga kiradi va ATP va ehtimol katta substratlarning bog'lanishiga to'sqinlik qiladi. Garchi eritmadagi CK1 mon har doim monomerlar sifatida tozalangan bo'lsa-da, dimerizatsiyaning biologik ahamiyatini, dominant-salbiy mutant CK1ant ning yovvoyi turga CK1δ bilan bog'lanishi, CK1δ-o'ziga xos kinaz faolligining to'liq pasayishiga olib kelganligini ko'rsatib berish mumkin.[51][33][52]

Saytga xos fosforillanish

Shakl 2: Insonning CK1δ ning posttranslyatsion modifikatsiyasi. CK1δ TV1 ning translatsiyadan keyingi aniqlangan modifikatsiyalari ularning hisobot joylarida ko'rsatiladi. Ko'pgina o'zgartirishlar C-terminal domeni uchun xabar qilinganligi sababli, bu domen kinaz domeniga nisbatan kengaytirilgan taqdimotda tasvirlangan. Fosforillanish holatida past o'tkazuvchanlik tadqiqotlari (LTP) va yuqori ishlab chiqarish ko'rsatkichlari (HTP) hisobotlari o'rtasida farq ajratiladi. Autoinhibitory domenidagi avtofosforillangan qoldiqlar qizil rangda ko'rsatilgan. Ba'zi qoldiqlarni fosforilatlash uchun aniqlangan kinazlar tegishli maqsad joyida ko'rsatilgan. Yakuniy tasdiqlash kutilayotgan taqdirda kinazlarning nomlari qavs ichiga olinadi. Aniqlangan hamma joyda ikkitillanish, atsetilatsiya va metilatsiya hodisalari haqida ma'lumot ham berilgan, ammo shu paytgacha kuzatilgan modifikatsiyalar bilan aniq funktsiyalar bog'lanmagan. Bu raqam PhosphoSitePlus tomonidan CK1δ uchun berilgan ma'lumotlarga asoslanib yaratilgan.[53]

Posttranslyatsion modifikatsiyalar, ayniqsa yuqori oqimdagi kinazlar yoki molekula ichidagi avtofosforillanish vositasida vositaga asoslangan fosforillanish, CK1δ kinaz faolligini qaytadan modulyatsiya qilish uchun namoyish etildi. CK1δ ning C-terminal tartibga solish sohasidagi bir nechta qoldiqlar, shu jumladan Ser-318, Thr-323, Ser-328, Thr-329, Ser-331 va Thr-337 kabi avtofosforillanish maqsadlari sifatida aniqlandi. Avtomatik fosforillanish ketma-ketligida S-terminal sohasidagi motiflar hosil bo'ladi, ular psevdosubstrat vazifasini bajarib, kinazning katalitik markazini to'sib qo'yishga qodir.[54][55] C-terminal domenining regulyativ funktsiyasi, shuningdek, ushbu domenning proteolitik parchalanishidan so'ng kinaz faolligini oshirishi kuzatuvi bilan tasdiqlangan.[56][54]

Avtofosforillanishdan tashqari, boshqa hujayra kinazlari tomonidan saytga xos fosforillanish kinaz faolligini tartibga solish uchun isbotlangan. Hozirga qadar CK1δ ning yuqori oqimdagi kinazlar tomonidan C-terminal fosforillanishi oqsil kinaz A (PKA), oqsil kinaz B (Akt), siklinga bog'liq kinaz 2 / siklin E (CDK2 / E) va siklinga bog'liq kinaz 5 / uchun tasdiqlangan. p35 (CDK5 / p35), CDC ga o'xshash kinaz 2 (CLK2), protein kinaz C a (PKCa) va nazorat nuqtasi kinaz 1 (Chk1).[23][57][58][59][60] Bir nechta fosforillanish hodisalari uchun kinaz funktsiyasiga ta'siri ham tavsiflangan. Hech bo'lmaganda PKA, Akt, CLK2, PKCa va Chk1 tomonidan fosforillanishi mumkin bo'lgan Ser-370 qoldig'i uchun asosiy tartibga solish funktsiyasi namoyish etildi. CK1δ S370A mutantining o'zgargan kinaz faolligi natijasida, keyinchalik ta'sirlangan Wnt / b-katenin signal transdüksiyonu, ektopik dorsal o'qning rivojlanishiga olib keldi. Ksenopus laevis embrionlar.[58] Joyga xos fosforillanishga yo'naltirilgan qo'shimcha qoldiqlar 2-rasmda tasvirlangan. Belgilangan maqsadli joylarning posforatsiyalanmaydigan aminokislota alanin bilan mutatsiyasi, aksariyat hollarda CK1δ katalitik parametrlariga sezilarli ta'sirga olib keladi. in vitro.[23][59][60]

Dalillar, shuningdek, hujayra madaniyati asosidagi tahlillarda ishlab chiqarilgan bo'lib, ular uyali Chk1 faollashgandan keyin CK1-ga xos kinaz faolligini pasayishini va faolligini oshirganligini ko'rsatmoqda. CK1 hujayralarni PKC ga xos bo'lgan inhibitor Gö-6983 yoki pan-CDK inhibitori dinaciclib bilan davolashdan keyin.[23][59][60] Ushbu topilmalar shuni ko'rsatadiki, Chk1, PKCa va CDKlar vositachiligida saytga xos fosforillanish aslida CK1ga xos kinaz faolligini pasayishiga olib keladi. Biroq, mustahkam jonli ravishda fosforillanish ma'lumotlari ko'p hollarda etishmayapti va biologik ahamiyatga ega bo'lgan joy va o'ziga xos fosforillanishning funktsional oqibatlari tekshirilishi kerak jonli ravishda shartlar. Bundan tashqari, kinaz domenidagi fosforillanish maqsadli joylari hali keng tavsiflanmagan va kelgusida olib boriladigan tadqiqotlarning ob'ekti hisoblanadi.

Substratlar

Hozirgacha 150 dan ortiq oqsillar, hech bo'lmaganda, CK1 vositachiligidagi fosforillanish maqsadlari ekanligi aniqlandi in vitro. Ko'pgina substratlarning fosforillanishi bir nechta konsensus motiflari mavjudligi tufayli yoqilgan bo'lib, ular tomonidan tan olinishi mumkin. CK1 izoformlar.

Kanonik konsensus motivi

CK1δ tercihen substratni tanib olish bilan shug'ullanadigan mintaqada musbat zaryadlangan aminokislotalarning (masalan, Arg-178 va Lys-224) lokalizatsiyasi tufayli fosfo-astarlangan yoki kislotali substratlar bilan ta'sir o'tkazadi.[26] Tomonidan maqsad qilingan kanonik konsensus motivi CK1 pSer / pThr-X-X- (X) -Ser / Thr ketma-ketligi bilan ifodalanadi. Ushbu motifda X har qanday aminokislotani anglatadi, pSer / pThr esa ilgari fosforillangan serin yoki treonin qoldig'ini bildiradi. CK1 vositachiligidagi fosforillanish fosfo bilan biriktirilgan qoldiqning quyi oqimida Ser / Thr da sodir bo'ladi. Shu bilan birga, astarlangan qoldiq o'rniga, manfiy zaryadlangan aminokislota qoldiqlari klasteri (Asp yoki Glu) ham kanonik konsensus motiviga kiritilishi mumkin.[61][62][63][64]

Kanonik bo'lmagan konsensus motivi

CK1δ tomonidan maqsad qilingan birinchi kanonik bo'lmagan konsensus motifi sifatida SLS motifi (Ser-Leu-Ser) tasvirlangan bo'lib, uni b-katenin va faollashtirilgan T-hujayralar (NFAT) ning yadro omilida topish mumkin.[65] Bir nechta sulfatid va xolesterin-3-sulfat (SCS) bog'laydigan oqsillarda Lys / Arg-X-Lys / Arg-XX-Ser / Thr konsensus motifi aniqlangan va miyelinning asosiy oqsili (MBP) uchun bu motifning fosforillanganligi isbotlangan. ), Ras homolog oilasi a'zosi A (RhoA) va tau.[66]

Subcellular localization

Tirik hujayralar ichida CK1δ ikkalasida ham, sitoplazmada ham, yadroda ham aniqlanishi mumkin va CK1δ darajasining ortishi Golgi apparati va trans-Golji tarmog'iga (TGN) yaqin joyda bo'lishi mumkin. Vaqtincha, CK1δ membranalar, retseptorlar, transport pufakchalari, sitoskeletning tarkibiy qismlari, sentrosomalar yoki shpindel qutblariga joylashishi mumkin.[34][67][38][68][69][70] Hozirgi NLS CK1δ ning yadroviy lokalizatsiyasi uchun etarli bo'lmasa-da, kinaz domenining mavjudligi va hattoki uning fermentativ faolligi CK1δ ning to'g'ri hujayradan tashqari lokalizatsiyasi uchun zarurdir.[15][71][68]

Uyali oqsillar bilan o'zaro ta'sir

CK1δ ning ba'zi bir hujayra bo'linmalariga joylashishini, shuningdek, hujayra oqsillari bilan o'zaro aloqasi orqali boshlash mumkin. CK1δ bilan o'zaro aloqada bo'lish uchun tegishli oqsillarda mos keladigan motiflar mavjud bo'lishi kerak. Phe-X-X-X-Phe docking motifi NFAT, b-katenin, PER va FAM83 oilasining oqsillarida aniqlangan.[72][73][74][75][76][77][78][79] Misol tariqasida CK1δ yadrosi FAM83H bilan o'zaro ta'sirida yadro dog'lariga joylashtirilishi mumkin.[76][80] Boshqa bir ta'sir o'tkazish motifi ser-Gln-Ile-Pro ketma-ketligi bilan ifodalanadi, u mikrotubulada ortiqcha biriktiruvchi oqsil 1 (EB1) tarkibida mavjud.[81]So'nggi yillarda CK1δ uchun ko'plab o'zaro ta'sirlashuvchi sheriklar tavsiflangan bo'lib, ular CK1 strong bilan kuchli ta'sir o'tkazishgan va shuning uchun oddiy substrat oqsillaridan ko'proqdir. Yuqorida aytib o'tilganidek, CK1δ bilan o'zaro ta'sir AKAP450 va DDX3X uchun ko'rsatilgan. Dastlab xamirturushli ikki gibridli ekranlarni amalga oshirib, mikrotubulalarni tashkil qilish markazidagi (RanBPM) Ran bilan bog'langan oqsil, mikrotubulalar bilan bog'liq bo'lgan 1A oqsil va neyron hujayralarida nörotransmitterning chiqishi bilan bog'liq bo'lgan snapin uchun o'zaro ta'sir tasdiqlanishi mumkin.[82][83] CK1δ bilan o'zaro ta'sir LEF-1 (limfotsitni kuchaytiruvchi omil-1) rivojlanishiga bog'liq omillar va moyil asosiy spiral-halqa-spiral (bHLH) transkripsiyasi Atoh1 omillari uchun ham aniqlandi.[84][85] Va nihoyat, CK1 CR ning PER va CRY sirkadiyalik soat oqsillari bilan o'zaro ta'siri namoyish etildi, bu PER va CRYlarning yadro translokatsiyasini osonlashtirdi.[77]

Uyali aloqa funktsiyalari

Sirkadiyalik ritm

Vikipediya: Circadian Clock (Homo sapiens). Butun yo'lni quyidagi manzilda ko'rish mumkin: https://www.wikipathways.org/index.php/Pathway:WP1797

CK1δ sirkadiyalik ritmda, ya'ni 24 soatlik ritmga imkon beradigan ichki uyali soatlarda qatnashganga o'xshaydi. Sirkadiyalik ritm asosan (PER) va kriptokrom (CRY) oqsillari vositachiligidagi yadro ichiga xiralashib, o'tib ketishi mumkin bo'lgan salbiy teskari aloqa aylanishidan iborat.[86][77] Bu erda PER / CRY dimerlari CLOCK / BMAL1-javob beradigan gen transkripsiyasini inhibe qilish orqali o'zlarining transkripsiyasini inhibe qilishi mumkin.[87] Oddiy sirkadiyalik ritmning o'zgarishi turli xil kasalliklarda kuzatilgan, ular orasida nevrologik va uyqu buzilishlari mavjud.[88][89][90][91] Yadroda CK1δ ularning DNK bilan bog'lanish faolligini kamaytirish orqali CLOCK / BMAL1 ga asoslangan transkripsiyani yanada inhibe qilishi mumkin.[86] Bundan tashqari, CK1δ / ε PER oqsillarini fosforillashi va ularning keyingi parchalanishiga ta'sir qilishi mumkin.[92][77][93][94] Sirkadiyalik ritmning beqarorlashuvi PER fosforilatsiyasini CK1δ / by tomonidan inhibe qilingandan keyin kuzatilishi mumkin.[95] Aslida, CK1δ faolligidagi o'zgarishlar sirkadiyalik ritm uzunligining o'zgarishiga olib keladi.[74][96][97][98][99]

DNKning shikastlanishi va uyali stress

CK1δ genotoksik stress va DNKning shikastlanishi bilan p53 ga bog'liq holda faollashtirilishi mumkin va ushbu jarayonlarga javoban asosiy tartibga soluvchi oqsillarni fosforillat.[41] CK1δ inson p53 ni Ser-6, Ser-9 va Ser-20 da fosforillaydi.[100][41][101][102] Bundan tashqari, CK1δ Th5-18da p53-ni fosforilatlaydi, p53 allaqachon fosfor bilan ishlangan bo'lsa, p53-Mdm2 ning bog'lanishiga va p53-ning yuqori faolligiga imkon beradi.[103][104] Oddiy sharoitlarda CK1δ Mdm2 ni Ser-240, Ser-242, Ser-246 va Ser-383-da fosforillashi mumkin, bu esa p53-Mdm2 barqarorligi va p53-ning parchalanishiga imkon beradi.[105][106] Aksincha, DNK zararlangandan so'ng, ATM fosforillanadi CK1δ, keyinchalik uning proteazomal degradatsiyasini keltirib chiqaradigan Mdm2 ni fosforillatishi mumkin.[107][108][109] Gipoksiya ostida CK1δ HIF-1a / ARNT kompleksi shakllanishiga aralashish orqali hujayralar ko'payishini kamaytirishda ishtirok etadi.[110][111] Bundan tashqari, DNK replikatsiyasining asosiy regulyatorlaridan biri bo'lgan topoizomeraza II a (TOPOII-a) ning faolligi uning Ser-1106 da CK1b-vositachiligida fosforillanishidan keyin ortdi.[112] Stress sharoitida CK1δ DNK replikatsiyasiga xalaqit berishi mumkin. Darhaqiqat, CK1b Ser-108da DNK metilatsiyasining asosiy regulyatori, tarkibida PHD va RING barmoq domenlari bo'lgan 1 protein (UHRF1) ni o'z ichiga oladi, bu uning proteazomal degradatsiyasini kuchaytiradi.[113]

Hujayra sikli, mitoz va meyoz

CK1δ mikrotubulalar dinamikasida, hujayra tsiklining rivojlanishida, genomik barqarorlikda, mitozda va mayozda qatnashadi.[114][115][67][116][117][118][119][120][42] Vaqtinchalik mitotik hibsga olish, IC261 bilan CK1δ inhibisyonundan keyin kuzatilishi mumkin,[121] yaqinda ushbu inhibitor CK1ga xos emasligi va ko'plab qo'shimcha maqsadlardan tashqari ekanligi ko'rsatilgan [122][69] Shunga qaramay, ushbu natijalarga muvofiq, CK1δ inhibisyonu yoki susturulma Wee1 barqarorligini va keyingi Cdk1 fosforillanishini ta'minlaydi, bu hujayra tsiklining chiqib ketishiga imkon beradi.[118][117] CK1δ yo'qligi genomik beqarorlik bilan ham bog'liq.[115] Shunga qaramay, CK1δ ning mitozdagi o'rni hali ham aniq emas va qarama-qarshi hisobotlar chop etilgan.[123][114]

CK1δ ham mayoz bilan bog'liq ko'rinadi. Hrr25, CK1δ ortologi Saccharomyces cerevisiae, P-organlari uchun lokalizatsiya qilingan - meiotik hujayralar sitoplazmasida aniqlangan RNK / oqsil donachalari - va mayozning rivojlanishi uchun zarur bo'lib tuyuladi.[124][125] Bundan tashqari, Hrr25 ning meioz II paytida yadro bo'linishi va membrana sintezida ahamiyati borligi kuzatilgan.[126] Schizosaccharomyces pombe-da CK1δ / b ortologi Hhp2, mayoz paytida fosforillanishidan so'ng, ehtimol Rec8 birlashma oqsilining parchalanishiga yordam beradi.[127][128][129] Bundan tashqari, Rec11 sutemizuvchilar ortologi bo'lgan STAG3 ning CK1 tomonidan fosforillanishi ham kuzatilishi mumkin, bu esa sutemizuvchilarda ham ushbu jarayon saqlanib qolishini tasdiqlaydi.[119][120]

Sitoskelet bilan bog'liq funktsiyalar

CK1δ mitoz vaqtida mikrotubulalar polimerizatsiyasi va mil apparati va sentrosomalarning barqarorligini boshqarishda a-, b- va b-tubulini to'g'ridan-to'g'ri fosforlash orqali ishtirok etadi.[34][130] Bundan tashqari, CK1δ mikrotubulalar bilan bog'langan oqsillarni (MAP) fosforillatishi mumkin, shu bilan ularning mikrotubulalar bilan o'zaro ta'siriga va mikrotubulalar dinamikasiga ta'sir qiladi.[34][131][132][133][134][83]

Rivojlanish yo'llari

Vikipathways: Wnt signalizatsiya yo'li (Homo sapiens). Butun yo'lni quyidagi manzilda ko'rish mumkin: https://www.wikipathways.org/index.php/Pathway:WP363

CK1δ turli xil rivojlanish yo'llarida qatnashadi, ular orasida Wingless (Wnt) -, Hedgehog (Hh) - va Hippo (Hpo) -pathways. Wnt yo'lida CK1δ yo'lning turli omillarini fosforillashi mumkin, ularning orasida Disheveled (Dvl) , Axin, APC va b-katenin.[135][136][137][138] CK1δ shuningdek Ser-45dagi fosforillanishidan so'ng b-katenin barqarorligiga salbiy ta'sir qiladi, bu esa GSK3β vositachiligida keyingi fosforillanish va keyingi parchalanishga imkon beradi.[135]

Vikipediya yo'llari: Kirpi signalizatsiyasi yo'li (Homo sapiens). Butun yo'lni quyidagi manzilda ko'rish mumkin: https://www.wikipathways.org/index.php/Pathway:WP4249

Hh yo'lida CK1δ Smothened (Smo) ni fosforillatishi mumkin va shu bilan uning faolligini oshiradi.[139] Bundan tashqari, ushbu signalizatsiya yo'llarida uning qo'shimcha roli hali ham bahsli. Darhaqiqat, bir tomondan CK1δ Cubitus interruptus activator (CiA) ni fosforillatishi mumkin va shu bilan uning proteazomal degradatsiyasini oldini oladi,[140] boshqa tomondan, Ci ning CK1b-vositachiligida fosforillanishi uning hamma joyda ko'payishini oshirishi mumkin [141] va uning qisman proteoliz bilan Ci (CiR) ning repressiv shakliga aylanishi.[142]

Hpo yo'lida, CK1 yes, uning proteazomal degradatsiyasiga ta'sir qiluvchi Ser-381-da Hpo-sezgir gen transkripsiyasining quyi oqimdagi koaktivatori bo'lgan ha bilan bog'liq oqsilni (YAP) fosforillashi mumkin.[143] Bundan tashqari, Hpo signalizatsiya yo'li ikkalasi bilan ham bog'liq ko'rinadi, Wnt signalizatsiyasi.[144][145][146][147][148][149][150][151][152] va p53 regulyatsiyasi [153][154] Wnt ligand ishtirokida CKδ / ε asosiy Wnt-effektor Disheveled (Dvl) ni fosforillashi mumkin, bu esa b-kateninning barqarorligini keltirib chiqaradigan b-katenin destruktsiya kompleksini inhibe qiladi. Bu erda YAP / Tafazzin (TAZ) Dvl ni bog'lashi va uning CK1δ vositachiligidagi fosforillanishini kamaytirishi mumkin.[147][151] Bundan tashqari, b-katenin YAP bilan bog'langanidan keyin sitoplazmada saqlanib qolishi mumkin, bu esa Wnt-sezgir genlarning transkripsiyasini pasayishiga olib keladi.[146][147]

Klinik ahamiyati

Ushbu bo'limda asosan saraton, asab kasalliklari va metabolizm kasalliklarida bir nechta kasalliklar va kasalliklarning paydo bo'lishi, rivojlanishi va rivojlanishidagi CK1δ funktsiyasi muhokama qilinadi.

Kanserogenez

CK1δ ning regulyatsiyasi Wnt / b-catenin-, p53-, tipratikan va gippo bilan bog'liq signallarni tartibga solish orqali o'simogenezga va o'smaning rivojlanishiga yordam beradi. CK1δ mRNA turli xil darajada ortiqcha ta'sir ko'rsatadi saraton siydik pufagi saratoni, miya saratoni, ko'krak bezi saratoni, kolorektal saraton, buyrak saratoni, o'pka adenokarsinomasi, melanoma, tuxumdon saratoni, oshqozon osti bezi saratoni, prostata saratoni, gemopoetik bezgak va limfoid neoplazmalar.[155][156][157][130][158] Shuningdek, siydik pufagi saratoni, o'pka skuamöz hujayrali karsinomasi, oshqozon saratoni, buyrak saratoni, qizilo'ngach saratoni, shuningdek bosh va bo'yin saratoni kabi ba'zi saraton tadqiqotlarida CK1δ mRNA ekspression darajasi pasaygan.[157] Bundan tashqari, C171D mutatsioni tufayli CK1δ sut karsinomasining sekinlashishi va transgen sichqon modelida sichqonning uzoq muddat omon qolishi natijasida CK1δ faolligi pasaygan.[51] Ichak shilliq qavatida va kolorektal o'smada aniqlangan ikkita CK1 and mutatsiyasi, R324H va T67S kanserogen potentsialni oshiradi.[159][160]

Neyropatiya va nevrologik kasalliklar

CK1 tissue ning miya to'qimalarida g'ayritabiiy ifodalanishi Altsgeymer kasalligi (AD), Daun sindromi (DS), progressiv supranukleer falaj (PSP), Guam (PDC) ning parkinsonizm demans majmuasi, Piks kabi ko'plab kasalliklarda immunohistokimiya va gen ekspresyoni tadqiqotlari natijasida aniqlandi. kasallik (PiD), pallido-ponto-nigral degeneratsiya (PPND) va oilaviy rivojlangan uyqu fazasi sindromi (FASPS).[8][161][94]

Odatda patologik to'qimalarda ADning neyrit plaklari (NP) yoki granulolakuolyar degeneratsiya organlari (GVB) CK1δ ning yuqori ekspressionini namoyon qiladi, neyrofibrillyar chigallarda (NFTs) CK1δ ekspressioni past bo'ladi.[162] NFT yoki GVB tarkibidagi AD tau oqsillari tau va GVBlarda 43 kDa (TDP-43) ning TAR DNK bilan bog'lovchi oqsili CK1δ bilan koalkalizatsiya qilinadi.[163][164] In vitro fosforillanish tadqiqotlari shuni ko'rsatdiki, Tau va TDP-43 ichidagi bir nechta joylar CK1δ tomonidan fosforillangan.[165][134] Har ikkalasida ham neyronal hujayra modeli va Drosophila modelida CDP1 inhibisyonu bilan TDP-43 ning o'ziga xos fosforillanishini kamaytirish neyrotoksikaning oldini olishga va natijada hujayralarni hujayra o'limidan qutqarishga olib keldi.[166] Ushbu tadqiqotlarga asoslanib, CK1δ AD belgisi uchun potentsial nishon sifatida ham tan olinishi mumkin va kelajakda diagnostika va terapevtik maqsadlarda ham foydali bo'lishi mumkin.Bundan tashqari, CK1's Parkinson kasalligi (PD) tomonidan tartibga soluvchi rol o'ynaydi a-sinukleinni fosforlash.[167] Oilaviy rivojlangan uyqu fazasi sindromi (FASPS) - bu sutemizuvchilarning soat oqsili PER2 ning CK1b-vositali fosforillanishi bilan bog'liq bo'lgan yana bir nevrologik kasallik. Joyga xos fosforillanishdan keyin CK1δ, PER2 ning barqarorligi oshiriladi va PER2 ning yarim umri kengayadi.[168] Bundan tashqari, PER2 barqarorligiga CK1δ T344A mutatsiyasi va boshqa hujayra ichidagi kinazlar tomonidan Thr-347 da CK1 by ning o'ziga xos fosforillanishi ta'sir qilishi mumkin.[57]

Semirib ketish bilan bog'liq metabolik kasalliklar

CK1δ metabolik disfunktsiyaga ta'sir qilishi mumkin, ayniqsa obezlik holatida glyukoza bardoshligini oshirish, glyukoneogenez genining ekspressioni va glyukoza sekretsiyasini kamaytirish yoki bazal va insulin bilan stimulyatsiya qilingan glyukoza miqdorini oshirish.[169][170] Bundan tashqari, adiponektinning glyukoza darajasi va yog 'kislotasini tartibga solishda ishtirok etadigan adiponektinning biologik faol yuqori molekulyar og'irligi (HMW) shaklini shakllantirish adiponektinning CK1δ tomonidan o'ziga xos fosforillanishi bilan modulyatsiya qilinadi.[171]

Parazit CK1s sutemizuvchilarning CK1 yo'llarini o'g'irlaydi

Dalillarning ko'payishi shuni ko'rsatadiki, CK1 yuqumli kasalliklar bilan hujayra ichidagi hujayraning CK1 bilan bog'liq signalizatsiya yo'llarini manipulyatsiya qilish yo'li bilan bog'liq bo'lishi mumkin. parazitlar, ularning CK1-ni xost hujayrasiga eksport qilish. Uchun Leyshmaniya va Plazmodium, ajratilgan CK1 tegishli xujayralarning qayta dasturlanishiga yordam beradi.[172][173][174][175][176] Parazit CK1lar mezbon funktsiyalariga ega bo'lish, sutemizuvchilarning CK1larini almashtirishga qodir va shu bilan o'xshash funktsiyalarni ta'minlaydi.[177] Parazit CK1lar insonning CK1δ TV1 ga nisbatan yuqori darajadagi identifikatsiyasini namoyish etadi, bu esa bu odamga tegishli ekanligini anglatadi paralog parazit o'g'irlash uchun afzal qilingan maqsad bo'lishi mumkin.[178] Parazitar CK1 larning oqsil tashkiloti odamning CK1δ ga juda o'xshaydi. ATPni bog'lashda ishtirok etgan barcha qoldiqlar, darvozabon qoldiqlari, shuningdek DFG, KHD va SIN motiflari odatda parazitar CK1 sekanslarida saqlanadi. Ushbu topilma ularning CK1 funktsiyasi uchun juda muhim ekanligini ko'rsatmoqda. Ammo bu kinazalarning parazitlardagi funktsiyalari va eng muhimi, ularning hujayra hujayralaridagi funktsiyalari asosan noma'lum va o'rganilishi kerak. Plazmodium va Leyshmaniya eng ko'p o'rganilgan:

  • Yagona CK1 Plazmodium, PfCK1 (PF3D7_1136500), kinaz domenida odamning CK1 bilan o'ziga xosligi 69% ni tashkil qiladi va jinsiy bo'lmagan eritrositik tsiklni yakunlash uchun juda muhimdir.[179][180] Boshqa CK1lar singari, PfCK1 ham bir nechta majburiy sheriklarga ega va shuning uchun transkripsiya, tarjima va oqsil savdosini tartibga soluvchi ko'plab yo'llarni tartibga soladi. Va nihoyat, PfCK1 eritrotsitlarda parazitlar ko'payishi uchun juda muhim ko'rinadi.
  • Oltita CK1 analoglaridan Leyshmaniya donovani faqat ikkita paralog, LdBPK_351020.1 va LdBPK_351030.1 (LmCK1.2) inson CK1 bilan chambarchas bog'liq.[181] Asosiy hujayradagi funktsiyaga ega deb ta'riflangan yagona paralog.[176] LdBPK_351030.1 promastigotlarda ham, amastigotalarda ham faoldir. LmCK1.2 CK1ga xos D4476 inhibitori tomonidan inhibe qilinishi mumkin va hujayra ichidagi parazitlarning omon qolishi uchun muhimdir.[178] Hozircha LmCK1.2 uchun faqat bir nechta substratlar aniqlangan va LmCK1.2 ning parazitdagi funktsiyalari juda yaxshi o'rganilmagan.[182] LmCK1.2 inson CK1 bilan juda o'xshash bo'lsa-da, maxsus maqsadga qaratilgan bir nechta kichik molekulalar aniqlangan Leyshmaniya CK1, shu bilan yangi terapevtik strategiyalar uchun imkoniyatlar yaratadi.[183][184][185]

CK1δ faolligini modulyatsiya qilish

CK1δ turli xil uyali jarayonlarni boshqarishda ishtirok etishi sababli uning faoliyatiga ta'sir o'tkazishga katta urinishlar mavjud. Ekspression va / yoki faollikning o'zgarishi, shuningdek CK1δ kodlash ketma-ketligi ichida mutatsiyalar yuzaga kelganligi sababli, ular orasida turli kasalliklar paydo bo'lishi saraton va AD, ALS, PD va uxlash buzilishi kabi neyrodejenerativ kasalliklar, eng ko'p qiziqish birinchi navbatda CK1δ ning rivojlanishiga qaratilgan kichik molekula ingibitorlari (SMI). Turli xil o'simta mavjudotlaridan ajratilgan CK1ants mutantlari ko'pincha CK1δ yovvoyi turiga qaraganda yuqori onkogen potentsialni namoyon etishi sababli, CK1δ yovvoyi turiga qaraganda ko'proq tanlangan CK1δ mutantlarini inhibe qiluvchi SMI hosil qilish uchun juda katta harakatlar mavjud. Ushbu SMIlar klinik jihatdan katta qiziqish uyg'otadi, chunki ular terapevtik oynani ko'paytiradi va proliferativ va neyrodejenerativ kasalliklarni davolash uchun terapevtik yon ta'sirini kamaytiradi. Biroq, CK1K o'ziga xos inhibitörlerinin rivojlanishi bir necha sabablarga ko'ra juda qiyin: (i) Hozirgacha ishlab chiqilgan inhibitörlerin aksariyati ATP - maqsadli effektlarni namoyish etadigan raqobatdosh inhibitorlar, asosan, strukturaning o'xshashligi tufayli ATP bog'lash CK1δ ning boshqa kinazlarga tegishli joyi va ATP -binding proteins, (ii) site specific phosphorylation of CK1δ, especially within its C-terminal regulatory domain, often increases the IC50 value of CK1δ specific inhibitors, and (iii) due to their hydrophobic character their bioavailability is often very low. Within the last few years several SMIs with a much higher selectivity towards CK1δ than to other CK1 isoforms have been described which are also effective in animal models. Treatment of rats, mice, monkeys and zebrafishes with PF-670462 (4-[3-cyclohexyl-5-(4-fluoro-phenyl)-3H-imidazol-4-yl]-pyrimidin-2-ylamine) results in a phase shift in circadian rhythm.[186][187][188][189][190][191] Furthermore it blocks amphetamine-induced locomotion in rats,[192] prevents the alcohol deprivation effect in rat,[193] and inhibits acute and chronic bleomycin-induced pulmonary fibrosis in mice.[194] PF-670462 also stalls deterioration caused by UVB eye irradiation in a mouse model of ulcerative colitis,[195] and reduces the accumulation of leukemic cells in the peripheral blood and spleen in a mouse model for Chronic lymphocytic leukemia (CLL). PF-5006739, 4-[4-(4-fluorophenyl)-1-(piperidin-4-yl)-1H-imidazol-5-yl]pyrimidin-2-amine derivative has been shown to attenuate the opioid drug-seeking behavior in rodents. Furthermore, it leads to a phase delay of circadian rhythm in nocturnal and diurnal animal models. N-benzothiazolyl-2-phenyl acetamide derivatives developed by Salado and co-workers show protective effects on jonli ravishda hTDP-43 neurotoxicity in Drosophila.[196]

Interestingly, inhibitors of Wnt production (IWPs), known to inhibit O-acyltransferase porcupine (Porcn) and to be antagonists of the Wnt pathway, show structural similarities to benzimidazole-based CK1 inhibitors, among them Bischof-5 [197] and are therefore highly potent in specifically inhibiting CK1δ. Further development of IWP derivatives resulted in improved IWP-based ATP -competitive inhibitors of CK1δ. In summary, it can be concluded that the cellular effects mediated by IWPs are not only due to the inhibition of Porcn, but also to inhibition of CK1δ dependent signaling pathways.[198] These data clearly show a high potential of CK1δ specific inhibitors for personalized therapy concepts for the treatment of various tumor entities (e.g. breast cancer, colorectal cancer, and glioblastoma), leukemia, neurodegenerative disease like AD, PD, and ALs, and sleeping disorders. Furthermore, CK1δ specific inhibitors seem to exhibit high relevance for prognostic applications. In this context it could be shown that [11C] labeled highly potent difluoro-dioxolo-benzoimidazol-benzamides can be used as PET radiotracers and for imaging of AD.[199]

Beri kichik molekula inhibitors often have various disadvantages, including low bioavailability, off-target effects as well as severe side effects, the interest in the development and validation of new biological tools like identification of biological active peptides either able to inhibit CK1δ activity or the interaction of CK1δ with cellular proteins is more and more growing. The use of peptide libraries resulted in the identification of peptides able to specifically block the interaction of CK1δ with tubulin, the RNA helicase DDX3X and Axin.[200][201][202] Binding of peptide δ-361 to α-tubulin not only lead to blocking of the interaction of CK1δ with α-tubulin, it also selectively inhibited phosphorylation of GST-α-tubulin by CK1δ. Davolash saraton cells with peptide δ-361 finally resulted to microtubule destabilization and cell death.[202] Fine-mapping of the DDX3X interaction domains on CK1δ, the CK1δ- peptides δ-1, and δ-41 were identified to be able to block the interactions of CK1δ with the X-linked DEAD box RNA helicase DDX3X as well as the kinase activity of CK1δ. In addition, these two identified peptides could inhibit the stimulation of CK1 kinase activity in established cell lines. Since DDX3X mutations being present in medulloblastoma patients increase the activity of CK1 in living cells, and subsequently activate CK1-regulated pathways like Wnt/β-catenin and hedgehog signaling, the identified interaction-blocking peptides could be useful in personalized therapy concepts for the treatment of Wnt/β-catenin- or Hedgehog-driven cancers.[200] In 2018, the interaction between Axin1, a scaffold protein exhibiting important roles in Wnt signaling, and CK1δ/ε were fine-mapped using a peptide library. The identified Axin1 derived peptides were able to block the interaction with CK1δ/ε. Since Axin1 and Dvl also compete for CK1δ/ε-mediated site-specific phosphorylation it can be stated that Axin 1 plays an important role of in balancing CK1δ/ε mediated phosphorylation of Dvl as well as for the activation of canonical Wnt signaling.[201]

Shuningdek qarang

Adabiyotlar

  1. ^ a b v GRCh38: Ensembl release 89: ENSG00000141551 - Ansambl, 2017 yil may
  2. ^ a b v GRCm38: Ensembl release 89: ENSMUSG00000025162 - Ansambl, 2017 yil may
  3. ^ "Human PubMed ma'lumotnomasi:". Milliy Biotexnologiya Axborot Markazi, AQSh Milliy Tibbiyot Kutubxonasi.
  4. ^ "Sichqoncha PubMed ma'lumotnomasi:". Milliy Biotexnologiya Axborot Markazi, AQSh Milliy Tibbiyot Kutubxonasi.
  5. ^ Burzio V, Antonelli M, Allende CC, Allende JE (2002). "Biochemical and cellular characteristics of the four splice variants of protein kinase CK1alpha from zebrafish (Danio rerio)". Uyali biokimyo jurnali. 86 (4): 805–14. doi:10.1002/jcb.10263. PMID  12210746. S2CID  25667680.
  6. ^ Fu Z, Chakraborti T, Morse S, Bennett GS, Shaw G (October 2001). "Four casein kinase I isoforms are differentially partitioned between nucleus and cytoplasm". Eksperimental hujayra tadqiqotlari. 269 (2): 275–86. doi:10.1006/excr.2001.5324. PMID  11570820.
  7. ^ Green CL, Bennett GS (August 1998). "Identification of four alternatively spliced isoforms of chicken casein kinase I alpha that are all expressed in diverse cell types". Gen. 216 (1): 189–95. doi:10.1016/S0378-1119(98)00291-1. PMID  9766967.
  8. ^ a b DeMaggio AJ, Lindberg RA, Hunter T, Hoekstra MF (August 1992). "The budding yeast HRR25 gene product is a casein kinase I isoform". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 89 (15): 7008–12. Bibcode:1992PNAS...89.7008D. doi:10.1073/pnas.89.15.7008. PMC  49634. PMID  1495994.
  9. ^ Dhillon N, Hoekstra MF (June 1994). "Characterization of two protein kinases from Schizosaccharomyces pombe involved in the regulation of DNA repair". EMBO jurnali. 13 (12): 2777–88. doi:10.1002/j.1460-2075.1994.tb06571.x. PMC  395157. PMID  8026462.
  10. ^ Gross SD, Anderson RA (November 1998). "Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family". Uyali signalizatsiya. 10 (10): 699–711. doi:10.1016/S0898-6568(98)00042-4. PMID  9884021.
  11. ^ Kearney PH, Ebert M, Kuret J (August 1994). "Molecular cloning and sequence analysis of two novel fission yeast casein kinase-1 isoforms". Biokimyoviy va biofizik tadqiqotlar bo'yicha aloqa. 203 (1): 231–6. doi:10.1006/bbrc.1994.2172. PMID  8074660.
  12. ^ Walczak CE, Anderson RA, Nelson DL (December 1993). "Identification of a family of casein kinases in Paramecium: biochemical characterization and cellular localization". Biokimyoviy jurnal. 296 (3): 729–35. doi:10.1042/bj2960729. PMC  1137756. PMID  8280070.
  13. ^ a b Wang PC, Vancura A, Mitcheson TG, Kuret J (March 1992). "Two genes in Saccharomyces cerevisiae encode a membrane-bound form of casein kinase-1". Hujayraning molekulyar biologiyasi. 3 (3): 275–86. doi:10.1091/mbc.3.3.275. PMC  275529. PMID  1627830.
  14. ^ Wang Y, Liu TB, Patel S, Jiang L, Xue C (November 2011). "The casein kinase I protein Cck1 regulates multiple signaling pathways and is essential for cell integrity and fungal virulence in Cryptococcus neoformans". Eukaryotik hujayra. 10 (11): 1455–64. doi:10.1128/EC.05207-11. PMC  3209051. PMID  21926330.
  15. ^ a b v Graves PR, Haas DW, Hagedorn CH, DePaoli-Roach AA, Roach PJ (March 1993). "Molecular cloning, expression, and characterization of a 49-kilodalton casein kinase I isoform from rat testis". Biologik kimyo jurnali. 268 (9): 6394–401. PMID  8454611.
  16. ^ Kusuda J, Hidari N, Hirai M, Hashimoto K (February 1996). "Sequence analysis of the cDNA for the human casein kinase I delta (CSNK1D) gene and its chromosomal localization". Genomika. 32 (1): 140–3. doi:10.1006/geno.1996.0091. PMID  8786104.
  17. ^ The C. Elegans Sequencing Consortium (December 1998). "C. elegans nematodasining genom ketma-ketligi: biologiyani o'rganish platformasi". Ilm-fan. 282 (5396): 2012–8. Bibcode:1998 yil ... 282.2012.. doi:10.1126 / science.282.5396.2012. PMID  9851916.
  18. ^ Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW (July 1998). "The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon". Hujayra. 94 (1): 97–107. doi:10.1016/S0092-8674(00)81225-8. PMID  9674431. S2CID  15931992.
  19. ^ Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GL, Wides R, et al. (2002 yil may). "A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome". Ilm-fan. 296 (5573): 1661–71. Bibcode:2002Sci...296.1661M. doi:10.1126/science.1069193. PMID  12040188. S2CID  4494686.
  20. ^ Klein SL, Strausberg RL, Wagner L, Pontius J, Clifton SW, Richardson P (December 2002). "Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative". Rivojlanish dinamikasi. 225 (4): 384–91. doi:10.1002/dvdy.10174. PMID  12454917. S2CID  26491164.
  21. ^ Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, et al. (2002 yil dekabr). "15000 dan ortiq to'liq uzunlikdagi odam va sichqonchani cDNA sekanslarini yaratish va dastlabki tahlil qilish". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 99 (26): 16899–903. Bibcode:2002 yil PNAS ... 9916899M. doi:10.1073 / pnas.242603899. PMC  139241. PMID  12477932.
  22. ^ Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, Vazquez J, Valencia A, Tress ML (November 2014). "Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes". Inson molekulyar genetikasi. 23 (22): 5866–78. doi:10.1093/hmg/ddu309. PMC  4204768. PMID  24939910.
  23. ^ a b v d Bischof J, Randoll SJ, Süßner N, Henne-Bruns D, Pinna LA, Knippschild U (2013). "CK1δ kinase activity is modulated by Chk1-mediated phosphorylation". PLOS ONE. 8 (7): e68803. Bibcode:2013PLoSO...868803B. doi:10.1371/journal.pone.0068803. PMC  3701638. PMID  23861943.
  24. ^ Chang TH, Huang HY, Hsu JB, Weng SL, Horng JT, Huang HD (2013). "An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs". BMC Bioinformatika. 14 Suppl 2: S4. doi:10.1186/1471-2105-14-S2-S4. PMC  3549854. PMID  23369107.
  25. ^ Klasens BI, Das AT, Berkhout B (April 1998). "Inhibition of polyadenylation by stable RNA secondary structure". Nuklein kislotalarni tadqiq qilish. 26 (8): 1870–6. doi:10.1093/nar/26.8.1870. PMC  147501. PMID  9518478.
  26. ^ a b v d e Longenecker KL, Roach PJ, Hurley TD (April 1996). "Three-dimensional structure of mammalian casein kinase I: molecular basis for phosphate recognition". Molekulyar biologiya jurnali. 257 (3): 618–31. doi:10.1006/jmbi.1996.0189. PMID  8648628.
  27. ^ a b v d e Xu RM, Carmel G, Sweet RM, Kuret J, Cheng X (March 1995). "Crystal structure of casein kinase-1, a phosphate-directed protein kinase". EMBO jurnali. 14 (5): 1015–23. doi:10.1002/j.1460-2075.1995.tb07082.x. PMC  398173. PMID  7889932.
  28. ^ Minzel W, Venkatachalam A, Fink A, Hung E, Brachya G, Burstain I, Shaham M, Rivlin A, Omer I, Zinger A, Elias S, Winter E, Erdman PE, Sullivan RW, Fung L, Mercurio F, Li D, Vacca J, Kaushansky N, Shlush L, Oren M, Levine R, Pikarsky E, Snir-Alkalay I, Ben-Neriah Y (September 2018). "Small Molecules Co-targeting CKIα and the Transcriptional Kinases CDK7/9 Control AML in Preclinical Models". Hujayra. 175 (1): 171–185.e25. doi:10.1016/j.cell.2018.07.045. PMC  6701634. PMID  30146162.
  29. ^ Hantschel O, Superti-Furga G (January 2004). "Regulation of the c-Abl and Bcr-Abl tyrosine kinases". Molekulyar hujayra biologiyasi. 5 (1): 33–44. doi:10.1038/nrm1280. PMID  14708008. S2CID  7956644.
  30. ^ Zeringo NA, Murphy L, McCloskey EA, Rohal L, Bellizzi JJ (October 2013). "A monoclinic crystal form of casein kinase 1 δ". Acta Crystallographica bo'limi F. 69 (Pt 10): 1077–83. doi:10.1107/S1744309113023403. PMC  3792660. PMID  24100552.
  31. ^ Endicott JA, Noble ME, Johnson LN (2012). "The structural basis for control of eukaryotic protein kinases". Biokimyo fanining yillik sharhi. 81: 587–613. doi:10.1146/annurev-biochem-052410-090317. PMID  22482904.
  32. ^ Peifer C, Abadleh M, Bischof J, Hauser D, Schattel V, Hirner H, Knippschild U, Laufer S (December 2009). "3,4-Diaryl-isoxazoles and -imidazoles as potent dual inhibitors of p38alpha mitogen activated protein kinase and casein kinase 1delta". Tibbiy kimyo jurnali. 52 (23): 7618–30. doi:10.1021/jm9005127. PMID  19591487.
  33. ^ a b Longenecker KL, Roach PJ, Hurley TD (May 1998). "Crystallographic studies of casein kinase I delta toward a structural understanding of auto-inhibition". Acta Crystallographica bo'limi D. 54 (Pt 3): 473–5. doi:10.1107/S0907444997011724. PMID  9761932.
  34. ^ a b v d e Behrend L, Stöter M, Kurth M, Rutter G, Heukeshoven J, Deppert W, Knippschild U (April 2000). "Interaction of casein kinase 1 delta (CK1δ) with post-Golgi structures, microtubules and the spindle apparatus". Evropa hujayra biologiyasi jurnali. 79 (4): 240–51. doi:10.1078/S0171-9335(04)70027-8. PMID  10826492.
  35. ^ Roof DM, Meluh PB, Rose MD (July 1992). "Kinesin-related proteins required for assembly of the mitotic spindle". Hujayra biologiyasi jurnali. 118 (1): 95–108. doi:10.1083/jcb.118.1.95. PMC  2289520. PMID  1618910.
  36. ^ a b v Greer YE, Rubin JS (March 2011). "Casein kinase 1 delta functions at the centrosome to mediate Wnt-3a–dependent neurite outgrowth". Hujayra biologiyasi jurnali. 192 (6): 993–1004. doi:10.1083/jcb.201011111. PMC  3063129. PMID  21422228.
  37. ^ Hoekstra MF, Liskay RM, Ou AC, DeMaggio AJ, Burbee DG, Heffron F (August 1991). "HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA". Ilm-fan. 253 (5023): 1031–4. Bibcode:1991Sci...253.1031H. doi:10.1126/science.1887218. PMID  1887218. S2CID  40543839.
  38. ^ a b Löhler J, Hirner H, Schmidt B, Kramer K, Fischer D, Thal DR, Leithäuser F, Knippschild U (2009). "Immunohistochemical characterisation of cell-type specific expression of CK1delta in various tissues of young adult BALB/c mice". PLOS ONE. 4 (1): e4174. Bibcode:2009PLoSO...4.4174L. doi:10.1371/journal.pone.0004174. PMC  2613528. PMID  19137063.
  39. ^ Cobb MH, Rosen OM (October 1983). "Description of a protein kinase derived from insulin-treated 3T3-L1 cells that catalyzes the phosphorylation of ribosomal protein S6 and casein". Biologik kimyo jurnali. 258 (20): 12472–81. PMID  6313661.
  40. ^ Elias L, Li AP, Longmire J (June 1981). "Cyclic adenosine 3':5'-monophosphate-dependent and -independent protein kinase in acute myeloblastic leukemia". Saraton kasalligini o'rganish. 41 (6): 2182–8. PMID  6263462.
  41. ^ a b v Knippschild U, Milne DM, Kempbell LE, DeMaggio AJ, Christenson E, Hoekstra MF, Meek DW (oktyabr 1997). "p53 in vitro va in vivo jonli ravishda kazein kinaz 1 delta va epsilon izoformalari bilan fosforillanadi va topoizomeraza yo'naltirilgan dorilarga javoban 1 delta kazein kinaza darajasini oshiradi". Onkogen. 15 (14): 1727–36. doi:10.1038 / sj.onc.1201541. PMID  9349507.
  42. ^ a b v d Sillibourne JE, Milne DM, Takahashi M, Ono Y, Meek DW (September 2002). "Centrosomal anchoring of the protein kinase CK1delta mediated by attachment to the large, coiled-coil scaffolding protein CG-NAP/AKAP450". Molekulyar biologiya jurnali. 322 (4): 785–97. doi:10.1016/S0022-2836(02)00857-4. PMID  12270714.
  43. ^ Vancura A, Sessler A, Leichus B, Kuret J (July 1994). "A prenylation motif is required for plasma membrane localization and biochemical function of casein kinase I in budding yeast". Biologik kimyo jurnali. 269 (30): 19271–8. PMID  8034689.
  44. ^ Good MC, Zalatan JG, Lim WA (May 2011). "Scaffold proteins: hubs for controlling the flow of cellular information". Ilm-fan. 332 (6030): 680–6. Bibcode:2011Sci...332..680G. doi:10.1126/science.1198701. PMC  3117218. PMID  21551057.
  45. ^ Locasale JW, Shaw AS, Chakraborty AK (August 2007). "Iskala oqsillari oqsil kinaz kaskadlariga turli xil tartibga solish xususiyatlarini beradi". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 104 (33): 13307–12. Bibcode:2007PNAS..10413307L. doi:10.1073 / pnas.0706311104. PMC  1948937. PMID  17686969.
  46. ^ a b Cruciat CM, Dolde C, de Groot RE, Ohkawara B, Reinhard C, Korswagen HC, Niehrs C (March 2013). "RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-β-catenin signaling". Ilm-fan. 339 (6126): 1436–41. Bibcode:2013Sci...339.1436C. doi:10.1126/science.1231499. PMID  23413191. S2CID  28774104.
  47. ^ Dubois T, Rommel C, Howell S, Steinhussen U, Soneji Y, Morrice N, Moelling K, Aitken A (November 1997). "14-3-3 233 qoldiqda kazein kinaz I bilan fosforillanadi. Vivo jonli ravishda ushbu saytda fosforillanish Raf / 14-3-3 o'zaro ta'sirini tartibga soladi". Biologik kimyo jurnali. 272 (46): 28882–8. doi:10.1074 / jbc.272.46.28882. PMID  9360956.
  48. ^ a b Yin H, Laguna KA, Li G, Kuret J (April 2006). "Dysbindin tarkibiy homolog CK1BP inson kazein kinaz-1 ning izoform-selektiv majburiy sherigi". Biokimyo. 45 (16): 5297–308. doi:10.1021 / bi052354e. PMID  16618118.
  49. ^ Zemlickova E, Johannes FJ, Aitken A, Dubois T (March 2004). "CPI-17 oqsil kinazasi va kazein kinaz I bilan assotsiatsiyasi". Biokimyoviy va biofizik tadqiqotlar bo'yicha aloqa. 316 (1): 39–47. doi:10.1016 / j.bbrc.2004.02.014. PMID  15003508.
  50. ^ Gu L, Fullam A, Brennan R, Schröder M (May 2013). "Human DEAD box helicase 3 couples IκB kinase ε to interferon regulatory factor 3 activation". Molekulyar va uyali biologiya. 33 (10): 2004–15. doi:10.1128/MCB.01603-12. PMC  3647972. PMID  23478265.
  51. ^ a b Hirner H, Günes C, Bischof J, Wolff S, Grothey A, Kühl M, Oswald F, Wegwitz F, Bösl MR, Trauzold A, Henne-Bruns D, Peifer C, Leithäuser F, Deppert W, Knippschild U (2012). "Impaired CK1 Delta Activity Attenuates SV40-Induced Cellular Transformation in Vitro and Mouse Mammary Carcinogenesis in Vivo". PLOS ONE. 7 (1): e29709. Bibcode:2012PLoSO...729709H. doi:10.1371/journal.pone.0029709. PMC  3250488. PMID  22235331.
  52. ^ Ye Q, Ur SN, Su TY, Corbett KD (October 2016). "Structure of the Saccharomyces cerevisiae Hrr25:Mam1 monopolin subcomplex reveals a novel kinase regulator". EMBO jurnali. 35 (19): 2139–2151. doi:10.15252/embj.201694082. PMC  5048352. PMID  27491543.
  53. ^ Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (January 2015). "PhosphoSitePlus, 2014: mutatsiyalar, PTMlar va qayta kalibrlashlar". Nuklein kislotalarni tadqiq qilish. 43 (Database issue): D512-20. doi:10.1093 / nar / gku1267. PMC  4383998. PMID  25514926.
  54. ^ a b Graves PR, Roach PJ (sentyabr 1995). "Kazein kinaz I deltasini boshqarishda COOH-terminalli fosforillanishning roli". Biologik kimyo jurnali. 270 (37): 21689–94. doi:10.1074 / jbc.270.37.21689. PMID  7665585.
  55. ^ Rivers A, Gietzen KF, Vielhaber E, Virshup DM (June 1998). "Regulation of casein kinase I epsilon and casein kinase I delta by an in vivo futile phosphorylation cycle". Biologik kimyo jurnali. 273 (26): 15980–4. doi:10.1074/jbc.273.26.15980. PMID  9632646.
  56. ^ Carmel G, Leichus B, Cheng X, Patterson SD, Mirza U, Chait BT, Kuret J (March 1994). "Expression, purification, crystallization, and preliminary x-ray analysis of casein kinase-1 from Schizosaccharomyces pombe". Biologik kimyo jurnali. 269 (10): 7304–9. PMID  8125945.
  57. ^ a b Eng GW, Virshup DM (2017). "Kazein kinaz 1 Site (CK1δ) ning o'ziga xos fosforillanishi uning PER2 sirkadiy regulyatoriga nisbatan faoliyatini tartibga soladi". PLOS ONE. 12 (5): e0177834. Bibcode:2017PLoSO..1277834E. doi:10.1371 / journal.pone.0177834. PMC  5435336. PMID  28545154.
  58. ^ a b Giamas G, Hirner H, Shoshiashvili L, Grothey A, Gessert S, Kühl M, Henne-Bruns D, Vorgias CE, Knippschild U (September 2007). "Phosphorylation of CK1delta: identification of Ser370 as the major phosphorylation site targeted by PKA in vitro and in vivo". Biokimyoviy jurnal. 406 (3): 389–98. doi:10.1042/BJ20070091. PMC  2049039. PMID  17594292.
  59. ^ a b v Ianes C, Xu P, Werz N, Meng Z, Henne-Bruns D, Bischof J, Knippschild U (February 2016). "CK1δ activity is modulated by CDK2/E- and CDK5/p35-mediated phosphorylation". Aminokislotalar. 48 (2): 579–92. doi:10.1007/s00726-015-2114-y. PMID  26464264. S2CID  18593029.
  60. ^ a b v Meng Z, Bischof J, Ianes C, Henne-Bruns D, Xu P, Knippschild U (May 2016). "CK1δ kinase activity is modulated by protein kinase C α (PKCα)-mediated site-specific phosphorylation". Aminokislotalar. 48 (5): 1185–97. doi:10.1007/s00726-015-2154-3. PMID  26803658. S2CID  14160520.
  61. ^ Agostinis P, Pinna LA, Meggio F, Marin O, Goris J, Vandenheede JR, Merlevede W (December 1989). "A synthetic peptide substrate specific for casein kinase I". FEBS xatlari. 259 (1): 75–8. doi:10.1016/0014-5793(89)81498-X. PMID  2599114. S2CID  2791083.
  62. ^ Flotow H, Graves PR, Wang AQ, Fiol CJ, Roeske RW, Roach PJ (August 1990). "Phosphate groups as substrate determinants for casein kinase I action". Biologik kimyo jurnali. 265 (24): 14264–9. PMID  2117608.
  63. ^ Flotow H, Roach PJ (February 1991). "Role of acidic residues as substrate determinants for casein kinase I". Biologik kimyo jurnali. 266 (6): 3724–7. PMID  1995625.
  64. ^ Meggio F, Perich JW, Reynolds EC, Pinna LA (June 1991). "A synthetic beta-casein phosphopeptide and analogues as model substrates for casein kinase-1, a ubiquitous, phosphate directed protein kinase". FEBS xatlari. 283 (2): 303–6. doi:10.1016/0014-5793(91)80614-9. PMID  2044770. S2CID  39215819.
  65. ^ Marin O, Bustos VH, Cesaro L, Meggio F, Pagano MA, Antonelli M, Allende CC, Pinna LA, Allende JE (sentyabr 2003). "Beta-katenin tarkibidagi kazein kinaz 1 bilan fosforillangan kanonik bo'lmagan ketma-ketlik muhim signal beruvchi oqsillarni nishonga olishda kazein kinaz 1da rol o'ynashi mumkin". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 100 (18): 10193–200. Bibcode:2003PNAS..10010193M. doi:10.1073 / pnas.1733909100. PMC  193538. PMID  12925738.
  66. ^ Kawakami F, Suzuki K, Ohtsuki K (February 2008). "A novel consensus phosphorylation motif in sulfatide- and cholesterol-3-sulfate-binding protein substrates for CK1 in vitro". Biologik va farmatsevtika byulleteni. 31 (2): 193–200. doi:10.1248/bpb.31.193. PMID  18239272.
  67. ^ a b Greer YE, Westlake CJ, Gao B, Bharti K, Shiba Y, Xavier CP, Pazour GJ, Yang Y, Rubin JS (May 2014). "Casein kinase 1δ functions at the centrosome and Golgi to promote ciliogenesis". Hujayraning molekulyar biologiyasi. 25 (10): 1629–40. doi:10.1091/mbc.E13-10-0598. PMC  4019494. PMID  24648492.
  68. ^ a b Milne DM, Looby P, Meek DW (February 2001). "Catalytic Activity of Protein Kinase CK1δ (Casein Kinase 1δ) is Essential for itItsormal Subcellular Localization". Eksperimental hujayra tadqiqotlari. 263 (1): 43–54. doi:10.1006/excr.2000.5100. PMID  11161704.
  69. ^ a b Stöter M, Krüger M, Banting G, Henne-Bruns D, Knippschild U (2014). "Microtubules depolymerization caused by the CK1 inhibitor IC261 may be not mediated by CK1 blockage". PLOS ONE. 9 (6): e100090. Bibcode:2014PLoSO...9j0090S. doi:10.1371/journal.pone.0100090. PMC  4061085. PMID  24937750.
  70. ^ Wang J, Davis S, Menon S, Zhang J, Ding J, Cervantes S, Miller E, Jiang Y, Ferro-Novick S (July 2015). "Ypt1/Rab1 regulates Hrr25/CK1δ kinase activity in ER-Golgi traffic and macroautophagy". Hujayra biologiyasi jurnali. 210 (2): 273–85. doi:10.1083/jcb.201408075. PMC  4508898. PMID  26195667.
  71. ^ LeVay S (August 1991). "A difference in hypothalamic structure between heterosexual and homosexual men". Ilm-fan. 253 (5023): 1034–7. Bibcode:1991Sci...253.1034L. doi:10.1126/science.1887219. PMID  1887219. S2CID  1674111.
  72. ^ Bozatzi P, Sapkota GP (June 2018). "The FAM83 family of proteins: from pseudo-PLDs to anchors for CK1 isoforms". Biokimyoviy jamiyat bilan operatsiyalar. 46 (3): 761–771. doi:10.1042/BST20160277. PMC  6008594. PMID  29871876.
  73. ^ Bustos VH, Ferrarese A, Venerando A, Marin O, Allende JE, Pinna LA (December 2006). "The first armadillo repeat is involved in the recognition and regulation of beta-catenin phosphorylation by protein kinase CK1". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 103 (52): 19725–30. Bibcode:2006PNAS..10319725B. doi:10.1073/pnas.0609424104. PMC  1750875. PMID  17172446.
  74. ^ a b Etchegaray JP, Machida KK, Noton E, Constance CM, Dallmann R, Di Napoli MN, DeBruyne JP, Lambert CM, Yu EA, Reppert SM, Weaver DR (iyul 2009). "Casein Kinase 1 Delta Regulates the Pace of the Mammalian Circadian Clock". Molekulyar va uyali biologiya. 29 (14): 3853–66. doi:10.1128 / MCB.00338-09. PMC  2704743. PMID  19414593.
  75. ^ Fulcher LJ, Bozatzi P, Tachie-Menson T, Wu KZ, Cummins TD, Bufton JC, Pinkas DM, Dunbar K, Shrestha S, Wood NT, Weidlich S, Macartney TJ, Varghese J, Gourlay R, Campbell DG, Dingwell KS, Smith JC, Bullock AN, Sapkota GP (May 2018). "The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms". Ilmiy signalizatsiya. 11 (531): eaao2341. doi:10.1126/scisignal.aao2341. PMC  6025793. PMID  29789297.
  76. ^ a b Kuga T, Kume H, Adachi J, Kawasaki N, Shimizu M, Hoshino I, Matsubara H, Saito Y, Nakayama Y, Tomonaga T (September 2016). "Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON". Ilmiy ma'ruzalar. 6: 34472. Bibcode:2016NatSR...634472K. doi:10.1038/srep34472. PMC  5041083. PMID  27681590.
  77. ^ a b v d Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM (December 2001). "Posttranslational mechanisms regulate the mammalian circadian clock". Hujayra. 107 (7): 855–67. doi:10.1016/S0092-8674(01)00610-9. PMID  11779462. S2CID  8988672.
  78. ^ Okamura H, Garcia-Rodriguez C, Martinson H, Qin J, Virshup DM, Rao A (May 2004). "A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1". Molekulyar va uyali biologiya. 24 (10): 4184–95. doi:10.1128/MCB.24.10.4184-4195.2004. PMC  400483. PMID  15121840.
  79. ^ Vielhaber E, Eide E, Daryo A, Gao ZH, Virshup DM (iyul 2000). "MPER1 tsirkadiy regulyatorining yadroga kirishi sutemizuvchilar kazein kinaz I epsilon tomonidan boshqariladi". Molekulyar va uyali biologiya. 20 (13): 4888–99. doi:10.1128 / MCB.20.13.4888-4899.2000. PMC  85940. PMID  10848614.
  80. ^ Wang SK, Hu Y, Yang J, Smith CE, Richardson AS, Yamakoshi Y, Lee YL, Seymen F, Koruyucu M, Gencay K, Lee M, Choi M, Kim JW, Hu JC, Simmer JP (January 2016). "Fam83h null mice support a neomorphic mechanism for human ADHCAI". Molekulyar genetika va genomik tibbiyot. 4 (1): 46–67. doi:10.1002/mgg3.178. PMC  4707031. PMID  26788537.
  81. ^ Zyss D, Ebrahimi H, Gergely F (November 2011). "Casein kinase I delta controls centrosome positioning during T cell activation". Hujayra biologiyasi jurnali. 195 (5): 781–97. doi:10.1083/jcb.201106025. PMC  3257584. PMID  22123863.
  82. ^ Wolff S, Stöter M, Giamas G, Piesche M, Henne-Bruns D, Banting G, Knippschild U (November 2006). "Casein kinase 1 delta (CK1δ) interacts with the SNARE associated protein snapin". FEBS xatlari. 580 (27): 6477–84. doi:10.1016/j.febslet.2006.10.068. PMID  17101137. S2CID  83960913.
  83. ^ a b Wolff S, Xiao Z, Wittau M, Süssner N, Stöter M, Knippschild U (September 2005). "Interaction of casein kinase 1 delta (CK1δ) with the light chain LC2 of microtubule associated protein 1A (MAP1A)". Biochimica et Biofhysica Acta (BBA) - Molekulyar hujayralarni tadqiq qilish. 1745 (2): 196–206. doi:10.1016/j.bbamcr.2005.05.004. PMID  15961172.
  84. ^ Cheng YF, Tong M, Edge AS (September 2016). "Destabilization of Atoh1 by E3 Ubiquitin Ligase Huwe1 and Casein Kinase 1 Is Essential for Normal Sensory Hair Cell Development". Biologik kimyo jurnali. 291 (40): 21096–21109. doi:10.1074/jbc.M116.722124. PMC  5076519. PMID  27542412.
  85. ^ Hämmerlein A, Weiske J, Huber O (March 2005). "A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/beta-catenin complex". Uyali va molekulyar hayot haqidagi fanlar. 62 (5): 606–18. doi:10.1007/s00018-005-4507-7. PMID  15747065. S2CID  29703683.
  86. ^ a b Aryal RP, Kwak PB, Tamayo AG, Gebert M, Chiu PL, Walz T, Weitz CJ (September 2017). "Macromolecular Assemblies of the Mammalian Circadian Clock". Molekulyar hujayra. 67 (5): 770–782.e6. doi:10.1016/j.molcel.2017.07.017. PMC  5679067. PMID  28886335.
  87. ^ Virshup DM, Eide EJ, Forger DB, Gallego M, Harnish EV (2007). "Reversible protein phosphorylation regulates circadian rhythms". Kantitativ biologiya bo'yicha sovuq bahor porti simpoziumlari. 72: 413–20. doi:10.1101/sqb.2007.72.048. PMID  18419299.
  88. ^ De Lazzari F, Bisaglia M, Zordan MA, Sandrelli F (December 2018). "Circadian Rhythm Abnormalities in Parkinson's Disease from Humans to Flies and Back". Xalqaro molekulyar fanlar jurnali. 19 (12): 3911. doi:10.3390/ijms19123911. PMC  6321023. PMID  30563246.
  89. ^ Ferrell JM, Chiang JY (March 2015). "Circadian rhythms in liver metabolism and disease". Acta Pharmaceuticalica Sinica. B. 5 (2): 113–22. doi:10.1016/j.apsb.2015.01.003. PMC  4629216. PMID  26579436.
  90. ^ Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K (March 2019). "Association between circadian rhythms and neurodegenerative diseases". Lanset. Nevrologiya. 18 (3): 307–318. doi:10.1016/S1474-4422(18)30461-7. PMC  6426656. PMID  30784558.
  91. ^ Stenvers DJ, Scheer FA, Schrauwen P, la Fleur SE, Kalsbeek A (February 2019). "Circadian clocks and insulin resistance". Tabiat sharhlari. Endokrinologiya. 15 (2): 75–89. doi:10.1038/s41574-018-0122-1. PMID  30531917.
  92. ^ Camacho F, Cilio M, Guo Y, Virshup DM, Patel K, Khorkova O, Styren S, Morse B, Yao Z, Keesler GA (February 2001). "Human casein kinase Idelta phosphorylation of human circadian clock proteins period 1 and 2". FEBS xatlari. 489 (2–3): 159–65. doi:10.1016/S0014-5793(00)02434-0. PMID  11165242. S2CID  27273892.
  93. ^ Narasimamurthy R, Hunt SR, Lu Y, Fustin JM, Okamura H, Partch CL, Forger DB, Kim JK, Virshup DM (iyun 2018). "CK1δ / ε oqsil kinazasi PER2 sirkadiyalik fosfosvichni tashkil qiladi". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 115 (23): 5986–5991. doi:10.1073 / pnas.1721076115. PMC  6003379. PMID  29784789.
  94. ^ a b Xu Y, Padiath QS, Shapiro RE, Jones CR, Vu SC, Saigoh N, Saigoh K, Ptacek LJ, Fu YH (mart 2005). "CKIdelta mutatsiyasining oilaviy rivojlangan uyqu fazasi sindromini keltirib chiqaradigan funktsional oqibatlari". Tabiat. 434 (7033): 640–4. Bibcode:2005Natur.434..640X. doi:10.1038/nature03453. PMID  15800623. S2CID  4416575.
  95. ^ Nakajima M, Koinuma S, Shigeyoshi Y (August 2015). "Reduction of translation rate stabilizes circadian rhythm and reduces the magnitude of phase shift". Biokimyoviy va biofizik tadqiqotlar bo'yicha aloqa. 464 (1): 354–9. doi:10.1016/j.bbrc.2015.06.158. PMID  26141234.
  96. ^ Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada RG, Masumoto KH, Kiuchi R, Ishida M, Ukai-Tadenuma M, Minami Y, Kito R, Nakao K, Kishimoto W, Yoo SH, Shimomura K, Takao T, Takano A, Kojima T, Nagai K, Sakaki Y, Takahashi JS, Ueda HR (September 2009). "CKIepsilon/delta-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 106 (37): 15744–9. doi:10.1073/pnas.0908733106. PMC  2736905. PMID  19805222.
  97. ^ Li X, Chen R, Li Y, Yoo S, Li S (2009 yil dekabr). "CKIdelta va CKIepsilonning sutemizuvchilar sutkasidagi soatidagi muhim rollari". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 106 (50): 21359–64. doi:10.1073 / pnas.0906651106. PMC  2795500. PMID  19948962.
  98. ^ Lee JW, Hirota T, Peters EC, Garcia M, Gonzalez R, Cho CY, Wu X, Schultz PG, Kay SA (November 2011). "A small molecule modulates circadian rhythms through phosphorylation of the period protein". Angewandte Chemie. 50 (45): 10608–11. doi:10.1002/anie.201103915. PMC  3755734. PMID  21954091.
  99. ^ Mieda M, Okamoto H, Sakurai T (September 2016). "Manipulating the Cellular Circadian Period of Arginine Vasopressin Neurons Alters the Behavioral Circadian Period". Hozirgi biologiya. 26 (18): 2535–2542. doi:10.1016/j.cub.2016.07.022. PMID  27568590.
  100. ^ Higashimoto Y, Saito S, Tong XH, Hong A, Sakaguchi K, Appella E, Anderson CW (July 2000). "Human p53 is phosphorylated on serines 6 and 9 in response to DNA damage-inducing agents". Biologik kimyo jurnali. 275 (30): 23199–203. doi:10.1074/jbc.M002674200. PMID  10930428.
  101. ^ MacLaine NJ, Oster B, Bundgaard B, Fraser JA, Buckner C, Lazo PA, Meek DW, Höllsberg P, Hupp TR (October 2008). "A central role for CK1 in catalyzing phosphorylation of the p53 transactivation domain at serine 20 after HHV-6B viral infection". Biologik kimyo jurnali. 283 (42): 28563–73. doi:10.1074/jbc.M804433200. PMC  2661408. PMID  18669630.
  102. ^ Brown KC (March 1991). "Improving work performance". AAOHN Journal. 39 (3): 136–7. doi:10.1177/216507999103900306. PMID  2001275.
  103. ^ Alsheich-Bartok O, Haupt S, Alkalay-Snir I, Saito S, Appella E, Haupt Y (June 2008). "PML enhances the regulation of p53 by CK1 in response to DNA damage". Onkogen. 27 (26): 3653–61. doi:10.1038/sj.onc.1211036. PMID  18246126.
  104. ^ Dumaz N, Milne DM, Meek DW (December 1999). "Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15". FEBS xatlari. 463 (3): 312–6. doi:10.1016/S0014-5793(99)01647-6. PMID  10606744. S2CID  27610985.
  105. ^ Blattner C, Hay T, Meek DW, Lane DP (September 2002). "Hypophosphorylation of Mdm2 augments p53 stability". Molekulyar va uyali biologiya. 22 (17): 6170–82. doi:10.1128/MCB.22.17.6170-6182.2002. PMC  134018. PMID  12167711.
  106. ^ Winter M, Milne D, Dias S, Kulikov R, Knippschild U, Blattner C, Meek D (December 2004). "Protein kinase CK1delta phosphorylates key sites in the acidic domain of murine double-minute clone 2 protein (MDM2) that regulate p53 turnover". Biokimyo. 43 (51): 16356–64. doi:10.1021/bi0489255. PMID  15610030.
  107. ^ Inuzuka H, Fukushima H, Shaik S, Wei W (November 2010). "Novel insights into the molecular mechanisms governing Mdm2 ubiquitination and destruction". Onkotarget. 1 (7): 685–90. doi:10.18632/oncotarget.202. PMC  3248122. PMID  21317463.
  108. ^ Inuzuka H, Tseng A, Gao D, Zhai B, Zhang Q, Shaik S, Wan L, Ang XL, Mock C, Yin H, Stommel JM, Gygi S, Lahav G, Asara J, Xiao ZX, Kaelin WG, Harper JW, Wei W (August 2010). "Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF(beta-TRCP) ubiquitin ligase". Saraton xujayrasi. 18 (2): 147–59. doi:10.1016/j.ccr.2010.06.015. PMC  2923652. PMID  20708156.
  109. ^ Wang Z, Inuzuka H, Zhong J, Fukushima H, Wan L, Liu P, Wei W (September 2012). "DNA damage-induced activation of ATM promotes β-TRCP-mediated Mdm2 ubiquitination and destruction". Onkotarget. 3 (9): 1026–35. doi:10.18632/oncotarget.640. PMC  3660052. PMID  22976441.
  110. ^ Kalousi A, Mylonis I, Politou AS, Chachami G, Paraskeva E, Simos G (September 2010). "Casein kinase 1 regulates human hypoxia-inducible factor HIF-1". Hujayra fanlari jurnali. 123 (Pt 17): 2976–86. doi:10.1242/jcs.068122. PMID  20699359.
  111. ^ Kourti M, Ikonomou G, Giakoumakis NN, Rapsomaniki MA, Landegren U, Siniossoglou S, Lygerou Z, Simos G, Mylonis I (June 2015). "CK1δ restrains lipin-1 induction, lipid droplet formation and cell proliferation under hypoxia by reducing HIF-1α/ARNT complex formation". Uyali signalizatsiya. 27 (6): 1129–40. doi:10.1016/j.cellsig.2015.02.017. PMC  4390155. PMID  25744540.
  112. ^ Grozav AG, Chikamori K, Kozuki T, Grabowski DR, Bukowski RM, Willard B, Kinter M, Andersen AH, Ganapathi R, Ganapathi MK (February 2009). "Casein kinase I delta/epsilon phosphorylates topoisomerase IIalpha at serine-1106 and modulates DNA cleavage activity". Nuklein kislotalarni tadqiq qilish. 37 (2): 382–92. doi:10.1093/nar/gkn934. PMC  2632902. PMID  19043076.
  113. ^ Chen H, Ma H, Inuzuka H, Diao J, Lan F, Shi YG, Wei W, Shi Y (March 2013). "DNA damage regulates UHRF1 stability via the SCF(β-TrCP) E3 ligase". Molekulyar va uyali biologiya. 33 (6): 1139–48. doi:10.1128/MCB.01191-12. PMC  3592027. PMID  23297342.
  114. ^ a b Chan KY, Alonso-Nuñez M, Grallert A, Tanaka K, Connolly Y, Smith DL, Hagan IM (September 2017). "Dialogue between centrosomal entrance and exit scaffold pathways regulates mitotic commitment". Hujayra biologiyasi jurnali. 216 (9): 2795–2812. doi:10.1083/jcb.201702172. PMC  5584178. PMID  28774892.
  115. ^ a b Greer YE, Gao B, Yang Y, Nussenzweig A, Rubin JS (2017). "Lack of Casein Kinase 1 Delta Promotes Genomic Instability - the Accumulation of DNA Damage and Down-Regulation of Checkpoint Kinase 1". PLOS ONE. 12 (1): e0170903. Bibcode:2017PLoSO..1270903G. doi:10.1371/journal.pone.0170903. PMC  5268481. PMID  28125685.
  116. ^ Johnson AE, Chen JS, Gould KL (October 2013). "CK1 is required for a mitotic checkpoint that delays cytokinesis". Hozirgi biologiya. 23 (19): 1920–6. doi:10.1016/j.cub.2013.07.077. PMC  4078987. PMID  24055157.
  117. ^ a b Penas C, Govek EE, Fang Y, Ramachandran V, Daniel M, Wang W, Maloof ME, Rahaim RJ, Bibian M, Kawauchi D, Finkelstein D, Han JL, Long J, Li B, Robbins DJ, Malumbres M, Roussel MF, Roush WR, Hatten ME, Ayad NG (April 2015). "Casein kinase 1δ is an APC/C(Cdh1) substrate that regulates cerebellar granule cell neurogenesis". Hujayra hisobotlari. 11 (2): 249–60. doi:10.1016/j.celrep.2015.03.016. PMC  4401652. PMID  25843713.
  118. ^ a b Penas C, Ramachandran V, Simanski S, Lee C, Madoux F, Rahaim RJ, Chauhan R, Barnaby O, Schurer S, Hodder P, Steen J, Roush WR, Ayad NG (July 2014). "Casein kinase 1δ-dependent Wee1 protein degradation". Biologik kimyo jurnali. 289 (27): 18893–903. doi:10.1074/jbc.M114.547661. PMC  4081930. PMID  24817118.
  119. ^ a b Phadnis N, Cipak L, Polakova S, Hyppa RW, Cipakova I, Anrather D, Karvaiova L, Mechtler K, Smith GR, Gregan J (May 2015). "Casein Kinase 1 and Phosphorylation of Cohesin Subunit Rec11 (SA3) Promote Meiotic Recombination through Linear Element Formation". PLOS Genetika. 11 (5): e1005225. doi:10.1371/journal.pgen.1005225. PMC  4439085. PMID  25993311.
  120. ^ a b Sakuno T, Watanabe Y (January 2015). "Phosphorylation of cohesin Rec11/SA3 by casein kinase 1 promotes homologous recombination by assembling the meiotic chromosome axis". Rivojlanish hujayrasi. 32 (2): 220–30. doi:10.1016/j.devcel.2014.11.033. PMID  25579976.
  121. ^ Behrend L, Milne DM, Stöter M, Deppert W, Campbell LE, Meek DW, Knippschild U (November 2000). "IC261, a specific inhibitor of the protein kinases casein kinase 1-delta and -epsilon, triggers the mitotic checkpoint and induces p53-dependent postmitotic effects". Onkogen. 19 (47): 5303–13. doi:10.1038/sj.onc.1203939. PMID  11103931.
  122. ^ Cheong JK, Nguyen TH, Wang H, Tan P, Voorhoeve PM, Lee SH, Virshup DM (June 2011). "IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1δ/ɛ and Wnt/β-catenin independent inhibition of mitotic spindle formation". Onkogen. 30 (22): 2558–69. doi:10.1038/onc.2010.627. PMC  3109269. PMID  21258417.
  123. ^ Benham-Pyle BW, Sim JY, Hart KC, Pruitt BL, Nelson WJ (October 2016). "Increasing β-catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle progression through mitosis". eLife. 5. doi:10.7554/eLife.19799. PMC  5104517. PMID  27782880.
  124. ^ Zhang B, Butler AM, Shi Q, Xing S, Herman PK (September 2018). "P-Body Localization of the Hrr25/Casein Kinase 1 Protein Kinase Is Required for the Completion of Meiosis". Molekulyar va uyali biologiya. 38 (17). doi:10.1128/MCB.00678-17. PMC  6094056. PMID  29915153.
  125. ^ Zhang B, Shi Q, Varia SN, Xing S, Klett BM, Cook LA, Herman PK (July 2016). "The Activity-Dependent Regulation of Protein Kinase Stability by the Localization to P-Bodies". Genetika. 203 (3): 1191–202. doi:10.1534/genetics.116.187419. PMC  4937477. PMID  27182950.
  126. ^ Argüello-Miranda O, Zagoriy I, Mengoli V, Rojas J, Jonak K, Oz T, Graf P, Zachariae W (January 2017). "Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II". Rivojlanish hujayrasi. 40 (1): 37–52. doi:10.1016/j.devcel.2016.11.021. PMID  28017619.
  127. ^ Ishiguro T, Tanaka K, Sakuno T, Watanabe Y (May 2010). "Shugoshin-PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase". Tabiat hujayralari biologiyasi. 12 (5): 500–6. doi:10.1038/ncb2052. PMID  20383139. S2CID  9720078.
  128. ^ Katis VL, Lipp JJ, Imre R, Bogdanova A, Okaz E, Habermann B, Mechtler K, Nasmyth K, Zachariae W (March 2010). "Rec8 phosphorylation by casein kinase 1 and Cdc7-Dbf4 kinase regulates cohesin cleavage by separase during meiosis". Rivojlanish hujayrasi. 18 (3): 397–409. doi:10.1016/j.devcel.2010.01.014. PMC  2994640. PMID  20230747.
  129. ^ Rumpf C, Cipak L, Dudas A, Benko Z, Pozgajova M, Riedel CG, Ammerer G, Mechtler K, Gregan J (July 2010). "Mezoz I paytida Rec8 ni samarali olib tashlash uchun kazein kinaz 1 talab qilinadi". Hujayra aylanishi. 9 (13): 2657–62. doi:10.4161 / cc.9.13.12146. PMC  3083834. PMID  20581463.
  130. ^ a b Stöter M, Bamberger AM, Aslan B, Kurth M, Speidel D, Loning T, Frank HG, Kaufmann P, Lohler J, Henne-Bruns D, Deppert V, Knippschild U (dekabr 2005). "Delta kazein kinaza inhibatsiyasi mitoz shpindel shakllanishini o'zgartiradi va trofoblast hujayralarida apoptozni keltirib chiqaradi". Onkogen. 24 (54): 7964–75. doi:10.1038 / sj.onc.1208941. PMID  16027726.
  131. ^ Brouhard GJ, Rays LM (iyul 2018). "Mikrotubulalar dinamikasi: biokimyo va mexanikaning o'zaro ta'siri". Molekulyar hujayra biologiyasi. 19 (7): 451–463. doi:10.1038 / s41580-018-0009-y. PMC  6019280. PMID  29674711.
  132. ^ Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH (2007 yil avgust). "Altsgeymer miyasidagi Taudagi yangi fosforillanish joylari kasallik patogenezida kazein kinaz 1 rolini qo'llab-quvvatlaydi". Biologik kimyo jurnali. 282 (32): 23645–54. doi:10.1074 / jbc.M703269200. PMID  17562708.
  133. ^ Leon-Espinosa G, Gartsiya E, Gartsiya-Eskudero V, Ernandes F, Defelipe J, Avila J (iyul 2013). "Qish uyqusida yotadigan kemiruvchilarda tau fosforillanishidagi o'zgarishlar". Neuroscience tadqiqotlari jurnali. 91 (7): 954–62. doi:10.1002 / jnr.23220. hdl:10261/95658. PMID  23606524. S2CID  20563508.
  134. ^ a b Li G, Yin X, Kuret J (2004 yil aprel). "Kazein Kinaz 1 delta fosforilat Tau va uning mikrotubulalar bilan bog'lanishini buzadi". Biologik kimyo jurnali. 279 (16): 15938–45. doi:10.1074 / jbc.M314116200. PMID  14761950.
  135. ^ a b Amit S, Xatzubay A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, Ben-Neriya Y, Alkalay I (may 2002). "Ser 45-dagi beta-kateninning oksin vositachiligidagi CKI fosforillanishi: Wnt yo'li uchun molekulyar kalit". Genlar va rivojlanish. 16 (9): 1066–76. doi:10.1101 / gad.230302. PMC  186245. PMID  12000790.
  136. ^ Gao ZH, Seeling JM, Hill V, Yochum A, Virshup DM (fevral 2002). "Kasein kinaz I fosforillanadi va beta-katenin degradatsiyasi kompleksini beqarorlashtiradi". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 99 (3): 1182–7. Bibcode:2002 yil PNAS ... 99.1182G. doi:10.1073 / pnas.032468199. PMC  122164. PMID  11818547.
  137. ^ Ha NC, Tonozuka T, Stamos JL, Choi HJ, Weis WI (2004 yil avgust). "APC ning beta-katenin bilan fosforillanishiga bog'liqligi mexanizmi va uning beta-katenin parchalanishidagi roli". Molekulyar hujayra. 15 (4): 511–21. doi:10.1016 / j.molcel.2004.08.010. PMID  15327768.
  138. ^ Xing Y, Clements WK, Kimelman D, Xu V (noyabr 2003). "Beta-katenin / axin kompleksining kristalli tuzilishi beta-kateninni yo'q qilish kompleksini taklif qiladi". Genlar va rivojlanish. 17 (22): 2753–64. doi:10.1101 / gad.1142603. PMC  280624. PMID  14600025.
  139. ^ Jiang K, Liu Y, Fan J, Epperly G, Gao T, Jiang J, Jia J (2014 yil noyabr). "Kirpi bilan tartibga solinadigan atipik PKC fosforillanishiga va Drosophila-da Smoothened va Cubitus interruptus faollashishiga yordam beradi". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 111 (45): E4842-50. Bibcode:2014PNAS..111E4842J. doi:10.1073 / pnas.1417147111. PMC  4234617. PMID  25349414.
  140. ^ Shi Q, Li S, Li S, Jiang A, Chen Y, Jiang J (2014 yil dekabr). "CK1 tomonidan kirpi tomonidan indüklenen fosforillanish Ci / Gli aktivatorining faolligini ta'minlaydi". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 111 (52): E5651-60. Bibcode:2014PNAS..111E5651S. doi:10.1073 / pnas.1416652111. PMC  4284548. PMID  25512501.
  141. ^ Smelkinson MG, Chjou Q, Kalderon D (2007 yil oktyabr). "Ci-SCFSlimb bog'lanishini, Ci proteolitini va kirpi yo'llarining faolligini Ci fosforillanish bilan tartibga solish". Rivojlanish hujayrasi. 13 (4): 481–95. doi:10.1016 / j.devcel.2007.09.006. PMC  2063588. PMID  17925225.
  142. ^ Narxi MA, Kalderon D (2002 yil mart). "Kirpi signalizatori Kubitus interruptusining proteolizi Glikogen Sintaz Kinaz 3 va Kazein Kinaz 1 bilan fosforlanishni talab qiladi". Hujayra. 108 (6): 823–35. doi:10.1016 / S0092-8674 (02) 00664-5. PMID  11955435. S2CID  7257576.
  143. ^ Zhao B, Li L, Tumaneng K, Vang CY, Guan KL (2010 yil yanvar). "Lats va CK1 tomonidan muvofiqlashtirilgan fosforillanish YF barqarorligini SCF (beta-TRCP) orqali tartibga soladi". Genlar va rivojlanish. 24 (1): 72–85. doi:10.1101 / gad.1843810. PMC  2802193. PMID  20048001.
  144. ^ Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, Fassina A, Cordenonsi M, Piccolo S (iyul 2014). "YAP / TAZning kat-kateninni yo'q qilish kompleksiga qo'shilishi Wnt javobini uyushtiradi". Hujayra. 158 (1): 157–70. doi:10.1016 / j.cell.2014.06.013. PMID  24976009.
  145. ^ Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M, Piccolo S (dekabr 2012). "TAZning Wnt signalizatsiyasi vositachisi sifatidagi roli". Hujayra. 151 (7): 1443–56. doi:10.1016 / j.cell.2012.11.027. PMID  23245942.
  146. ^ a b Heallen T, Zhang M, Vang J, Bonilla-Claudio M, Klysik E, Johnson Johnson, Martin JF (2011 yil aprel). "Gippo yo'li kardiyomiyotsitlarning ko'payishi va yurak hajmini cheklash uchun Wnt signalizatsiyasini inhibe qiladi". Ilm-fan. 332 (6028): 458–61. Bibcode:2011Sci ... 332..458H. doi:10.1126 / fan.1199010. PMC  3133743. PMID  21512031.
  147. ^ a b v Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E (mart 2012). "Gippo signalini Wnt / b-katenin signalizatsiyasini inhibe qilish bilan bog'laydigan molekulyar mexanizm". EMBO jurnali. 31 (5): 1109–22. doi:10.1038 / emboj.2011.487. PMC  3297994. PMID  22234184.
  148. ^ Konsavage WM, Yochum GS (2013 yil fevral). "Hippo / YAP va Wnt / b-katenin signalizatsiya yo'llarining kesishishi". Acta Biochimica et Biofhysica Sinica. 45 (2): 71–9. doi:10.1093 / abbs / gms084. PMID  23027379.
  149. ^ Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW, Meng Z, Lin KC, Yu FX, Aleksandr CM, Vang CY, Guan KL (avgust 2015). "Alternativ Wnt signalizatsiyasi YAP / TAZni faollashtiradi". Hujayra. 162 (4): 780–94. doi:10.1016 / j.cell.2015.07.013. PMC  4538707. PMID  26276632.
  150. ^ Rosenbluh J, Nijxavan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Van X, Tsherniak A, Shinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP. , Beroukim R, Kuo CJ, Goessling V, Xan WC (dekabr 2012). "Katenin bilan boshqariladigan saraton kasalliklari tirik qolish va o'simogenez uchun YAP1 transkripsiya kompleksini talab qiladi". Hujayra. 151 (7): 1457–73. doi:10.1016 / j.cell.2012.11.026. PMC  3530160. PMID  23245941.
  151. ^ a b Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, Wrana JL, Attisano L (Aprel 2010). "Gippo yo'li Wnt / beta-katenin signalizatsiyasini tartibga soladi". Rivojlanish hujayrasi. 18 (4): 579–91. doi:10.1016 / j.devcel.2010.03.007. PMID  20412773.
  152. ^ Vang X, Huai G, Vang X, Liu Y, Qi P, Shi V, Peng J, Yang X, Deng S, Vang Y (mart 2018). "Hippo / Wnt / LPA / TGF ‑ β signalizatsiya yo'llarini o'zaro tartibga solish va ularning glokomdagi rollari (Sharh)". Xalqaro molekulyar tibbiyot jurnali. 41 (3): 1201–1212. doi:10.3892 / ijmm.2017.3352. PMC  5819904. PMID  29286147.
  153. ^ Ferraiuolo M, Verduci L, Blandino G, Strano S (2017 yil may). "Mutant p53 oqsillari va gippo transduserlari YAP va TAZ: inson saratonidagi muhim onkogen tugun". Xalqaro molekulyar fanlar jurnali. 18 (5): 961. doi:10.3390 / ijms18050961. PMC  5454874. PMID  28467351.
  154. ^ Furth N, Aylon Y, Oren M (yanvar 2018). "hipponing p53 soyalari". Hujayra o'limi va differentsiatsiyasi. 25 (1): 81–92. doi:10.1038 / cdd.2017.163. PMC  5729527. PMID  28984872.
  155. ^ Brokschmidt C, Xirner H, Xuber N, Eismann T, Xillenbrand A, Giamas G, Radunskiy B, Ammerpohl O, Bom B, Xen-Bruns D, Kalthoff H, Leytayuzer F, Trauzold A, Knippschild U (iyun 2008). "Pankreasning duktal adenokarsinomasida CK1 delta va epsilonning anti-apoptotik va o'sishni stimulyatsiya qiluvchi funktsiyalari in vitro va in vivo jonli IC261 tomonidan inhibe qilinadi". Ichak. 57 (6): 799–806. doi:10.1136 / gut.2007.123695. PMID  18203806. S2CID  5505400.
  156. ^ Maritzen T, Löhler J, Deppert V, Knippschild U (iyul 2003). "Kazein kinaz I deltasi (CKIdelta) limfotsitlar fiziologiyasida ishtirok etadi". Evropa hujayra biologiyasi jurnali. 82 (7): 369–78. doi:10.1078/0171-9335-00323. PMID  12924632.
  157. ^ a b Schittek B, Sinnberg T (oktyabr 2014). "Kazein kinaz 1 izoformalarining biologik funktsiyalari va shish paydo bo'lishidagi taxminiy rollar". Molekulyar saraton. 13: 231. doi:10.1186/1476-4598-13-231. PMC  4201705. PMID  25306547.
  158. ^ Vinkler BS, Oltmer F, Rixter J, Bishof J, Xu P, Burster T, Leytayuzer F, Knippschild U (2015). "Limfomada CK1δ: gen ekspressioni va mutatsion tahlillari va terapevtik qo'llanilish uchun CK1δ kinaz faolligini tekshirish". Hujayra va rivojlanish biologiyasidagi chegaralar. 3: 9. doi:10.3389 / fcell.2015.00009. PMC  4335261. PMID  25750912.
  159. ^ Rixter J, Ullah K, Xu P, Alcher V, Blatz A, Peifer C, Halekotte J, Livan J, Vitt D, Xolzmann K, Bakulev V, Pinna LA, Xenne-Bruns D, Xillenbrand A, Kornmann M, Leytayuzer F, Bischof J, Knippschild U (iyun 2015). "CK1δ va ɛ ning o'zgargan ekspressioni va faollik darajalarining o'simtaning o'sishiga va kolorektal saraton kasallarining omon qolishlariga ta'siri". Xalqaro saraton jurnali. 136 (12): 2799–810. doi:10.1002 / ijc.29346. hdl:10995/73239. PMID  25404202. S2CID  5319190.
  160. ^ Tsai IC, Woolf M, Neklason DW, Branford WW, Yost HJ, Burt RW, Virshup DM (mart 2007). "Kasallik bilan bog'liq kazein kinaz I delta mutatsiyasi Wnt / beta-katenin mustaqil mexanizmi orqali adenomatoz poliplar hosil bo'lishiga yordam berishi mumkin". Xalqaro saraton jurnali. 120 (5): 1005–12. doi:10.1002 / ijc.22368. PMID  17131344. S2CID  84211197.
  161. ^ Ebisawa T (2007 yil fevral). "CNSda sirkadiyalik ritmlar va periferik soat buzilishi: odamning uyqusizliklari va soat genlari". Farmakologiya fanlari jurnali. 103 (2): 150–4. doi:10.1254 / jphs.FMJ06003X5. PMID  17299246.
  162. ^ Yasojima K, Kuret J, DeMaggio AJ, McGeer E, McGeer PL (may 2000). "Altsgeymer kasalligi miyasida kazein kinaz 1 delta mRNK regulyatsiya qilingan". Miya tadqiqotlari. 865 (1): 116–20. doi:10.1016 / S0006-8993 (00) 02200-9. PMID  10814741. S2CID  10290619.
  163. ^ Schwab C, DeMaggio AJ, Ghoshal N, Binder LI, Kuret J, McGeer PL (1999). "Kasein kinaz 1 deltasi bir nechta neyrodejenerativ kasalliklarda patning patologik to'planishi bilan bog'liq". Qarishning neyrobiologiyasi. 21 (4): 503–10. doi:10.1016 / S0197-4580 (00) 00110-X. PMID  10924763. S2CID  21514992.
  164. ^ Thal DR, Del Tredici K, Lyudolf AC, Hoozemans JJ, Rozemuller AJ, Braak H, Knippschild U (noyabr 2011). "Granulolakuulyar degeneratsiya bosqichlari: ularning Altsgeymer kasalligi bilan aloqasi va surunkali stressga javob". Acta Neuropathologica. 122 (5): 577–89. doi:10.1007 / s00401-011-0871-6. hdl:1871/34648. PMID  21935637. S2CID  11907559.
  165. ^ Kametani F, Nonaka T, Suzuki T, Arai T, Dohmae N, Akiyama H, Xasegava M (may 2009). "TDP-43 da kazein kinaz-1 fosforillanish joylarini aniqlash". Biokimyoviy va biofizik tadqiqotlar bo'yicha aloqa. 382 (2): 405–9. doi:10.1016 / j.bbrc.2009.03.038. PMID  19285963.
  166. ^ Alquezar C, Salado IG, de la Encarnación A, Peres DI, Moreno F, Gil C, de Munain AL, Martines A, Martin-Requero Á (aprel 2016). "Kazein Kinaz-1δ inhibitörleri tomonidan TDP-43 fosforillanishini maqsad qilish: frontotemporal demansni davolashning yangi strategiyasi". Molekulyar neyrodejeneratsiya. 11 (1): 36. doi:10.1186 / s13024-016-0102-7. PMC  4852436. PMID  27138926.
  167. ^ Kosten J, Binolfi A, Stuiver M, Verzini S, Theillet FX, Bekei B, van Rossum M, Selenko P (dekabr 2014). "Alfa-sinuklein serin 129 ni oqsil kinaz CK1 bilan samarali modifikatsiyasi tirozin 125 ning fosforlanishini dastlabki voqea sifatida talab qiladi". ACS kimyoviy nevrologiyasi. 5 (12): 1203–8. doi:10.1021 / cn5002254. PMID  25320964.
  168. ^ Shanware NP, Xutchinson JA, Kim SH, Zhan L, Bowler MJ, Tibbetts RS (aprel 2011). "Oilaviy rivojlangan uyqu fazasi sindromi bilan bog'liq qoldiqlarning kazein kinaz 1 ga bog'liq fosforillanishi PERIOD 2 barqarorligini nazorat qiladi". Biologik kimyo jurnali. 286 (14): 12766–74. doi:10.1074 / jbc.M111.224014. PMC  3069476. PMID  21324900.
  169. ^ Cunningham PS, Ahern SA, Smith LC, da Silva Santos CS, Wager TT, Bechtold DA (iyul 2016). "Semizlikda glyukoza gomeostazini yaxshilash uchun CK1δ / ε orqali sirkadiyalik soatni nishonlash". Ilmiy ma'ruzalar. 6: 29983. Bibcode:2016 yil NatSR ... 629983C. doi:10.1038 / srep29983. PMC  4954991. PMID  27439882.
  170. ^ Li S, Chen XW, Yu L, Saltiel AR, Lin JD (dekabr 2011). "Kazein kinaz 1δ va transkripsiya koaktivatori PGC-1a o'rtasidagi o'zaro faoliyat stalkad orqali sirkadiyalik metabolik regulyatsiya". Molekulyar endokrinologiya. 25 (12): 2084–93. doi:10.1210 / me.2011-1227. PMC  3231836. PMID  22052997.
  171. ^ Xu P, Fischer-Posovskiy P, Bishof J, Radermaxer P, Vabitsch M, Xen-Bruns D, Wolf AM, Hillenbrand A, Knippschild U (may, 2015). "Kasein kinaz 1 (CK1) izoformalarining gen ekspression darajalari kasallangan semirib ketgan bemorlarning yog 'to'qimalarida adiponektin darajalari bilan o'zaro bog'liq va CK1 vositachiligida o'ziga xos fosforillanish adiponektinning multimerizatsiyasiga ta'sir qiladi". Molekulyar va uyali endokrinologiya. 406: 87–101. doi:10.1016 / j.mce.2015.02.010. PMID  25724478. S2CID  23963657.
  172. ^ Dorin-Semblat D, Demarta-Gatsi C, Hamelin R, Armand F, Carvalho TG, Moniatte M, Doerig C (2015). "Bezgak paraziti bilan zararlangan eritrotsitlar PfCK1 ni chiqaradi, Pleiotropik oqsil Kinaz kazein kinaz 1 plazmodium homologi". PLOS ONE. 10 (12): e0139591. Bibcode:2015PLoSO..1039591D. doi:10.1371 / journal.pone.0139591. PMC  4668060. PMID  26629826.
  173. ^ Jiang S, Zhang M, Sun J, Yang X (may 2018). "Kazein kinaz 1a: biologik mexanizmlar va teranostik potentsial". Uyali aloqa va signalizatsiya. 16 (1): 23. doi:10.1186 / s12964-018-0236-z. PMC  5968562. PMID  29793495.
  174. ^ Sacerdoti-Sierra N, Jaffe CL (1997 yil dekabr). "Leishmania major protozoa parazitining ekto-protein kinazlarini chiqarishi". Biologik kimyo jurnali. 272 (49): 30760–5. doi:10.1074 / jbc.272.49.30760. PMID  9388215.
  175. ^ Silverman JM, Clos J, de'Oliveira CC, Shirvani O, Fang Y, Vang C, Foster LJ, Reiner NE (mart 2010). "Eksozomalarga asoslangan sekretsiya yo'li Leyshmaniyadan oqsil eksporti va makrofaglar bilan aloqa qilish uchun javobgardir". Hujayra fanlari jurnali. 123 (Pt 6): 842-52. doi:10.1242 / jcs.056465. PMID  20159964.
  176. ^ a b Silverman JM, Clos J, Horakova E, Vang AY, Wiesgigl M, Kelly I, Lynn MA, McMaster WR, Foster LJ, Levings MK, Reiner NE (2010 yil noyabr). "Leyshmaniya ekzosomalari monotsitlar va dendritik hujayralarga ta'siri orqali tug'ma va adaptiv immunitet reaktsiyalarini modulyatsiya qiladi". Immunologiya jurnali. 185 (9): 5011–22. doi:10.4049 / jimmunol.1000541. PMID  20881185.
  177. ^ Liu J, Carvalho LP, Battacharya S, Carbone CJ, Kumar KG, Leu NA, Yau PM, Donald RG, Vayss MJ, Baker DP, McLaughlin KJ, Scott P, Fuchs SY (dekabr 2009). "Sutemizuvchilar kazein kinazi 1alpa va uning leyshmanial ortologi IFNAR1 va I tip interferon signalizatsiyasining barqarorligini tartibga soladi". Molekulyar va uyali biologiya. 29 (24): 6401–12. doi:10.1128 / MCB.00478-09. PMC  2786868. PMID  19805514.
  178. ^ a b Rachidi N, Taly JF, Durieu E, Leclercq O, Aulner N, Prina E, Pescher P, Notredame C, Meijer L, Späth GF (2014). "Farmakologik baholash Leyshmaniya donovani kazein kinaz 1 ni dori vositasi sifatida belgilaydi va parazitlar hayotiyligi va hujayra ichidagi infektsiyada muhim funktsiyalarni ochib beradi". Mikroblarga qarshi vositalar va kimyoviy terapiya. 58 (3): 1501–15. doi:10.1128 / AAC.02022-13. PMC  3957854. PMID  24366737.
  179. ^ Barik S, Teylor RE, Chakrabarti D (oktyabr 1997). "Plazmodium falciparum bezgak paraziti kazein kinaz 1 cDNA ning identifikatsiyasi, klonlanishi va mutatsion tahlili. Genning bosqichga xos ifodasi". Biologik kimyo jurnali. 272 (42): 26132–8. doi:10.1074 / jbc.272.42.26132. PMID  9334178.
  180. ^ Solyakov L, Halbert J, Alam MM, Semblat JP, Dorin-Semblat D, Reininger L, Bottrill AR, Mistry S, Abdi A, Fennell C, Holland Z, Demarta C, Bouza Y, Sicard A, Nivez MP, Eshenlauer S, Lama T, Tomas DC, Sharma P, Agarval S, Kern S, Pradel G, Graciotti M, Tobin AB, Doerig C (Noyabr 2011). "Odam bezgak paraziti Plasmodium falciparumning global kinomik va fosfo-proteomik tahlillari". Tabiat aloqalari. 2: 565. Bibcode:2011 yil NatCo ... 2..565S. doi:10.1038 / ncomms1558. PMID  22127061.
  181. ^ Martel D, Beneke T, Gluenz E, Späth GF, Rachidi N (2017). "Leishmania donovani CRISPR Cas9 Toolkit-dan foydalanish". BioMed Research International. 2017: 4635605. doi:10.1155/2017/4635605. PMC  5733176. PMID  29333442.
  182. ^ Hombach-Barrigah A, Bartsch K, Smirlis D, Rosenqvist H, MacDonald A, Dingli F, Loew D, Späth GF, Rachidi N, Wiese M, Clos J (mart 2019). "Leishmania donovani 90 kD issiqlik zarbasi oqsili - fosfozitlarning parazitlar fitnesiga, yuqumli kasalligiga va kazein kinaza yaqinligiga ta'siri". Ilmiy ma'ruzalar. 9 (1): 5074. Bibcode:2019 NatSR ... 9.5074H. doi:10.1038 / s41598-019-41640-0. PMC  6434042. PMID  30911045.
  183. ^ Allocco JJ, Donald R, Zhong T, Lee A, Tang YS, Hendrickson RC, Liberator P, Nare B (oktyabr 2006). "1 kazein kinaz inhibitörleri, in vitro Leyshmaniya yirik promastigotalari o'sishini bloklaydi". Xalqaro parazitologiya jurnali. 36 (12): 1249–59. doi:10.1016 / j.ijpara.2006.06.013. PMID  16890941.
  184. ^ Durieu E, Prina E, Leclercq O, Oumata N, Gaboriaud-Kolar N, Vougogiannopoulou K, Aulner N, Defontaine A, No JH, Ruchaud S, Skaltsounis AL, Galons H, Späth GF, Meijer L, Rachidi N (may 2016) . "Dori-darmonlarni skrining qilishdan maqsadli dekonvolyutsiyaga qadar: antilishmanial faollik bilan birikmalarni aniqlash uchun leyshmaniya kazein kinaz 1 izoform 2-dan foydalangan holda maqsadli giyohvand moddalarni kashf etuvchi quvur liniyasi". Mikroblarga qarshi vositalar va kimyoviy terapiya. 60 (5): 2822–33. doi:10.1128 / AAC.00021-16. PMC  4862455. PMID  26902771.
  185. ^ Marhadour S, Marchand P, Pagniez F, Bazin MA, Picot C, Lozach O, Ruchaud S, Antuan M, Meijer L, Rachidi N, Le Pape P (dekabr 2012). "2,3-diarlimidazo [1,2-a] piridinlarni antileishmanial vositalar sifatida sintezi va biologik baholash". Evropa tibbiy kimyo jurnali. 58: 543–56. doi:10.1016 / j.ejmech.2012.10.048. PMID  23164660.
  186. ^ Badura L, Swanson T, Adamowicz V, Adams J, Cianfrogna J, Fisher K, Holland J, Kleiman R, Nelson F, Reynolds L, St. Germain K, Sheffer E, Tate B, Sprouse J (Avgust 2007). "I epsilon kazein kinaz inhibitori sirkadiyalik ritmlarda erkin yurish va tushkunlik sharoitida kechikishni keltirib chiqaradi". Farmakologiya va eksperimental terapiya jurnali. 322 (2): 730–8. doi:10.1124 / jpet.107.122846. PMID  17502429. S2CID  85875627.
  187. ^ Kennaway DJ, Varcoe TJ, Voultsios A, Salkeld MD, Rattanatray L, Boden MJ (yanvar 2015). "Kazein kinaz 1δ / ε ning o'tkir inhibatsiyasi periferik soat geni ritmlarini tezda kechiktiradi". Molekulyar va uyali biokimyo. 398 (1–2): 195–206. doi:10.1007 / s11010-014-2219-8. hdl:2440/90207. PMID  25245819. S2CID  8227480.
  188. ^ Meng QJ, Mayvud ES, Bechtold DA, Lu WQ, Li J, Gibbs JE, Dupré SM, Chesham JE, Rajamohan F, Knafels J, Sneed B, Zavadzke LE, Ohren JF, Uolton KM, Vager TT, Xastings MH, Loudon AS. (Avgust 2010). "Kazein kinaz 1 (CK1) fermentlarini inhibe qilish orqali buzilgan sirkadiyalik xatti-harakatlarni jalb qilish". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 107 (34): 15240–5. Bibcode:2010PNAS..10715240M. doi:10.1073 / pnas.1005101107. PMC  2930590. PMID  20696890.
  189. ^ Smadja Storz S, Tovin A, Mracek P, Alon S, Fulkes NS, Gothilf Y (2013). "Kazein kinaz 1δ faolligi: zebrafish sirkadiyalik vaqt belgilash tizimining asosiy elementi". PLOS ONE. 8 (1): e54189. Bibcode:2013PLoSO ... 854189S. doi:10.1371 / journal.pone.0054189. PMC  3549995. PMID  23349822.
  190. ^ Sprouse J, Reynolds L, Swanson TA, Engwall M (iyul 2009). "I epsilon / delta kazein kinazining inhibatsiyasi Sinomolgus maymunlarining sirkadiyan ritmlarida o'zgarishlar siljishini keltirib chiqaradi". Psixofarmakologiya. 204 (4): 735–42. doi:10.1007 / s00213-009-1503-x. PMID  19277609. S2CID  9593183.
  191. ^ Walton KM, Fisher K, Rubitski D, Marconi M, Meng QJ, Sladek M, Adams J, Bass M, Chandrasekaran R, Butler T, Griffor M, Rajamoxan F, Serpa M, Chen Y, Kleffi M, Xastings M, Loudon A , Maywood E, Ohren J, Doran A, Wager TT (avgust 2009). "1 epsilon kazein kinazni selektiv inhibisyoni sirkadiyalik soat vaqtini minimal darajada o'zgartiradi". Farmakologiya va eksperimental terapiya jurnali. 330 (2): 430–9. doi:10.1124 / jpet.109.151415. PMID  19458106. S2CID  26565986.
  192. ^ Li D, Herrera S, Bubula N, Nikitina E, Palmer AA, Xank DA, Loweth JA, Vezina P (iyul 2011). "Kasein kinaz 1 AMPA retseptorlari fosforillanishini tartibga solish orqali amfetaminni keltirib chiqaradigan lokomotiv harakatini ta'minlaydi". Neyrokimyo jurnali. 118 (2): 237–47. doi:10.1111 / j.1471-4159.2011.07308.x. PMC  3129449. PMID  21564097.
  193. ^ Bryant CD, Parker CC, Zhou L, Olker C, Chandrasekaran RY, Wager TT, Bolivar VJ, Loudon AS, Vitaterna MH, Turek FW, Palmer AA (2012 yil mart). "Csnk1e - psixostimulyator va opioidlarga sezgirlikning genetik regulyatori". Nöropsikofarmakologiya. 37 (4): 1026–35. doi:10.1038 / npp.2011.287 yil. PMC  3280656. PMID  22089318.
  194. ^ Keenan CR, Langenbach SY, Jativa F, Harris T, Li M, Chen Q, Xia Y, Gao B, Schuliga MJ, Jaffar J, Prodanovic D, Tu Y, Berhan A, Lee PV, Westall GP, Stewart AG (2018) . "Kazein Kinaz 1δ / ε inhibitori, PF670462 o'pka fibrozida o'sish omil-form transformatsiyasining fibrogen ta'sirini susaytiradi". Farmakologiyada chegaralar. 9: 738. doi:10.3389 / fphar.2018.00738. PMC  6048361. PMID  30042678.
  195. ^ Xiramoto K, Yamate Y, Kasahara E, Sato EF (2018). "Kasein kinaz inhibitori 1ε / δ (PF670462) UVB ko'z nurlanishi natijasida kelib chiqqan dekstran natriy sulfat ta'sirida yarali kolitning buzilishini oldini oladi". Xalqaro biologik fanlar jurnali. 14 (9): 992–999. doi:10.7150 / ijbs.24558. PMC  6036737. PMID  29989105.
  196. ^ Salado IG, Redondo M, Bello ML, Perez C, Liachko NF, Kraemer BC, Migel L, Lekourtois M, Gil C, Martinez A, Peres DI (mart 2014). "Protein kinaz CK-1 inhibitörleri amiotrofik lateral skleroz uchun yangi potentsial dorilar". Tibbiy kimyo jurnali. 57 (6): 2755–72. doi:10.1021 / jm500065f. PMC  3969104. PMID  24592867.
  197. ^ Bischof J, Livan J, Zaja M, Grothey A, Radunskiy B, Othersen O, Strobl S, Vitt D, Knippschild U (oktyabr 2012). "2-Benzamido-N- (1H-benzo [d] imidazol-2-yl) tiazol-4-karboksamid hosilalari CK1δ / ε ning kuchli inhibitori sifatida". Aminokislotalar. 43 (4): 1577–91. doi:10.1007 / s00726-012-1234-x. PMC  3448056. PMID  22331384.
  198. ^ García-Reyes B, Witt L, Jansen B, Karasu E, Gering T, Livan J, Xen-Bruns D, Pichlo C, Brunshteyn E, Baumann U, Vesseler F, Ratmer B, Shade D, Pifer C, Knippschild U (may 2018). "Wnt ishlab chiqarish inhibitori kashfiyoti 2 (IWP-2) va shunga o'xshash birikmalar kazein kinaz 1 (CK1) δ / ε ning selektiv ATP-raqobatdosh inhibitori sifatida". Tibbiy kimyo jurnali. 61 (9): 4087–4102. doi:10.1021 / acs.jmedchem.8b00095. PMID  29630366.
  199. ^ Gao M, Vang M, Zheng QH (iyul 2018). "Altsgeymer kasalligini ko'rish uchun yangi potentsial PET radiotraktorlari sifatida uglerod-11 etiketli CK1 inhibitörlerinin sintezi". Bioorganik va tibbiy kimyo xatlari. 28 (13): 2234–2238. doi:10.1016 / j.bmcl.2018.05.053. hdl:1805/16520. PMID  29859907.
  200. ^ a b Dolde C, Bischof J, Grüter S, Montada A, Halekotte J, Peifer C, Kalbacher H, Baumann U, Knippschild U, Suter B (yanvar 2018). "CK1 FRET biosensor DDX3X CK1ε ning muhim faollashtiruvchisi ekanligini aniqlaydi". Hujayra fanlari jurnali. 131 (1): jcs207316. doi:10.1242 / jcs.207316. PMC  5818060. PMID  29222110.
  201. ^ a b Xarnoš J, Ryneš J, Vishková P, Foldynova-Trantírková S, Bajard-Eshner L, Trantírek L, Bryja V (oktyabr 2018). "AXIN1 odam iskala oqsilining bog'lanish interfeyslarini peptidli mikroarraylar yordamida tahlil qilish". Biologik kimyo jurnali. 293 (42): 16337–16347. doi:10.1074 / jbc.RA118.005127. PMC  6200943. PMID  30166345.
  202. ^ a b Krüger M, Kalbacher H, Kastritis PL, Bischof J, Barth H, Henne-Bruns D, Vorgias C, Sarno S, Pinna LA, Knippschild U (iyun 2016). "CK1δ / a-tubulin ta'sirini bezovta qiluvchi yangi potentsial peptid terapevtikasi". Saraton xatlari. 375 (2): 375–383. doi:10.1016 / j.canlet.2016.03.021. PMID  26996302.

Tashqi havolalar