Operatsion kuchaytirgich - Operational amplifier

Operatsion kuchaytirgich
Ua741 opamp.jpg
MA741 integral mikrosxemasi, eng muvaffaqiyatli operatsion kuchaytirgichlardan biri
TuriAlohida elektron
Integral elektron
Ixtiro qilinganKichik Karl D. Svarsel
Birinchi ishlab chiqarish1967
Pin konfiguratsiyasi
  • V +: teskari bo'lmagan kirish
  • V−: teskari kiritish
  • Vout: chiqish
  • VS +: ijobiy quvvat manbai
  • VS−: salbiy quvvat manbai
Elektr ta'minoti pinlari (VS + va VS−) har xil usulda etiketlanishi mumkin (Qarang IC quvvat manbai pinlari ). Ko'pincha bu pinlar aniqlik uchun diagrammadan tashqarida qoladi va quvvat konfiguratsiyasi tasvirlangan yoki sxemadan qabul qilingan.
Elektron belgi
180p
Op amper uchun elektron diagramma belgisi. Pinalar yuqorida sanab o'tilganidek etiketlanadi.

An operatsion kuchaytirgich (ko'pincha op amp yoki opamp) a DC bilan bog'langan balanddaromad elektron kuchlanish kuchaytirgich bilan differentsial kirish va, odatda, a bir martalik chiqish.[1] Ushbu konfiguratsiyada op amp, kirish terminallari orasidagi potentsial farqdan odatda 100000 marta kattaroq bo'lgan chiqish potentsialini (elektron maydonga nisbatan) ishlab chiqaradi. Operatsion kuchaytirgichlar kelib chiqishi bo'lgan analog kompyuterlar, bu erda ular chiziqli, chiziqli bo'lmagan va chastotaga bog'liq bo'lmagan davrlarda matematik operatsiyalarni bajarish uchun ishlatilgan.

Qurilish bloki sifatida op ampning mashhurligi analog davrlar uning ko'p qirraliligi bilan bog'liq. Foydalanish orqali salbiy teskari aloqa, op-amp zanjirining xususiyatlari, uning yutug'i, kiritish va chiqish empedansi, tarmoqli kengligi va boshqalar tashqi tarkibiy qismlar tomonidan aniqlanadi va ularga unchalik bog'liq emas harorat koeffitsientlari yoki muhandislik bag'rikengligi op ampning o'zida.

Op amperlar bugungi kunda elektron qurilmalarda, shu jumladan iste'molchilar, ishlab chiqarish va ilmiy qurilmalarning keng assortimentida keng qo'llanilmoqda. Ko'pgina standart IC op amperlari atigi bir necha sent turadi; ammo, maxsus ishlash ko'rsatkichlariga ega bo'lgan ba'zi birlashtirilgan yoki gibrid operatsion kuchaytirgichlar qimmatga tushishi mumkin AQSH$ 100 oz miqdorda.[2] Op amperlar quyidagicha qadoqlangan bo'lishi mumkin komponentlar yoki yanada murakkab elementlar sifatida ishlatiladi integral mikrosxemalar.

Op amp - bu bitta tur differentsial kuchaytirgich. Differentsial kuchaytirgichning boshqa turlariga quyidagilar kiradi to'liq differentsial kuchaytirgich (op ampga o'xshash, lekin ikkita chiqishi bilan), asboblar kuchaytirgichi (odatda uchta op amperdan qurilgan), izolyatsiya kuchaytirgichi (asboblar kuchaytirgichiga o'xshash, ammo bardoshlik bilan umumiy rejimdagi kuchlanish bu oddiy op ampni yo'q qiladi) va salbiy teskari aloqa kuchaytirgichi (odatda bir yoki bir nechta op amper va rezistorli qayta aloqa tarmog'idan qurilgan).

Ishlash

Salbiy javobsiz op amp (taqqoslovchi)

Kuchaytirgichning differentsial kirishlari kuchlanishli teskari kirishdan (+) iborat V+ va kuchlanish bilan inverting usuli (-) V; ideal holda op amp ikkala orasidagi kuchlanishdagi farqni kuchaytiradi, bu esa differentsial kirish kuchlanishi. Op ampning chiqish kuchlanishi Vchiqib tenglama bilan berilgan

qayerda AOL bo'ladi ochiq halqa kuchaytirgichning kuchayishi ("ochiq halqa" atamasi chiqishdan kirishga tashqi teskari aloqa davri yo'qligini anglatadi).

Ochiq pastadirli kuchaytirgich

Ning kattaligi AOL odatda juda katta (integral mikrosxemalar uchun 100000 yoki undan ko'p) va shuning uchun ularning orasidagi farq juda kichikdir V+ va V kuchaytirgich chiqishini besleme zo'riqishida deyarli harakatga keltiradi. Chiqish kuchlanishi besleme voltajiga teng yoki undan katta bo'lgan holatlar deyiladi to'yinganlik kuchaytirgich. Ning kattaligi AOL ishlab chiqarish jarayoni tomonidan yaxshi nazorat qilinmaydi va shuning uchun avtoulov sifatida ochiq halqa kuchaytirgichidan foydalanish maqsadga muvofiq emas differentsial kuchaytirgich.

Yo'q salbiy teskari aloqa, va ehtimol bilan ijobiy fikr uchun yangilanish, op amp a vazifasini bajaradi taqqoslovchi. Agar teskari kirish to'g'ridan-to'g'ri yoki qarshilik bilan (0 V) erga tutilsa Rgva kirish kuchlanishi Vyilda teskari bo'lmagan kirishga tatbiq etilgan bo'lsa, ijobiy maksimal bo'ladi; agar Vyilda manfiy, chiqish maksimal salbiy bo'ladi. Chiqishdan ikkala kirishga hech qanday teskari aloqa yo'qligi sababli, bu ochiq halqa a sifatida ishlaydigan elektron taqqoslovchi.

Yopiq tsikli kuchaytirgich

Salbiy teskari aloqaga ega bo'lgan op amp (teskari bo'lmagan kuchaytirgich)

Agar taxmin qilinadigan operatsiyani bajarish zarur bo'lsa, teskari teskari aloqa ishlatiladi, chiqadigan voltajning bir qismini teskari kirishga qo'llang. The yopiq tsikl geribildirim kontaktlarning zanglashiga olib tushishini sezilarli darajada kamaytiradi. Salbiy teskari aloqa ishlatilganda, kontaktlarning zanglashiga olib keladigan umumiy natijalari va javoblari asosan op-amp xususiyatlariga ko'ra emas, aksincha qayta aloqa tarmog'i tomonidan aniqlanadi. Agar teskari aloqa tarmog'i op ampning kirish empedansiga nisbatan kichik qiymatlarga ega komponentlardan iborat bo'lsa, op ampning ochiq halqa javobining qiymati AOL elektronning ishlashiga jiddiy ta'sir ko'rsatmaydi. Op-amp zanjirining kirish, chiqish va teskari kontaktlarning zanglashiga olib kirishiga javobi matematik jihatdan a bilan tavsiflanadi uzatish funktsiyasi; kerakli uzatish funktsiyasiga ega bo'lgan op-amp sxemasini loyihalashtirish sohada elektrotexnika. O'tkazish funktsiyalari op amperlarning aksariyat dasturlarida, masalan analog kompyuterlar. Yuqori kirish empedans kirish terminallarida va chiqish terminallari (larida) kam chiqish empedansi, ayniqsa, op ampning foydali xususiyatlari.

O'ng tarafdagi teskari bo'lmagan kuchaytirgichda, orqali teskari aloqa mavjud kuchlanishni ajratuvchi Rf, Rg belgilaydi yopiq ko'chadan daromad ACL = Vchiqib / Vyilda. Muvozanat qachon o'rnatiladi Vchiqib teskari kirishni xuddi shu voltajga "etib borish va tortish" uchun etarli Vyilda. Shunday qilib, butun zanjirning kuchlanish kuchayishi 1 + ga teng Rf/Rg. Oddiy misol sifatida, agar Vyilda = 1 V va Rf = Rg, Vchiqib 2 V bo'ladi, uni ushlab turish uchun zarur bo'lgan miqdor V 1 V. da qayta tiklanganligi sababli Rf, Rg tarmoq, bu a yopiq tsikl elektron.

Ushbu sxemani tahlil qilishning yana bir usuli quyidagi taxminlarni qabul qilish orqali davom etadi:[3]

  • Op amp chiziqli (ya'ni to'yingan emas) rejimda ishlaganda, teskari bo'lmagan (+) pin va teskari (-) pin o'rtasidagi kuchlanish farqi juda oz.
  • (+) Va (-) pinlari orasidagi kirish empedansi elektronning boshqa qarshiligiga qaraganda ancha katta.

Kirish signali Vyilda ikkala (+) va (-) pinlarda paydo bo'ladi, natijada oqim paydo bo'ladi men orqali Rg ga teng Vyilda/Rg:

Kirchhoffning amaldagi qonuni shuni ko'rsatadiki, xuddi shu oqim unga kirganda tugunni tark etishi kerak va (-) pimdagi impedans cheksizlikka yaqin bo'lsa, biz deyarli bir xil oqimni qabul qilishimiz mumkin men orqali oqadi Rf, chiqish voltajini yaratish

Terminlarni birlashtirib, biz yopiq tsiklli daromadni aniqlaymiz ACL:

Op-amp xususiyatlari

Ideal op amperlar

Ba'zi qarshilik ko'rsatadigan ideal bo'lmagan parametrlarni modellashtiradigan operatsion kuchaytirgichning ekvivalenti davri.

Ideal op amp odatda quyidagi xususiyatlarga ega deb hisoblanadi:[4][5]

Ushbu ideallarni ikkita "oltin qoidalar" bilan umumlashtirish mumkin:

  1. Yopiq tsikldagi chiqish, kirishlar orasidagi kuchlanish farqini nolga etkazish uchun zarur bo'lgan hamma narsani qilishga harakat qiladi.
  2. Kirishlar oqim o'tkazmaydi.[6]:177

Birinchi qoida faqat op amp yopiq konstruktsiyadagi dizaynda qo'llaniladigan odatiy holatda qo'llaniladi (salbiy teskari aloqa, bu erda chiqqandan teskari kirishga qaytib keladigan biron bir signal yo'li mavjud). Ushbu qoidalar odatda op-amp davrlarini tahlil qilish yoki loyihalash uchun yaxshi birinchi taxmin sifatida ishlatiladi.[6]:177

Ushbu ideallarning hech biri mukammal amalga oshirilmaydi. Haqiqiy op amper op-amp modelidagi ekvivalent rezistorlar va kondansatörler yordamida cheksiz yoki nolga teng bo'lmagan parametrlar bilan modellashtirilishi mumkin. Keyin dizayner ushbu effektlarni yakuniy sxemaning umumiy ishlashiga kiritishi mumkin. Ba'zi parametrlar yakuniy dizaynga befarq ta'sir ko'rsatishi mumkin, boshqalari esa yakuniy ishlashning haqiqiy cheklovlarini baholashi kerak.

Haqiqiy op amperlar

Haqiqiy op amperlar ideal modeldan har xil jihatlari bilan farq qiladi.

DC nomukammalligi

Haqiqiy operatsion kuchaytirgichlar bir nechta ideal bo'lmagan ta'sirlardan aziyat chekmoqda:

Cheklangan daromad
Ochiq pastadirli daromad ideal operatsion kuchaytirgichda cheksiz, ammo haqiqiy operatsion kuchaytirgichlarda cheklangan. Oddiy qurilmalar 100000 dan 1 milliongacha o'zgaruvchan doimiy oqim koeffitsientini namoyish etadi. Shunday ekan pastadir yutug'i (ya'ni, ochiq tsikl va teskari aloqa hosilalari mahsuloti) juda katta, kontaktlarning zanglashiga olib borishi butunlay salbiy teskari aloqa miqdori bilan aniqlanadi (ya'ni, u ochiq-oydin daromaddan mustaqil bo'ladi). Qaerda bo'lsa yopiq ko'chadan daromad juda yuqori bo'lishi kerak, teskari aloqa darajasi juda past bo'ladi va past teskari aloqa past past daromadni keltirib chiqaradi; bu holatlarda operatsion kuchaytirgich ideal harakat qilishni to'xtatadi.
Cheklangan kirish impedanslari
The differentsial kirish empedansi operatsion kuchaytirgich empedans sifatida aniqlanadi o'rtasida uning ikkita usuli; The umumiy rejimdagi kirish empedansi har bir kirishdan erga impedans. MOSFET - kirish operatsion kuchaytirgichlari ko'pincha himoya chegaralariga ega bo'lib, ular har qanday kirish farqlarini kichik chegaradan kattaroq ravishda qisqa tutashuvga olib keladi, shuning uchun ba'zi bir sinovlarda kirish empedansi juda past bo'lib ko'rinishi mumkin. Ammo, ushbu operatsion kuchaytirgichlar odatdagi yuqori daromadli salbiy teskari aloqa dasturida ishlatilgan ekan, ushbu himoya qilish davrlari faol bo'lmaydi. Quyida tavsiflangan kirish tanqisligi va qochqin oqimlari odatdagi operatsion kuchaytirgich dasturlari uchun muhim dizayn parametridir.
Nolga teng emas chiqish empedansi
Past empedans kam empedansli yuklar uchun muhimdir; ushbu yuklar uchun chiqish empedansidagi kuchlanishning pasayishi ochiq pastadir daromadini samarali ravishda kamaytiradi. Voltni sezadigan salbiy teskari aloqa bilan konfiguratsiyalarda kuchaytirgichning chiqish empedansi samarali ravishda tushiriladi; Shunday qilib, chiziqli dasturlarda op-ampli davrlar odatda juda past chiqish empedansini namoyish etadi.
Kam empedansli natijalar odatda yuqori talab qiladi tinch (ya'ni bo'sh) oqim chiqish bosqichida va ko'proq quvvatni yo'qotadi, shuning uchun kam quvvatli dizaynlar ataylab past chiqish empedansini qurbon qilishi mumkin.
Kirish oqimi
Sababli tarafkashlik talablar yoki qochqin, oz miqdordagi oqim (odatda ~ 10 nanoamper, nA, uchun ikki qutbli op amper, o'nlab pikoamper, pA, uchun JFET kirish bosqichlari va faqat bir necha pA MOSFET kirish bosqichlari) kirish qismlariga oqadi. O'chirishda katta rezistorlar yoki yuqori chiqish empedanslari bo'lgan manbalardan foydalanilganda, bu kichik oqimlar katta modellashtirilmagan kuchlanish pasayishiga olib kelishi mumkin. Agar kirish oqimlari mos keladigan bo'lsa, va impedans qarab chiqib ning ikkalasi ham kirishlar mos keladi, keyin har bir kirishda hosil bo'lgan kuchlanish teng bo'ladi. Operatsion kuchaytirgich ishlaydi farq uning kirishlari o'rtasida ushbu mos keladigan kuchlanishlar hech qanday ta'sir ko'rsatmaydi. Kirish oqimlarining biroz mos kelmasligi tez-tez uchraydi. Ushbu farq kirish ofset oqimi deb nomlanadi va hatto mos keladigan qarshiliklarda ham kichik ofset kuchlanish (quyida joylashgan kirish ofset voltajidan farqli) ishlab chiqarilishi mumkin. Ushbu ofset zo'riqishida ishlaydigan kuchaytirgichda ofset yoki siljish paydo bo'lishi mumkin.
Kirish ofset Kuchlanish
Chiqish kuchlanishini nolga etkazish uchun op amperning kirish terminallarida talab qilinadigan bu kuchlanish.[7][nb 1] Zo'r kuchaytirgichda kirish ofset kuchlanishi bo'lmaydi. Biroq, ushbu qurilmalarning aksariyat qismining kirish bosqichini tashkil etadigan differentsial kuchaytirgichdagi kamchiliklar tufayli u amaldagi amperlarda mavjud. Kirishning ofset kuchlanishi ikkita muammo tug'diradi: Birinchidan, kuchaytirgichning yuqori voltaj kuchayishi tufayli, kuchaytirgich chiqishi, agar u terminallar bir-biriga ulangan bo'lsa ham, salbiy teskari aloqa qilmasdan ishlasa, u to'yingan bo'ladi. Ikkinchidan, yopiq pastadirda, teskari teskari aloqa konfiguratsiyasida, kirish ofset kuchlanishi signal bilan birga kuchaytiriladi va bu yuqori aniqlikdagi doimiy shahar kuchaytirish zarur bo'lsa yoki kirish signali juda kichik bo'lsa, bu muammo tug'dirishi mumkin.[nb 2]
Umumiy rejimdagi daromad
Mukammal operatsion kuchaytirgich faqat ikkita kirish orasidagi voltaj farqini kuchaytiradi va ikkalasi uchun umumiy bo'lgan barcha kuchlanishlarni butunlay rad etadi. Shu bilan birga, operatsion kuchaytirgichning differentsial kirish bosqichi hech qachon mukammal bo'lmaydi va bu umumiy kuchlanishlarning ma'lum darajada kuchayishiga olib keladi. Ushbu nuqsonning standart o'lchovi deyiladi umumiy rejimda rad etish nisbati (CMRR bilan belgilanadi). Umumiy rejim daromadini minimallashtirish odatda yuqori kuchaytirgichda ishlaydigan teskari bo'lmagan kuchaytirgichlarda (quyida tavsiflangan) muhimdir.
Elektr ta'minotini rad etish
Mukammal operatsion kuchaytirgichning chiqishi uning elektr ta'minotidan mutlaqo mustaqil bo'ladi. Har qanday haqiqiy operatsion kuchaytirgich cheklangan elektr ta'minotini rad etish darajasi (PSRR), bu op amp quvvat manbai voltajidagi o'zgarishlarni qanchalik rad etishi mumkinligini aks ettiradi.
Harorat effektlari
Barcha parametrlar haroratga qarab o'zgaradi. Kirish ofset voltajining harorat o'zgarishi ayniqsa muhimdir.
Drift
Haqiqiy op-amp parametrlari vaqt o'tishi bilan va harorat o'zgarishi bilan sekin o'zgarishi mumkin, kirish sharoitlari va boshqalar.

O'zgaruvchan tokning kamchiliklari

DC da hisoblangan op-amp kuchayishi yuqori chastotalarda qo'llanilmaydi. Shunday qilib, yuqori tezlikda ishlash uchun op-ampli elektron dizaynida yanada murakkab fikrlardan foydalanish kerak.

Cheklangan tarmoqli kengligi
Barcha kuchaytirgichlar cheklangan o'tkazuvchanlikka ega. Birinchi taxminlarga ko'ra, op am an chastotali javobga ega integrator daromad bilan. Ya'ni, odatdagi op ampning kuchayishi chastotaga teskari proportsionaldir va uning bilan tavsiflanadi tarmoqli kengligi mahsuloti (GBWP). Masalan, GBWP 1 MGts bo'lgan op amper 200 kHzda 5 ga, 1 MGts da 1 ga ega bo'ladi. Ushbu dinamik javob op amperning juda yuqori DC kuchayishi bilan birgalikda unga birinchi darajali xususiyatlarni beradi past o'tkazgichli filtr juda yuqori shahar kuchlanishi va GBWP tomonidan berilgan past uzilish chastotasi bilan shahar daromadiga bo'linadi.
Op amperning cheklangan o'tkazuvchanligi bir nechta muammolarning manbai bo'lishi mumkin, jumladan:
Barqarorlik
Tarmoqli kenglikni cheklash bilan bog'liq bo'lgan kirish signali va kuchaytirgich chiqishi o'rtasidagi o'zgarishlar farqi tebranish ba'zi teskari aloqa davrlarida. Masalan, sinusoidal chiqish signali bir xil chastotali kirish signaliga xalaqit berishni nazarda tutsa, 180 gradusgacha kechiktirilsa konstruktiv ravishda xalaqit beradi. ijobiy fikr. Bunday hollarda, qayta aloqa davri bo'lishi mumkin barqarorlashdi orqali chastota kompensatsiyasi, bu esa daromad yoki fazaviy marj ochiq tsikli Elektron konstruktor ushbu kompensatsiyani alohida elektron komponent bilan tashqi tomondan amalga oshirishi mumkin. Shu bilan bir qatorda, kompensatsiya operatsion kuchaytirgich ichida a qo'shilishi bilan amalga oshirilishi mumkin ustun ustun operatsion kuchaytirgichning yuqori chastotali daromadini etarlicha susaytiradi. Ushbu qutbning joylashuvi ishlab chiqaruvchi tomonidan ichki qismda o'rnatilishi yoki op ampga xos usullar yordamida elektron dizayner tomonidan tuzilishi mumkin. Umuman olganda, dominant qutbli chastotali kompensatsiya op amperning o'tkazuvchanligini yanada pasaytiradi. Kerakli yopiq ko'chadan daromad yuqori bo'lsa, op-amp chastotali kompensatsiya tez-tez talab qilinmaydi, chunki zarur bo'lgan ochiq tsiklli daromad etarli darajada past; Binobarin, yopiq tsikli yuqori bo'lgan ilovalar yuqori o'tkazuvchanlik qobiliyatiga ega bo'lgan op amperlardan foydalanishi mumkin.
Buzilish va boshqa ta'sirlar
Cheklangan tarmoqli kengligi, shuningdek, yuqori chastotalarda teskari aloqa hajmining past bo'lishiga olib keladi, bu esa ko'proq buzilishlarni keltirib chiqaradi va chastota oshgani sayin chiqish empedansini keltirib chiqaradi.
Odatda arzon, umumiy maqsadli op amperlar bir necha megagertsli GBWP namoyish etadi. Maxsus va yuqori tezlikda ishlaydigan amperlar mavjud bo'lib, ular yuzlab megagertsli GBWP quvvatiga ega bo'lishlari mumkin. Juda yuqori chastotali sxemalar uchun, a oqim-qayta ishlaydigan operatsion kuchaytirgich tez-tez ishlatiladi.
Shovqin
Kuchaytirgichlar signal berilmasa ham chiqishda tasodifiy kuchlanish hosil qiladi. Buning sababi termal shovqin va qurilmalarning miltillovchi shovqini bo'lishi mumkin. Yuqori daromadli yoki yuqori tarmoqli kengligi bo'lgan ilovalar uchun shovqin juda muhim ahamiyatga ega.
Kiritish sig'im
Yuqori chastotali ishlash uchun eng muhimi, chunki u kirish empedansini pasaytiradi va o'zgarishlar o'zgarishiga olib kelishi mumkin.
Umumiy rejimdagi daromad
Yuqoridagi shahar nomukammalliklariga qarang.
Elektr ta'minotini rad etish
Borayotgan chastotada elektr ta'minotini rad etish odatda yomonlashadi. Shunday qilib ta'minotni yuqori chastotali to'lqinlar va signallardan toza saqlash muhim bo'lishi mumkin, masalan. yordamida bypass kondansatörleri.

Lineer bo'lmagan kamchiliklar

Inverting kuchaytirgichidagi to'yingan op ampning kirish (sariq) va chiqish (yashil)
Doygunlik
Chiqish kuchlanishi ga yaqin bo'lgan minimal va maksimal qiymat bilan cheklangan quvvatlantirish manbai kuchlanish.[nb 3] Qadimgi op amperlarning chiqishi ta'minot relslarining bir yoki ikki voltigacha etib borishi mumkin. Yangi "temir yo'ldan temir yo'l" deb nomlangan op amperlarning chiqishi kam chiqish oqimlarini ta'minlashda etkazib berish relslarining millivoltlariga yetishi mumkin.
Slewing
Kuchaytirgichning chiqish kuchlanishi maksimal o'zgarish tezligiga etadi o'ldirish darajasi, odatda mikrosaniyadagi volt (V / ms) bilan belgilanadi. Siqilish sodir bo'lganda, kirish signalining yanada ko'payishi chiqishni o'zgartirish tezligiga ta'sir qilmaydi. Slewing odatda kirish bosqichining to'yinganligidan kelib chiqadi; natija doimiy oqimdir men sig'imni boshqarish C kuchaytirgichda (ayniqsa, uni amalga oshirish uchun ishlatiladigan imkoniyatlar chastota kompensatsiyasi ); o'ldirish darajasi cheklangan dv/ dt = men/C.
Slewing bu bilan bog'liq katta signal op amperning ishlashi. Masalan, 10-darajali daromad uchun tuzilgan op ampni ko'rib chiqing. Kiritish 1 ga teng V, 100 kHz chastotali arra tishlari to'lqini. Ya'ni amplituda 1 ga teng V va davr 10 mikrosaniyani tashkil qiladi. Shunga ko'ra, kirishning o'zgarish tezligi (ya'ni, nishab) mikrosaniyasiga 0,1 V ni tashkil qiladi. 10 × kuchaytirgandan so'ng, chiqish 10 ga teng bo'lishi kerak V, 100 kHz arra tishi, mos keladigan tezlik darajasi 1 ga teng Mikrosaniyadagi V. Biroq, klassik 741 op amp 0,5 ga ega Mikrosaniyadagi o'lchov tezligining spetsifikatsiyasi bo'yicha V, shuning uchun uning chiqishi 5 dan oshmasligi mumkin V arra tishining 10 mikrosaniyadagi davrida. Shunday qilib, agar natijani o'lchash kerak bo'lsa, u 5 ga teng bo'ladi V emas, 100 kHz arra tishlari, 10 o'rniga V, 100 kHz arra tishlari.
Keyin bir xil kuchaytirgichni va 100 kHz chastotali arra tishlarini ko'rib chiqing, ammo endi kirish amplitudasi 100 ga teng 1 emas, balki mV V. 10 × kuchaytirgandan keyin chiqish 1 ga teng V, 100 kHz chastotali tish pog'onasi 0,1 ga teng Mikrosaniyadagi V. Bunday holda, 741, 0,5 bilan Mikrosaniyadagi tortishish tezligi uchun V kirishni to'g'ri kuchaytiradi.
Zamonaviy yuqori tezlikda ishlaydigan amperlar o'ldirish stavkalari 5000 dan yuqori bo'lishi mumkin Mikrosaniyadagi V. Biroq, op amperlarda 5-100 oralig'ida o'ldirish tez-tez uchraydi Mikrosaniyadagi V. Masalan, umumiy maqsadli TL081 op amplituti 13 ga teng Mikrosaniyadagi V. Odatda, kam quvvat va kichik tarmoqli kengligi op amperlar past tezliklarga ega. Misol tariqasida, LT1494 mikropower op amperi 1,5 mikroamp iste'mol qiladi, lekin 2,7 kHz chastotali tarmoqli kengligi mahsulotiga va 0,001 ga ega. Mikrosaniyadagi tortishish tezligi uchun V.
Yo'qchiziqli kirish va chiqish munosabatlari
Chiqish kuchlanishi kirish voltajlari orasidagi farq bilan aniq mutanosib bo'lmasligi mumkin. Odatda kirish signali to'lqin shakli bo'lganida buzilish deb ataladi. Ushbu ta'sir sezilarli salbiy teskari aloqa qo'llaniladigan amaliy sxemada juda kichik bo'ladi.
Faza bekor qilish
Ba'zi birlashtirilgan op amperlarda, e'lon qilingan umumiy rejimning kuchlanishi buzilganda (masalan, kirish voltajlaridan biriga o'tkaziladigan kirishlardan biri tomonidan), chiqish normal ishlashda kutilganidan qarama-qarshi qutbga o'tishi mumkin.[8][9] Bunday sharoitda, salbiy teskari aloqa ijobiy bo'ladi, ehtimol kontaktlarning zanglashiga olib kelish holatini shu holatga keltiradi.

Quvvatni hisobga olish

Cheklangan chiqish oqimi
Chiqish oqimi cheklangan bo'lishi kerak. Amalda, aksariyat amperlar chiqadigan tokni belgilangan darajadan oshmasligi uchun cheklash uchun mo'ljallangan - 741 IC op amp turi uchun 25 mA atrofida - shuning uchun op ampni va unga bog'liq bo'lgan elektron tizimni shikastlanishdan himoya qiladi. Zamonaviy dizaynlar ilgari amalga oshirilganlarga qaraganda elektron jihatdan ancha qo'pol va ba'zilari to'g'ridan-to'g'ri ishlashga qodir qisqa tutashuv ularning chiqishlarida zarar ko'rmasdan.
Chiqish oqimi oqimi
Chiqish cho'milish oqimi - chiqish bosqichiga cho'ktirish uchun ruxsat etilgan maksimal oqim. Ba'zi ishlab chiqaruvchilar chiqish voltajini chiqindilarni oqimining uchastkasiga qarshi ko'rsatadilar, bu esa boshqa manbadan chiqadigan pinga oqim tushganda chiqish voltaji haqida fikr beradi.
Cheklangan tarqatildi kuch
Chiqish oqimi op ampning ichki chiqish empedansi orqali oqadi, uni tarqatish kerak bo'lgan issiqlik hosil qiladi. Agar op amper juda ko'p quvvat sarf qilsa, uning harorati xavfsiz chegaradan oshib ketadi. Op amp termik o'chirishga kirishi yoki yo'q qilinishi mumkin.

Zamonaviy integral FET yoki MOSFET Kirish empedansi va kirish tarafkashlik oqimlari haqida gap ketganda, op amperlar bipolyar IClarga qaraganda ideal op amp ga yaqinroq. Bipolyar odatda kirish haqida gap ketganda yaxshiroqdir Kuchlanish ofset va ko'pincha past shovqinga ega. Odatda, xona haroratida, juda katta signal va cheklangan tarmoqli kengligi bilan FET va MOSFET op amperlari endi yaxshi ishlashni taklif qiladi.

Ichki elektron 741- turi amp

Umumiy 741 op ampning komponent darajasidagi diagrammasi. Nuqta chiziqlar:   hozirgi nometall;   differentsial kuchaytirgich;   A sinf daromad bosqichi;   kuchlanish darajasini o'zgartiruvchi;   chiqish bosqichi.

Ko'pgina ishlab chiqaruvchilar tomonidan manbalar va shunga o'xshash bir nechta mahsulotlarda bipolyar tranzistorli operatsion kuchaytirgichning misoli 1968 yilda Devid Fullagar tomonidan ishlab chiqilgan 741 integral mikrosxemasidir. Fairchild Semiconductor keyin Bob Vidlar LM301 integral mikrosxemasining dizayni.[10] Ushbu munozarada biz parametrlarini ishlatamiz gibrid-pi modeli tranzistorning kichik signalli, tuproqli emitent xususiyatlarini tavsiflash. Ushbu modelda tranzistorning joriy kuchi belgilanadi hfe, odatda β deb nomlanadi.[11]

Arxitektura

Kichik hajmdagi integral mikrosxema, 741 op amp aksariyat op amperlar bilan uchta daromad bosqichidan iborat ichki tuzilishga ega:[12]

  1. Differentsial kuchaytirgich (ko'rsatilgan) to'q ko'k ) - umumiy rejimdagi signalni rad etish, past shovqin va yuqori darajadagi yuqori differentsial amplifikatsiyani (daromadni) ta'minlaydi kirish empedansi va haydovchilar a
  2. Voltaj kuchaytirgichi (belgilangan) magenta ) - yuqori kuchlanish kuchayishini, bitta kutupli chastotani ta'minlaydi ko'chirish va o'z navbatida
  3. Chiqish kuchaytirgichi (ko'rsatilgan moviy va yashil ) - yuqori oqim daromadini ta'minlaydi (past chiqish empedansi ), chiqish oqimini cheklash va qisqa tutashuvdan himoya qilish.

Bundan tashqari, u o'z ichiga oladi joriy oyna (ko'rsatilgan qizil) yonma tutashuv sxemasi va tovon puli kondansatör (30 pF).

Differentsial kuchaytirgich

Kirish bosqichi kaskadli bosqichdan iborat differentsial kuchaytirgich (ko'rsatilgan ko'k ) keyin oynani aks ettiradi faol yuk. Bu a o'tkazuvchanlik kuchaytirgichi, Q1, Q2 bazalaridagi differentsial kuchlanish signalini oqim signaliga Q15 asosiga aylantirish.

U qarama-qarshi talablarni qondiradigan ikkita kaskadli tranzistor juftligini o'z ichiga oladi. Birinchi bosqich mos keladigan NPNdan iborat emitent izdoshi yuqori kirish impedansini ta'minlaydigan Q1, Q2 juftligi. Ikkinchisi - mos keladigan PNP umumiy asos kiruvchi narsalarni yo'q qiladigan Q3, Q4 juftliklari Miller ta'siri; u haydaydi faol yuk Q7 va mos keluvchi juftlik Q5, Q6.

Ushbu faol yuk o'zgartirilgan holda amalga oshiriladi Uilsonning hozirgi oynasi; uning roli (differentsial) kirish oqimi signalini xizmatchining 50% yo'qotishsiz bitta signalga aylantirishdan iborat (op ampning ochiq halqa kuchini 3 dB ga oshirish).[nb 4] Shunday qilib, Q3 ga nisbatan Q4 ga nisbatan kichik signalli differentsial oqim Q15 bazasida yig'ilib (ikki baravar) paydo bo'ladi, bu kuchlanish kuchayish bosqichi.

Kuchlanish kuchaytirgichi

(A sinf ) kuchlanish kuchayish bosqichi (ko'rsatilgan magenta ) a ga ulangan ikkita NPN tranzistor Q15 / Q19 dan iborat Darlington konfiguratsiyasi va yuqori voltajga erishish uchun kollektor (dinamik) yuk sifatida oqim oynasi Q12 / Q13 ning chiqish tomonidan foydalanadi. Chiqish moslamasi transistor Q20 o'zining asosiy qo'zg'alishini Q15 va Q19 umumiy kollektorlaridan oladi; Q-darajani o'zgartiruvchi Q14 chiqish manbai tranzistorining asosiy drayverini ta'minlaydi.

Transistorlar Q22 ushbu bosqichni Q20 ga haddan tashqari oqim etkazib berishni oldini oladi va shu bilan chiqadigan cho'milish oqimini cheklaydi.

Chiqish kuchaytirgichi

Chiqish bosqichi (Q14, Q20, ko'rsatilgan moviy ) a AB sinf komplementar-simmetriya kuchaytirgichi. Chiqish drayverini ~ 50 imp empedans bilan ta'minlaydi, aslida oqim kuchi. Transistor Q16 (ko'rsatilgan yashil ) chiqish tranzistorlari uchun tinch tokni, Q17 esa chiqish tokini cheklashni ta'minlaydi.

Ikkilamchi davrlar

Op ampning har bir bosqichi uchun mos tinchlikni ta'minlang.

Q11 va Q12 (diyotga ulangan) bilan bog'laydigan qarshilik (39 kΩ) va berilgan kuchlanish (VS+ − VS), oqimini aniqlang hozirgi nometall, (mos keladigan juftliklar) Q10 / Q11 va Q12 / Q13. Q11 kollektor oqimi, men11 × 39 kΩ = VS+VS − 2 VBO'LING. Odatda uchun VS = ± 20 V, Q11 / Q12 da (shuningdek Q13 da) doimiy oqim ~ 1 mA ga teng bo'ladi. Taxminan 2 mA bo'lgan odatdagi 741 uchun besleme oqimi, ushbu ikki tarafkashlik oqimlari sust ta'minot oqimida ustunlik qiladi degan tushunchaga mos keladi.

Q11 va Q10 tranzistorlari a hosil qiladi Keng oynali oyna, Q10da tinch oqim bilan men10 shunday ln (men11 / men10) = men10 × 5 kΩ / 28 mV, bu erda 5 kΩ Q10 emitent qarshiligini anglatadi va 28 mV bo'ladi VT, issiqlik kuchlanishi xona haroratida. Ushbu holatda men10 ≈ 20 mA.

Differentsial kuchaytirgich

Ushbu bosqichning yonma-o'chirish davri Q10 va Q9 kollektor oqimlarini (deyarli) mos kelishiga majbur qiladigan teskari aloqa davri bilan o'rnatiladi. Ushbu oqimlarning kichik farqi Q3 / Q4 umumiy bazasini harakatga keltiradi (shuni e'tiborga olingki, Q1 / Q2 kirish tranzistorlari uchun asosiy drayv kirish tanqisligi oqimi va tashqi manbadan olinishi kerak). Q1 / Q3 plyus Q2 / Q4 ning tinchlangan oqimlari Q8 dan Q9 ga aks ettiriladi, u erda u Q10da kollektor oqimi bilan yig'iladi, natijada Q3 / Q4 asoslariga qo'llaniladi.

Q1 / Q3 (tinchlik, Q2 / Q4) ning sust oqimlari men1 Shunday qilib, yarmi bo'ladi men10, tartibi ~ 10 mA. Q1 (javob Q2) bazasi uchun kirish tanqisligi oqimi quyidagicha bo'ladi men1 / β; odatda ~ 50 nA, joriy daromadni nazarda tutadi hfe 1 Q1 (Q2) uchun 200.

Ushbu teskari aloqa davri Q3 / Q4 umumiy tayanch tugunini kuchlanishga tortishga intiladi Vcom − 2 VBO'LING, qayerda Vcom kirish umumiy rejimdagi kuchlanishdir. Shu bilan birga, sokin oqimning kattaligi Q1-Q4 komponentlarining xususiyatlariga nisbatan befarq, masalan. hfe, aks holda bu haroratga bog'liqlik yoki qismning o'zgarishiga olib keladi.

Transistor Q7 Q5 va Q6 ni ularning (teng) kollektor oqimlari Q1 / Q3 va Q2 / Q4 ga mos kelguncha o'tkazuvchanlikka aylantiradi. Q7-dagi tinch oqim VBO'LING / 50 kΩ, taxminan 35 mA, Q15 dagi tinch oqim kabi, uning mos keladigan ish nuqtasi bilan. Shunday qilib, tinch oqimlar Q1 / Q2, Q3 / Q4, Q5 / Q6 va Q7 / Q15 da juftlik bilan mos keladi.

Kuchlanish kuchaytirgichi

Q16 va Q19 dagi sust oqimlar ~ 1 mA da ishlaydigan hozirgi Q12 / Q13 oynasi tomonidan o'rnatiladi. Ba'zilar orqali[noaniq ] mexanizmi, kollektor oqimi Q19 turgan oqimni kuzatib boradi.

Chiqish kuchaytirgichi

Q16 bilan bog'liq bo'lgan davrda (har xil nomlangan kauchuk diyot yoki VBO'LING 4,5 kΩ qarshilik Q16 bilan taxminan 100 mA o'tkazishi kerak VBO'LING taxminan 700 mV. Keyin VCB taxminan 0,45 V va bo'lishi kerak VIdoralar taxminan 1,0 V. da Q16 kollektori oqim manbai bilan boshqarilgandan va Q16 emitenti Q19 kollektor oqimining cho'ktiruvchisiga tushganligi sababli, Q16 tranzistor Q14 bazasi va ~ 1 V gacha bo'lgan Q20 bazasi orasidagi kuchlanish farqini o'rnatadi. Q14 / Q20 bazasining rejim kuchlanishi. Q14 / Q20 dagi doimiy oqim omil bo'ladi eksp (100 mV / VT) ≈ 36 op ampning A qismidagi 1 mA tinch tokdan kichikroq. Chiqish tranzistorlaridagi bu (kichik) doimiy oqim AB ishidagi chiqish bosqichini o'rnatadi va kamaytiradi krossoverning buzilishi ushbu bosqich.

Kichik signalli differentsial rejim

Kichik differentsial kirish voltaj signali oqimni kuchaytirishning bir necha bosqichlari orqali chiqishda ancha katta kuchlanish signaliga olib keladi.

Kirish impedansi

Q1 va Q3 bilan kirish bosqichi emitentlar bilan bog'langan juftlikka (uzun dumli juftlik) o'xshaydi, Q2 va Q4 ba'zi degenerativ impedanslarni qo'shib qo'ydi. Q1-Q4 orqali kichik oqim tufayli kirish empedansi nisbatan yuqori. Odatda 741 op amperning differentsial kirish empedansi taxminan 2 MΩ ga teng. Umumiy rejimdagi kirish empedansi bundan ham yuqori, chunki kirish bosqichi doimiy ravishda doimiy oqimda ishlaydi.

Differentsial kuchaytirgich

Differentsial kuchlanish Vyilda op amp kirishlarida (mos ravishda 3 va 2-pinlar) Q1 va Q2 bazalarida kichik differentsial oqim paydo bo'ladi. menyildaVyilda / (2hya'nihfe). Ushbu differentsial tayanch oqimi har bir oyoqdagi differentsial kollektor oqimining o'zgarishiga olib keladi menyildahfe. Q1 ning o'tkazuvchanligini joriy qilish, gm = hfe / hya'ni, Q15 bazasidagi (kichik signalli) oqim (kuchlanish kuchayishi bosqichining kiritilishi) Vyildagm / 2.

Op ampning ushbu qismi op amp kirishidagi differentsial signalni Q15 bazasidagi bitta uchli signalga mohirlik bilan o'zgartiradi va har ikkala oyog'idagi signalni bekorga tashlab yuborishdan saqlaydi. Qanday qilib ko'rish kerakki, inverting kirishidagi (Q2 bazasi) voltajdagi kichik salbiy o'zgarish uni o'tkazuvchanlikdan chiqarib yuboradi va oqimning bu asta-sekin pasayishi to'g'ridan-to'g'ri Q4 kollektoridan uning emitentiga o'tadi, natijada Q15 uchun tayanch disk kamayadi. . Boshqa tomondan, teskari bo'lmagan kirishda (Q1 bazasida) voltajning kichik ijobiy o'zgarishi ushbu tranzistorni Q3 kollektorida oqimning ko'payishida aks ettirilgan o'tkazuvchanlikka olib keladi. Ushbu oqim Q7-ni o'tkazuvchanlikka aylantiradi, bu esa Q5 / Q6 oqim oynasini yoqadi. Shunday qilib, Q3 emitent oqimining o'sishi Q6 kollektor oqimining ko'payishida aks etadi; ortib borayotgan kollektor oqimlari kollektor tugunidan ko'proq shunt qiladi va Q15 uchun asosiy qo'zg'alish oqimining pasayishiga olib keladi. Bu erda 3 dB daromadni sarflashdan saqlanish bilan bir qatorda, ushbu usul elektr ta'minotidagi shovqinning umumiy rejimi va yutug'ini pasaytiradi.

Kuchlanish kuchaytirgichi

Joriy signal men Q15 bazasida Q19 tartibidagi oqim paydo bo'ladi menβ2 (mahsuloti hfe a ga ulangan Q15 va Q19 ning har birining Darlington juftligi ). Ushbu oqim signali Q14 / Q20 chiqish tranzistorlari bazalarida voltajni mutanosib ravishda rivojlantiradi hya'ni tegishli tranzistor.

Chiqish kuchaytirgichi

Chiqish tranzistorlari Q14 va Q20 har biri emitent izdoshi sifatida tuzilgan, shuning uchun u erda kuchlanish kuchaymaydi; o'rniga, ushbu bosqich, ga teng bo'lgan joriy daromadni ta'minlaydi hfe 14-sonli Q (javob Q20).

Chiqish empedansi nolga teng emas, chunki u ideal op ampda bo'lishi mumkin, ammo salbiy teskari aloqa bilan u past chastotalarda nolga yaqinlashadi.

Umumiy ochiq kuchlanishli kuchlanish

Op ampning aniq ochiq past kuchlanishli kuchlanish kuchayishi oqim kuchi mahsulotini o'z ichiga oladi hfe 4 ta tranzistorlardan. Amalda, odatdagi 741 uslubidagi op amp uchun kuchlanish kuchayishi 200,000 buyurtma va oqim kuchi, kirish empedansining nisbati (~ 2-6 MΩ) ning chiqish empedansiga nisbati (~ 50) Ω) ko'proq (kuch) yutuqni ta'minlaydi.

Boshqa chiziqli xususiyatlar

Kichik signalning umumiy rejimi

Ideal op amp cheksizdir umumiy rejimda rad etish nisbati yoki nol umumiy rejimdagi daromad.

Mavjud elektronda, agar kirish voltajlari bir xil yo'nalishda o'zgarsa, salbiy teskari aloqa Q3 / Q4 bazaviy kuchlanishni (2 bilanVBO'LING quyida) kirish voltajining o'zgarishi. Endi Q10-Q11 oqim oynasining chiqish qismi (Q10) har xil voltajga qaramay Q9 / Q8 sobit orqali umumiy oqimni ushlab turadi. Q3 / Q4 kollektor oqimlari va shunga mos ravishda Q15 bazasidagi chiqish oqimi o'zgarishsiz qoladi.

Odatda 741 op amperda umumiy rejimni rad etish koeffitsienti 90 dB ni tashkil etadi, bu esa ochiq pastadirli umumiy rejimdagi kuchlanishning 6 ga tengligini anglatadi.

Chastotani qoplash

Fairchild mA741 ning innovatsiyasi - bu joriy etish edi chastota kompensatsiyasi chipdagi (monolitik) kondansatör orqali, ushbu funktsiya uchun tashqi komponentlarga ehtiyojni yo'q qilish orqali op ampni qo'llashni soddalashtirish. 30 pF kondansatör orqali kuchaytirgichni barqarorlashtiradi Millerga tovon puli va op-ampga o'xshash tarzda ishlaydi integrator elektron. Shuningdek, "dominant" nomi bilan ham tanilgan qutb kompensatsiya ', chunki u boshqa qutblarning ta'sirini ochiq halqa chastotasi ta'siriga yashiradigan (ustunlik qiladigan) qutbni kiritadi; 741 op amperda bu qutb 10 Hz gacha bo'lishi mumkin (bu erda u ochiq-oydin kuchlanish kuchini -3 dB yo'qotishiga olib keladi).

Ushbu ichki kompensatsiya shartsiz erishish uchun taqdim etiladi barqarorlik teskari aloqa tarmog'i reaktiv bo'lmagan salbiy teskari konfiguratsiyalardagi kuchaytirgichning va yopiq pastadir foyda birlik yoki undan yuqori. Aksincha, tashqi kompensatsiyani talab qiluvchi kuchaytirgichlar, masalan, mA748, tashqi kompensatsiyani talab qilishi mumkin yoki yopiq pastadir yutuqlari birlikdan ancha yuqori.

Kirish ofset kuchlanishi

"Ofset null" pinlari tashqi rezistorlarni joylashtirish uchun ishlatilishi mumkin (odatda potansiyometrning ikki uchi shaklida, slayder ulangan holda VS) Q5 va Q6 emitent rezistorlari bilan parallel ravishda, Q5 / Q6 oqim oynasining muvozanatini sozlash uchun. Potansiyometr shunday sozlanganki, kirishlar bir-biriga qisqarganda nol (o'rta oraliq) bo'ladi.

Non-linear characteristics

Input breakdown voltage

The transistors Q3, Q4 help to increase the reverse VBO'LING rating: the base-emitter junctions of the NPN transistors Q1 and Q2 break down at around 7 V, but the PNP transistors Q3 and Q4 have VBO'LING breakdown voltages around 50 V.[13]

Output-stage voltage swing and current limiting

Variations in the quiescent current with temperature, or between parts with the same type number, are common, so crossover distortion va quiescent current may be subject to significant variation.

The output range of the amplifier is about one volt less than the supply voltage, owing in part to VBO'LING of the output transistors Q14 and Q20.

The 25 Ω resistor at the Q14 emitter, along with Q17, acts to limit Q14 current to about 25 mA; otherwise, Q17 conducts no current.

Current limiting for Q20 is performed in the voltage gain stage: Q22 senses the voltage across Q19's emitter resistor (50 Ω); as it turns on, it diminishes the drive current to Q15 base.

Later versions of this amplifier schematic may show a somewhat different method of output current limiting.

Applicability considerations

While the 741 was historically used in audio and other sensitive equipment, such use is now rare because of the improved shovqin performance of more modern op amps. Apart from generating noticeable hiss, 741s and other older op amps may have poor common-mode rejection ratios and so will often introduce cable-borne mains hum and other common-mode interference, such as switch 'clicks', into sensitive equipment.

The "741" has come to often mean a generic op-amp IC (such as μA741, LM301, 558, LM324, TBA221 — or a more modern replacement such as the TL071). The description of the 741 output stage is qualitatively similar for many other designs (that may have quite different input stages), except:

  • Some devices (μA748, LM301, LM308) are not internally compensated (require an external capacitor from output to some point within the operational amplifier, if used in low closed-loop gain applications).
  • Some modern devices have "rail-to-rail output" capability, meaning that the output can range from within a few millivolts of the positive supply voltage to within a few millivolts of the negative supply voltage.

Tasnifi

Op amps may be classified by their construction:

IC op amps may be classified in many ways, including:

  • Military, Industrial, or Commercial grade (for example: the LM301 is the commercial grade version of the LM101, the LM201 is the industrial version). This may define ish harorati ranges and other environmental or quality factors.
  • Classification by package type may also affect environmental hardiness, as well as manufacturing options; DIP, and other through-hole packages are tending to be replaced by surface-mount devices.
  • Classification by internal compensation: op amps may suffer from high frequency beqarorlik ba'zilarida salbiy teskari aloqa circuits unless a small compensation capacitor modifies the phase and frequency responses. Op amps with a built-in capacitor are termed "kompensatsiya qilingan", and allow circuits above some specified yopiq tsikl gain to operate stably with no external capacitor. In particular, op amps that are stable even with a closed loop gain of 1 are called "unity gain compensated".
  • Single, dual and quad versions of many commercial op-amp IC are available, meaning 1, 2 or 4 operational amplifiers are included in the same package.
  • Rail-to-rail input (and/or output) op amps can work with input (and/or output) signals very close to the power supply rails.
  • CMOS op amps (such as the CA3140E) provide extremely high input resistances, higher than JFET -input op amps, which are normally higher than ikki qutbli -input op amps.
  • other varieties of op amp include programmable op amps (simply meaning the quiescent current, bandwidth and so on can be adjusted by an external resistor).
  • manufacturers often tabulate their op amps according to purpose, such as low-noise pre-amplifiers, wide bandwidth amplifiers, and so on.

Ilovalar

DIP pinout for 741-type operational amplifier

Use in electronics system design

The use of op amps as circuit blocks is much easier and clearer than specifying all their individual circuit elements (transistors, resistors, etc.), whether the amplifiers used are integrated or discrete circuits. In the first approximation op amps can be used as if they were ideal differential gain blocks; at a later stage limits can be placed on the acceptable range of parameters for each op amp.

Circuit design follows the same lines for all electronic circuits. A specification is drawn up governing what the circuit is required to do, with allowable limits. For example, the gain may be required to be 100 times, with a tolerance of 5% but drift of less than 1% in a specified temperature range; the input impedance not less than one megohm; va boshqalar.

Asosiy elektron is designed, often with the help of circuit modeling (on a computer). Specific commercially available op amps and other components are then chosen that meet the design criteria within the specified tolerances at acceptable cost. If not all criteria can be met, the specification may need to be modified.

A prototype is then built and tested; changes to meet or improve the specification, alter functionality, or reduce the cost, may be made.

Applications without using any feedback

That is, the op amp is being used as a kuchlanish taqqoslagichi. Note that a device designed primarily as a comparator may be better if, for instance, speed is important or a wide range of input voltages may be found, since such devices can quickly recover from full on or full off ("saturated") states.

A voltage level detector can be obtained if a reference voltage Vref is applied to one of the op amp's inputs. This means that the op amp is set up as a comparator to detect a positive voltage. If the voltage to be sensed, Emen, is applied to op amp's (+) input, the result is a noninverting positive-level detector: when Emen yuqorida Vref, VO equals +Vo'tirdi; qachon Emen quyida Vref, VO equals −Vo'tirdi. Agar Emen is applied to the inverting input, the circuit is an inverting positive-level detector: When Emen yuqorida Vref, VO equals −Vo'tirdi.

A zero voltage level detector (Emen = 0) can convert, for example, the output of a sine-wave from a function generator into a variable-frequency square wave. Agar Emen is a sine wave, triangular wave, or wave of any other shape that is symmetrical around zero, the zero-crossing detector's output will be square. Zero-crossing detection may also be useful in triggering TRIAClar at the best time to reduce mains interference and current spikes.

Positive-feedback applications

Shmitt tetiği teskari bo'lmagan taqqoslash vositasi tomonidan amalga oshiriladi

Another typical configuration of op-amps is with positive feedback, which takes a fraction of the output signal back to the non-inverting input. An important application of it is the comparator with hysteresis, the Shmitt qo'zg'atuvchisi. Some circuits may use ijobiy teskari aloqa va salbiy feedback around the same amplifier, for example triangle-wave osilatorlar va faol filtrlar.

Because of the wide slew range and lack of positive feedback, the response of all the open-loop level detectors described yuqorida will be relatively slow. External overall positive feedback may be applied, but (unlike internal positive feedback that may be applied within the latter stages of a purpose-designed comparator) this markedly affects the accuracy of the zero-crossing detection point. Using a general-purpose op amp, for example, the frequency of Emen for the sine to square wave converter should probably be below 100 Hz.[iqtibos kerak ]

Negative-feedback applications

Non-inverting amplifier

An op amp connected in the non-inverting amplifier configuration

In a non-inverting amplifier, the output voltage changes in the same direction as the input voltage.

The gain equation for the op amp is

However, in this circuit V ning funktsiyasi Vchiqib because of the negative feedback through the R1 R2 tarmoq. R1 va R2 shakl voltage divider va kabi V is a high-impedance input, it does not load it appreciably. Binobarin

qayerda

Substituting this into the gain equation, we obtain

Uchun hal qilish :

Agar is very large, this simplifies to

The non-inverting input of the operational amplifier needs a path for DC to ground; if the signal source does not supply a DC path, or if that source requires a given load impedance, then the circuit will require another resistor from the non-inverting input to ground. When the operational amplifier's input bias currents are significant, then the DC source resistances driving the inputs should be balanced.[14] The ideal value for the feedback resistors (to give minimal offset voltage) will be such that the two resistances in parallel roughly equal the resistance to ground at the non-inverting input pin. That ideal value assumes the bias currents are well matched, which may not be true for all op amps.[15]

Inverting kuchaytirgich

An op amp connected in the inverting amplifier configuration

In an inverting amplifier, the output voltage changes in an opposite direction to the input voltage.

As with the non-inverting amplifier, we start with the gain equation of the op amp:

Bu gal, V is a function of both Vchiqib va Vyilda due to the voltage divider formed by Rf va Ryilda. Again, the op-amp input does not apply an appreciable load, so

Substituting this into the gain equation and solving for :

Agar is very large, this simplifies to

A resistor is often inserted between the non-inverting input and ground (so both inputs "see" similar resistances), reducing the input offset voltage due to different voltage drops due to oqim oqimi, and may reduce distortion in some op amps.

A DC-blocking kondansatör may be inserted in series with the input resistor when a chastotali javob down to DC is not needed and any DC voltage on the input is unwanted. That is, the capacitive component of the input impedance inserts a DC nol and a low-frequency qutb that gives the circuit a bandpass yoki yuqori o'tish xarakterli.

The potentials at the operational amplifier inputs remain virtually constant (near ground) in the inverting configuration. The constant operating potential typically results in distortion levels that are lower than those attainable with the non-inverting topology.

Boshqa dasturlar

Most single, dual and quad op amps available have a standardized pin-out which permits one type to be substituted for another without wiring changes. A specific op amp may be chosen for its open loop gain, bandwidth, noise performance, input impedance, power consumption, or a compromise between any of these factors.

Tarixiy xronologiya

1941: A vacuum tube op amp. An op amp, defined as a general-purpose, DC-coupled, high gain, inverting feedback kuchaytirgich, is first found in U.S. Patent 2,401,779 "Summing Amplifier" filed by Karl D. Swartzel Jr. of Bell Labs in 1941. This design used three vakuumli quvurlar to achieve a gain of 90 dB and operated on voltage rails of ±350 V. It had a single inverting input rather than differential inverting and non-inverting inputs, as are common in today's op amps. Butun davomida Ikkinchi jahon urushi, Swartzel's design proved its value by being liberally used in the M9 artillery director designed at Bell Labs. This artillery director worked with the SCR584 radar system to achieve extraordinary hit rates (near 90%) that would not have been possible otherwise.[16]

GAP/R's K2-W: a vacuum-tube op amp (1953)

1947: An op amp with an explicit non-inverting input. In 1947, the operational amplifier was first formally defined and named in a paper[17] tomonidan Jon R. Ragazzini Kolumbiya universiteti. In this same paper a footnote mentioned an op-amp design by a student that would turn out to be quite significant. This op amp, designed by Loeuli Juli, was superior in a variety of ways. It had two major innovations. Its input stage used a long-tailed triod pair with loads matched to reduce drift in the output and, far more importantly, it was the first op-amp design to have two inputs (one inverting, the other non-inverting). The differential input made a whole range of new functionality possible, but it would not be used for a long time due to the rise of the chopper-stabilized amplifier.[16]

1949: A chopper-stabilized op amp. In 1949, Edwin A. Goldberg designed a maydalagich -stabilized op amp.[18] This set-up uses a normal op amp with an additional AC amplifier that goes alongside the op amp. The chopper gets an AC signal from DC by switching between the DC voltage and ground at a fast rate (60 Hz or 400 Hz). This signal is then amplified, rectified, filtered and fed into the op amp's non-inverting input. This vastly improved the gain of the op amp while significantly reducing the output drift and DC offset. Unfortunately, any design that used a chopper couldn't use their non-inverting input for any other purpose. Nevertheless, the much improved characteristics of the chopper-stabilized op amp made it the dominant way to use op amps. Techniques that used the non-inverting input regularly would not be very popular until the 1960s when op-amp IClar started to show up in the field.

1953: A commercially available op amp. In 1953, vacuum tube op amps became commercially available with the release of the model K2-W from George A. Philbrick Researches, Incorporated. The designation on the devices shown, GAP/R, is an acronym for the complete company name. Two nine-pin 12AX7 vacuum tubes were mounted in an octal package and had a model K2-P chopper add-on available that would effectively "use up" the non-inverting input. This op amp was based on a descendant of Loebe Julie's 1947 design and, along with its successors, would start the widespread use of op amps in industry.

GAP/R's model P45: a solid-state, discrete op amp (1961).

1961: A discrete IC op amp. Tug'ilishi bilan tranzistor in 1947, and the silicon transistor in 1954, the concept of ICs became a reality. Ning kiritilishi tekislik jarayoni in 1959 made transistors and ICs stable enough to be commercially useful. By 1961, solid-state, discrete op amps were being produced. These op amps were effectively small circuit boards with packages such as chekka ulagichlar. They usually had hand-selected resistors in order to improve things such as voltage offset and drift. The P45 (1961) had a gain of 94 dB and ran on ±15 V rails. It was intended to deal with signals in the range of ±10 V.

1961: A varactor bridge op amp. There have been many different directions taken in op-amp design. Varaktor bridge op amps started to be produced in the early 1960s.[19][20] They were designed to have extremely small input current and are still amongst the best op amps available in terms of common-mode rejection with the ability to correctly deal with hundreds of volts at their inputs.

GAP/R's model PP65: a solid-state op amp in a potted module (1962)

1962: An op amp in a potted module. By 1962, several companies were producing modular potted packages that could be plugged into bosilgan elektron platalar.[iqtibos kerak ] These packages were crucially important as they made the operational amplifier into a single qora quti which could be easily treated as a component in a larger circuit.

1963: A monolithic IC op amp. In 1963, the first monolithic IC op amp, the μA702 designed by Bob Vidlar at Fairchild Semiconductor, was released. Monolitik IClar consist of a single chip as opposed to a chip and discrete parts (a discrete IC) or multiple chips bonded and connected on a circuit board (a hybrid IC). Almost all modern op amps are monolithic ICs; however, this first IC did not meet with much success. Issues such as an uneven supply voltage, low gain and a small dynamic range held off the dominance of monolithic op amps until 1965 when the μA709[21] (also designed by Bob Widlar) was released.

1968: Release of the μA741. The popularity of monolithic op amps was further improved upon the release of the LM101 in 1967, which solved a variety of issues, and the subsequent release of the μA741 in 1968. The μA741 was extremely similar to the LM101 except that Fairchild's facilities allowed them to include a 30 pF compensation capacitor inside the chip instead of requiring external compensation. This simple difference has made the 741 The canonical op amp and many modern amps base their pinout on the 741s. The μA741 is still in production, and has become ubiquitous in electronics—many manufacturers produce a version of this classic chip, recognizable by part numbers containing 741. The same part is manufactured by several companies.

1970: First high-speed, low-input current FET design.In the 1970s high speed, low-input current designs started to be made by using FETs. These would be largely replaced by op amps made with MOSFETlar 1980-yillarda.

ADI's HOS-050: a high speed hybrid IC op amp (1979)

1972: Single sided supply op amps being produced. A single sided supply op amp is one where the input and output voltages can be as low as the negative power supply voltage instead of needing to be at least two volts above it. The result is that it can operate in many applications with the negative supply pin on the op amp being connected to the signal ground, thus eliminating the need for a separate negative power supply.

The LM324 (released in 1972) was one such op amp that came in a quad package (four separate op amps in one package) and became an industry standard. In addition to packaging multiple op amps in a single package, the 1970s also saw the birth of op amps in hybrid packages. These op amps were generally improved versions of existing monolithic op amps. As the properties of monolithic op amps improved, the more complex hybrid ICs were quickly relegated to systems that are required to have extremely long service lives or other specialty systems.

An op amp in a mini DIP package

Recent trends. Recently supply voltages in analog circuits have decreased (as they have in digital logic) and low-voltage op amps have been introduced reflecting this. Supplies of 5 V and increasingly 3.3 V (sometimes as low as 1.8 V) are common. To maximize the signal range modern op amps commonly have rail-to-rail output (the output signal can range from the lowest supply voltage to the highest) and sometimes rail-to-rail inputs.

Shuningdek qarang

Izohlar

  1. ^ This definition hews to the convention of measuring op-amp parameters with respect to the zero voltage point in the circuit, which is usually half the total voltage between the amplifier's positive and negative power rails.
  2. ^ Many older designs of operational amplifiers have offset null inputs to allow the offset to be manually adjusted away. Modern precision op amps can have internal circuits that automatically cancel this offset using maydalagichlar or other circuits that measure the offset voltage periodically and subtract it from the input voltage.
  3. ^ That the output cannot reach the power supply voltages is usually the result of limitations of the amplifier's output stage transistors. Qarang Output stage.
  4. ^ Widlar used this same trick in μA702 and μA709

Adabiyotlar

  1. ^ "Understanding Single-Ended, Pseudo-Differential and Fully-Differential ADC Inputs". Maxim Application Note 1108. Archived from asl nusxasi 2007-06-26. Olingan 10-noyabr, 2007.
  2. ^ "Apex OP PA98". Arxivlandi asl nusxasidan 2016 yil 1 yanvarda. Olingan 8-noyabr 2015. APEX PA98 Op Amp Modules, Selling Price: $207.51
  3. ^ Millman, Jeykob (1979). Microelectronics: Digital and Analog Circuits and Systems. McGraw-Hill. pp.523–527. ISBN  0-07-042327-X.
  4. ^ "Understanding Basic Analog – Ideal Op Amps" (PDF). Arxivlandi (PDF) from the original on 2016-12-27.
  5. ^ "Lecture 5: The ideal operational amplifier" (PDF). Arxivlandi (PDF) from the original on 2016-11-23.
  6. ^ a b Horovits, Pol; Tepalik, Uinfild (1989). Elektron san'at. Kembrij, Buyuk Britaniya: Kembrij universiteti matbuoti. ISBN  0-521-37095-7.
  7. ^ Stout, D. F. (1976). Handbook of Operational Amplifier Circuit Design. McGraw-Hill. 1-11 betlar. ISBN  0-07-061797-X.
  8. ^ "Op Amp Output Phase-Reversal and Input Over-Voltage Protection" (PDF). Analog Devices. 2009 yil. Olingan 2012-12-27.
  9. ^ King, Greyson; Watkins, Tim (13 May 1999). "Op ampni yuklash orqali katta voltaj o'zgaradi" (PDF). Elektron dizayn yangiliklari. Olingan 2012-12-27.[doimiy o'lik havola ]
  10. ^ Lee, Thomas H. (November 18, 2002). "IC Op-Amps Through the Ages" (PDF). Stenford universiteti. Arxivlandi (PDF) from the original on October 24, 2012Handout #18: EE214 Fall 2002.
  11. ^ Lu, Liang-Hung. "Electronics 2, Chapter 10" (PDF). National Taiwan University, Graduate Institute of Electronics Engineering. Arxivlandi asl nusxasi (PDF) on 2014-06-30. Olingan 2014-02-22.
  12. ^ "Understanding silicon circuits: inside the ubiquitous 741 op amp". www.righto.com. Arxivlandi asl nusxasidan 2017 yil 9 oktyabrda. Olingan 28 aprel 2018.
  13. ^ The μA741 Operational Amplifier[doimiy o'lik havola ]
  14. ^ An input bias current of 1 μA through a DC source resistance of 10 kΩ produces a 10 mV offset voltage. If the other input bias current is the same and sees the same source resistance, then the two input offset voltages will cancel out. Balancing the DC source resistances may not be necessary if the input bias current and source resistance product is small.
  15. ^ Analog Devices (2009). "Op Amp Input Bias Current" (PDF). Analog Devices. Tutorial MT-038.
  16. ^ a b Jung, Walter G. (2004). "Chapter 8: Op Amp History". Op Amp dasturlari uchun qo'llanma. Nyu-York. p. 777. ISBN  978-0-7506-7844-5. Olingan 2008-11-15.
  17. ^ Ragazzini, John R.; Randall, Robert H.; Russell, Frederick A. (May 1947). "Analysis of Problems in Dynamics by Electronic Circuits". IRE ishi. IEEE. 35 (5): 444–452. doi:10.1109/JRPROC.1947.232616. ISSN  0096-8390.
  18. ^ "Arxivlangan nusxa" (PDF). Arxivlandi asl nusxasi (PDF) 2012-10-07 kunlari. Olingan 2012-12-27.CS1 maint: nom sifatida arxivlangan nusxa (havola)
  19. ^ "The Philbrick Archive". www.philbrickarchive.org. Arxivlandi from the original on 7 September 2012. Olingan 28 aprel 2018.
  20. ^ June 1961 advertisement for Philbrick P2, "The all-new, all solid-state Philbrick P2 amplifier" (PDF). Arxivlandi (PDF) asl nusxadan 2011-10-08. Olingan 2011-05-11.
  21. ^ Malvino, A. P. (1979). Electronic Principles (2-nashr). p.476. ISBN  0-07-039867-4.

Qo'shimcha o'qish

Kitoblar
  • Hamma uchun Am Ams; 5-chi Ed; Bruce Carter, Ron Mancini; Newnes; 484 pages; 2017 yil; ISBN  978-0128116487. (2 MB PDF - 1st edition)
  • Operational Amplifiers - Theory and Design; 3-chi Ed; Johan Huijsing; Springer; 423 bet; 2017 yil; ISBN  978-3319281261.
  • Operational Amplifiers and Linear Integrated Circuits - Theory and Application; 3-chi Ed; James Fiore; Creative Commons; 589 pages; 2016 yil.(13 MB PDF Text)(2 MB PDF Lab)
  • Analysis and Design of Linear Circuits; 8th Ed; Roland Thomas, Albert Rosa, Gregory Toussaint; Vili; 912 pages; 2016 yil; ISBN  978-1119235385.
  • Design with Operational Amplifiers and Analog Integrated Circuits; 4-chi Ed; Sergio Franco; McGraw Hill; 672 pages; 2015 yil; ISBN  978-0078028168.
  • Small Signal Audio Design; 2-chi Ed; Duglas Self; Focal Press; 780 pages; 2014 yil; ISBN  978-0415709736.
  • Lineer davrni loyihalash bo'yicha qo'llanma; Birinchi Ed; Hank Zumbahlen; Newnes; 960 pages; 2008 yil; ISBN  978-0750687034. (35 MB PDF)
  • Op Amp dasturlari uchun qo'llanma; Birinchi Ed; Walt Jung; Analog Devices & Newnes; 896 pages; 2005 yil; ISBN  978-0750678445. (17 MB PDF)
  • Operational Amplifiers and Linear Integrated Circuits; 6th Ed; Robert Coughlin, Frederick Driscoll; Prentice Hall; 529 pages; 2001 yil; ISBN  978-0130149916.
  • Active-Filter Cookbook; 2-chi Ed; Don Lancaster; Sams; 240 pages; 1996 yil; ISBN  978-0750629867. (28 MB PDF - 1st edition)
  • IC Op-Amp Cookbook; 3-chi Ed; Walt Jung; Prentice Hall; 433 pages; 1986 yil; ISBN  978-0138896010. (18 MB PDF - 1st edition)
  • Engineer's Mini-Notebook – OpAmp IC Circuits; Birinchi Ed; Forrest Mims III; Radio Shack; 49 pages; 1985 yil; ASIN B000DZG196. (4 MB PDF)
  • Intuitive IC Op Amps - from Basics to Useful Applications; Birinchi Ed; Thomas Frederiksen; Milliy yarim o'tkazgich; 299 pages; 1984 yil; ISBN  978-9997796677.
  • Designing with Operational Amplifiers - Applications Alternatives; Birinchi Ed; Jerald Graeme; Burr-Braun & McGraw Hill; 269 ​​bet; 1976 yil; ISBN  978-0070238916.
  • Applications of Operational Amplifiers - Third Generation Techniques; Birinchi Ed; Jerald Graeme; Burr-Braun & McGraw Hill; 233 pages; 1973 yil; ISBN  978-0070238909. (37 MB PDF)
  • Operational Amplifiers - Design and Applications; Birinchi Ed; Jerald Graeme, Gene Tobey, Lawrence Huelsman; Burr-Braun & McGraw Hill; 473 pages; 1971 yil; ISBN  978-0070649170.
Books with opamp chapters
  • Learning the Art of Electronics - A Hands-On Lab Course; Birinchi Ed; Thomas Hayes, Paul Horowitz; Kembrij; 1150 pages; 2016 yil; ISBN  978-0521177238. (Part 3 is 268 pages)
  • Elektron san'at; 3-chi Ed; Paul Horowitz, Winfield Hill; Kembrij; 1220 pages; 2015 yil; ISBN  978-0521809269. (Chapter 4 is 69 pages)
  • Lessons in Electric Circuits - Volume III - Semiconductors; 5-chi Ed; Tony Kuphaldt; Open Book Project; 528 page; 2009. (Chapter 8 is 59 pages) (4 MB PDF)
  • Analog davrlarning muammolarini bartaraf etish; Birinchi Ed; Bob Piz; Newnes; 217 pages; 1991 yil; ISBN  978-0750694995. (Chapter 8 is 19 pages)
  • Analog Applications Manual; Birinchi Ed; Signetika; 418 pages; 1979. (Chapter 3 is 32 pages) (32 MB PDF)

Tashqi havolalar

Ma'lumotlar sahifalari / ma'lumotlar kitoblari