Nisbiylik nazariyasini tanqid qilish - Criticism of the theory of relativity

Nisbiylik nazariyasini tanqid qilish ning Albert Eynshteyn asosan yigirmanchi asrning boshlarida nashr etilgandan keyingi dastlabki yillarda ifodalangan ilmiy, qalbaki ilmiy, falsafiy, yoki mafkuraviy asoslar.[A 1][A 2][A 3] Ushbu tanqidlarning ba'zilari taniqli olimlarning qo'llab-quvvatlashiga qaramay, Eynshteynning nisbiylik nazariyasi endi ilmiy jamoatchilik tomonidan qabul qilingan.[1]

Nisbiylik nazariyasini tanqid qilishning sabablari qatoriga muqobil nazariyalar, mavhum-matematik metodni rad etish va nazariyaning xatolari kiritilgan. Ba'zi mualliflarning fikriga ko'ra, antisemitik Eynshteynning yahudiy merosiga e'tirozlar ham vaqti-vaqti bilan ushbu e'tirozlarda rol o'ynagan.[A 1][A 2][A 3] Hozirgi kunda ham nisbiylikni tanqid qiladiganlar bor, ammo ularning fikrlari ilmiy jamoatchilikning ko'pchiligiga yoqmaydi.[A 4][A 5]

Maxsus nisbiylik

Elektromagnit dunyoqarashga nisbatan nisbiylik printsipi

Taxminan 19-asrning oxirida tabiatdagi barcha kuchlar elektromagnit kelib chiqishi ("elektromagnit dunyoqarash "), ayniqsa. asarlarida Jozef Larmor (1897) va Wilhelm Wien (1900). Buni aftidan tajribalari tasdiqladi Valter Kaufmann (1901-1903), u massani tezligi bilan ko'payishini o'lchagan, bu massa uning elektromagnit maydonidan hosil bo'lgan degan farazga mos keladi. Maks Ibrohim (1902) keyinchalik Kaufmanning elektroni qattiq va sferik deb hisoblangan natijasining nazariy izohini tuzdi. Biroq, ushbu model ko'plab eksperimentlar natijalariga (shu jumladan Mishelson - Morli tajribasi, Rayleigh va Brace tajribalari, va Trouton - Noble tajribasi ), unga ko'ra kuzatuvchining hech qanday harakati yo'q nurli efir ("aether drift") ko'p urinishlarga qaramay kuzatilgan. Anri Puankare (1902) bu muvaffaqiyatsizlik tabiatning umumiy qonunidan kelib chiqqan deb taxmin qildi va uni " nisbiylik printsipi ". Xendrik Antuan Lorents (1904) elektrodinamikaning batafsil nazariyasini yaratdi (Lorents efir nazariyasi ) bu harakatsiz efir mavjudligiga asoslanib, Puanare Lorents o'zgarishi deb atagan makon va vaqt koordinatalari o'zgarishini, shu jumladan uzunlik qisqarishi va mahalliy vaqt. Biroq, Lorents nazariyasi nisbiylik printsipini qisman qondirdi, chunki uning tezlik va zaryad zichligi uchun transformatsiya formulalari noto'g'ri edi. Buni Puankare (1905) tuzatib, elektrodinamik tenglamalarning to'liq Lorents kovaryansiyasini oldi.[A 6][B 1]

Lorentsning 1904 yilgi nazariyasini tanqid qilib, Ibrohim (1904) elektronlarning Lorentsning qisqarishi uchun elektronning barqarorligini ta'minlash uchun elektromagnit bo'lmagan kuch kerak degan fikrda. Bu unga elektromagnit dunyoqarash tarafdori sifatida qabul qilinishi mumkin emas edi. Uning so'zlariga ko'ra, ushbu kuchlar va potentsiallar elektronga qanday ta'sir qilishini izchil tushuntirish etishmayotgan ekan, Lorentsning gipotezalar tizimi to'liq emas va nisbiylik printsipiga javob bermaydi.[A 7][C 1] Puankare (1905) elektromagnit bo'lmagan potentsialni ("Puankare stressi ") elektronni ushlab turish Lorents kovariant usulida shakllantirilishi mumkin va tortishish uchun Lorentsning kovariant modelini yaratish mumkinligini ko'rsatdi, chunki u tabiatda ham elektromagnit bo'lmagan deb hisoblaydi.[B 2] Shunday qilib Lorents nazariyasining izchilligi isbotlandi, ammo elektromagnit dunyoqarashdan voz kechish kerak edi.[A 8][A 9] Oxir-oqibat, Albert Eynshteyn 1905 yil sentyabrda nashr etilgan, hozirda nima deyiladi maxsus nisbiylik, bu nisbiylik printsipini yorug'lik tezligining barqarorligi bilan bog'liq holda tubdan yangi qo'llashga asoslangan edi. Maxsus nisbiylikda kosmik va vaqt koordinatalari inersiya kuzatuvchisining hisobot doirasiga bog'liq bo'lib, nurli efir fizikada hech qanday rol o'ynamaydi. Garchi bu nazariya juda boshqacha kinematik modelga asoslangan bo'lsa-da, uni eksperimental ravishda Lorents va Puankarening efir nazariyasidan ajratib bo'lmaydigan edi, chunki ikkala nazariya ham Puankare va Eynshteynning nisbiylik printsipini qondiradi va ikkalasi ham Lorents o'zgarishini qo'llaydi. Minkovski 1908 yilda Eynshteynning nisbiylik versiyasi uchun geometrik kosmik vaqt modelini kiritgandan so'ng, aksariyat fiziklar oxir-oqibat kosmos va vaqtning radikal yangi qarashlari bilan nisbiylikning Eynshteyn-Minkovskiy versiyasi foydasiga qaror qildilar, bu erda efir uchun foydali rol yo'q edi. .[B 3][A 8]

Da'vo qilingan eksperimental rad etishlar

Kaufmann-Bucherer-Neumann tajribalari: Ibrohim va Lorents nazariyalari o'rtasida aniq qaror qabul qilish uchun Kaufman 1905 yilda tajribalarini yaxshilangan aniqlik bilan takrorladi. Biroq, bu orada nazariy vaziyat o'zgardi. Alfred Bucherer va Pol Langevin (1904) yana bir modelni ishlab chiqdi, unda elektron harakat chizig'ida qisqargan va ko'ndalang yo'nalishda kengaytirilgan bo'lib, hajm doimiy bo'lib qolmoqda. Kaufmann o'zining tajribalarini baholayotganda, Eynshteyn o'zining maxsus nisbiylik nazariyasini nashr etdi. Oxir oqibat, Kaufmann 1905 yil dekabrda o'z natijalarini e'lon qildi va ular Ibrohim nazariyasiga mos keladi va "Lorents va Eynshteynning asosiy taxminidan" (nisbiylik printsipi) rad etishni talab qiladi. Lorents "Men lotin tilining oxiridaman" iborasi bilan reaksiya ko'rsatdi, Eynshteyn esa 1908 yilgacha bu eksperimentlarni eslamadi. Shunga qaramay, boshqalar tajribalarni tanqid qila boshladilar. Maks Plank (1906) ma'lumotlarning nazariy talqinidagi nomuvofiqliklar haqida gapirdi va Adolf Bestelmeyer (1906) yangi texnikalarni joriy etdi, ular (ayniqsa past tezlik sohalarida) turli xil natijalar berdi va Kaufman uslublariga shubha uyg'otdi. Shuning uchun Bucherer (1908) yangi tajribalar o'tkazdi va ular nisbiylikning ommaviy formulasini va shu tariqa "Lorents va Eynshteynning nisbiylik printsipi" ni tasdiqlaydi degan xulosaga keldi. Shunga qaramay Buchererning tajribalari Bestelmeyer tomonidan tanqid qilinib, ikki eksperimentalist o'rtasida keskin nizolarga olib keldi. Boshqa tomondan, Xupka (1910), Neyman (1914) va boshqalarning qo'shimcha tajribalari Bucherer natijasini tasdiqlagandek edi. Shubhalar 1940 yilgacha davom etdi, shu kabi tajribalarda Ibrohimning nazariyasi qat'iyan rad etildi. (Shuni ta'kidlash kerakki, ushbu tajribalardan tashqari, relyativistik massa formulasi 1917 yilga qadar spektr nazariyasi bo'yicha tadqiqotlar davomida tasdiqlangan edi. Zamonaviy sharoitda zarracha tezlatgichlari, relyativistik massa formulasi muntazam ravishda tasdiqlanadi.)[A 10][A 11][A 12][B 4][B 5][C 2]

1902-1906 yillarda, Deyton Miller Mishelson-Morli tajribasini birgalikda takrorladi Edvard V. Morli. Ular buni tasdiqladilar nol natija dastlabki tajribaning. Biroq, 1921-1926 yillarda Miller yangi tajribalar o'tkazdi, bu aftidan ijobiy natijalar berdi.[C 3] Ushbu tajribalar dastlab ommaviy axborot vositalarida va ilmiy jamoatchilikda biroz e'tiborni tortdi[A 13] ammo quyidagi sabablarga ko'ra rad etilgan deb hisoblanadi:[A 14][A 15] Eynshteyn, Maks Born va Robert S. Shankland Miller harorat ta'sirini to'g'ri ko'rib chiqmaganligini ta'kidladi. Roberts tomonidan olib borilgan zamonaviy tahlil shuni ko'rsatadiki, Millerning eksperimenti apparatning texnik kamchiliklari va xato chiziqlari to'g'ri ko'rib chiqilganda nol natija beradi.[B 6] Bundan tashqari, Millerning natijasi oldin va keyin o'tkazilgan barcha boshqa tajribalar bilan rozi emas. Masalan, Georg Joos (1930) Millernikiga o'xshash o'lchamdagi apparatdan foydalangan, ammo u nol natijalarga erishgan. Michelson-Morley tipidagi so'nggi tajribalarda bu erda izchillik uzunligi foydalanish orqali sezilarli darajada oshiriladi lazerlar va maserlar natijalar hali ham salbiy.

2011 yilda Nurdan tezroq neytrin anomaliyasi, OPERA bilan hamkorlik tezligini ko'rsatadigan natijalar e'lon qilindi neytrinlar yorug'lik tezligidan bir oz tezroq. Biroq, xatolar manbalari 2012 yilda OPERA hamkorligi tomonidan topilgan va tasdiqlangan bo'lib, dastlabki natijalarni to'liq tushuntirib berdi. Ularning so'nggi nashrida yorug'lik tezligiga mos keladigan neytrino tezligi aytilgan. Keyingi tajribalar ham yorug'lik tezligi bilan kelishuvga erishdi, qarang neytrin tezligini o'lchash.[iqtibos kerak ]

Maxsus nisbiylikdagi tezlanish

Shuningdek, maxsus nisbiylik tezlashishni boshqarolmaydi, bu esa ba'zi vaziyatlarda qarama-qarshiliklarga olib keladi. Biroq, bu baholash to'g'ri emas, chunki tezlashtirish aslida maxsus nisbiylik doirasida tavsiflanishi mumkin (qarang Tezlashtirish (maxsus nisbiylik), To'g'ri mos yozuvlar ramkasi (bo'sh vaqt oralig'i), Giperbolik harakat, Rindler koordinatalari, Tug'ilgan koordinatalar ). Ushbu faktlarni etarli darajada tushunmaslikka asoslangan paradokslar nisbiylikning dastlabki yillarida aniqlangan. Masalan, Maks Born (1909) qattiq jismlar tushunchasini maxsus nisbiylik bilan birlashtirishga harakat qildi. Ushbu model etarli emasligini ko'rsatdi Pol Erenfest (1909), u aylanadigan qattiq jism, Bornning ta'rifiga ko'ra, radiusning qisqarishisiz aylananing qisqarishini amalga oshirishi mumkinligini ko'rsatdi (bu imkonsiz (Erenfest paradoksi ). Maks fon Laue (1911) shuni ko'rsatdiki, qattiq jismlar maxsus nisbiylik sharoitida mavjud bo'lolmaydi, chunki signallarning tarqalishi yorug'lik tezligidan oshmasligi kerak, shuning uchun tezlashuvchi va aylanuvchi jism deformatsiyalarga uchraydi.[A 16][B 7][B 8][C 4]

Pol Langevin va fon Laue buni ko'rsatdi egizak paradoks maxsus nisbiylikdagi tezlanishni hisobga olgan holda to'liq echilishi mumkin. Agar ikkita egizak bir-biridan uzoqlashsa va ulardan biri tezlashib, ikkinchisiga qaytib kelsa, u holda tezlashtirilgan egizak ikkinchisidan yoshroq, chunki u kamida ikkita inersial mos yozuvlar tizimida joylashgan va shuning uchun uning bahosi voqealar bir vaqtning o'zida tezlashuv vaqtida o'zgaradi. Boshqa bir egizak uchun u bitta ramkada qolganidan beri hech narsa o'zgarmaydi.[A 17][B 9]

Yana bir misol Sagnac effekti. Aylanadigan platforma atrofida qarama-qarshi yo'nalishda ikkita signal yuborildi. Ular kelganidan keyin interferentsiya chekkalarining siljishi sodir bo'ladi. Sagnacning o'zi u ater mavjudligini isbotlaganiga ishongan. Biroq, maxsus nisbiylik bu ta'sirni osongina tushuntirishi mumkin. Inersial mos yozuvlar tizimidan qaralganda, bu yorug'lik tezligining manba tezligidan mustaqilligining oddiy natijasidir, chunki qabul qilgich boshqa nurga yaqinlashganda bir nurdan qochadi. Aylanadigan ramkadan qaralganda, bir vaqtning o'zida baholash aylanish paytida o'zgaradi va natijada tezlashtirilgan freymlarda yorug'lik tezligi doimiy emas.[A 18][B 10]

Eynshteyn tomonidan ko'rsatilgandek, tezlashtirilgan harakatning mahalliy bo'lmagan ta'rifi mumkin bo'lmagan yagona shakli - bu tortishish kuchi. Eynshteyn tezlashtirilgan ramkalarga nisbatan inersial ramkalarga ustunlik berishidan ham qoniqmadi. Shunday qilib, bir necha yil davomida (1908-1915) Eynshteyn rivojlandi umumiy nisbiylik. Ushbu nazariya o'rnini almashtirishni o'z ichiga oladi Evklid geometriyasi tomonidan evklid bo'lmagan geometriya va natijada yorug'lik yo'lining egriligi Eynshteynni (1912) (kengaytirilgan tezlashtirilgan freymlarda bo'lgani kabi) kengaygan tortishish maydonlarida yorug'lik tezligi doimiy emas degan xulosaga olib keldi. Shuning uchun Ibrohim (1912) Eynshteyn maxsus nisbiylik a berganligini ta'kidladi coup de grâce. Eynshteyn o'z sohasi doirasida (tortishish ta'sirini e'tiborsiz qoldirish mumkin bo'lgan joylarda) maxsus nisbiylik hali ham yuqori aniqlikda amal qiladi, shuning uchun hech kim davlat to'ntarishi haqida gapirish mumkin emas deb javob berdi.[A 19][B 11][B 12][B 13][C 5]

Superluminal tezlik

Maxsus nisbiylikda signallarni uzatish superluminal tezlik mumkin emas, chunki bu Puankarega zid keladiEynshteyn sinxronizatsiyasi, va nedensellik tamoyil. Tomonidan eski tortishuvdan keyin Per-Simon Laplas, Puankare (1904) shuni ta'kidlagan Nyutonning butun olam tortishish qonuni cheksiz buyukga asos solingan tortishish tezligi. Shunday qilib, yorug'lik signallari bilan soat sinxronizatsiyasi printsipial ravishda lahzali tortishish signallari bilan soat sinxronizatsiyasi bilan almashtirilishi mumkin. 1905 yilda Puankarening o'zi bu muammoni relyativistik tortishish nazariyasida tortishish tezligi yorug'lik tezligiga teng ekanligini ko'rsatib hal qildi. Bu ancha murakkab bo'lsa-da, bu Eynshteyn nazariyasida ham mavjud umumiy nisbiylik.[B 14][B 15][C 6]

Yana bir aniq qarama-qarshilik, aslida guruh tezligi yilda anomal dispersiv vositalar yorug'lik tezligidan yuqori. Bu tomonidan tekshirilgan Arnold Sommerfeld (1907, 1914) va Leon Brillouin (1914). Ular bunday holatlarda signal tezligi guruh tezligiga teng emas, balki oldingi tezlik bu hech qachon yorug'lik tezligidan tez bo'lmaydi. Xuddi shunday, shuningdek, aniqlangan superluminal effektlar tomonidan kashf etilgan deb ta'kidlashadi Gyunter Nimts bog'liq bo'lgan tezlikni to'liq ko'rib chiqish bilan izohlash mumkin.[A 20][B 16][B 17][B 18]

Shuningdek kvant chalkashligi (Eynshteyn "masofadagi qo'rqinchli harakat" deb belgilaydi), unga ko'ra bir chalkash zarraning kvant holatini boshqa zarrachani tavsiflamasdan to'liq tavsiflab bo'lmaydi, bu ma'lumotning superluminal uzatilishini anglatmaydi (qarang. kvant teleportatsiyasi ) va shuning uchun u maxsus nisbiylik bilan mos keladi.[B 16]

Paradokslar

Maxsus nisbiylik asoslari, xususan Lorents transformatsiyasini bog'liq holda qo'llash haqida etarli ma'lumot yo'q uzunlik qisqarishi va vaqtni kengaytirish, olib bordi va hanuzgacha har xil ko'rinadigan qurilishga olib keladi paradokslar. Ikkalasi ham egizak paradoks va Erenfest paradoksi va ularning tushuntirishlari yuqorida aytib o'tilgan edi. Ikkita paradoksdan tashqari, vaqt kengayishining o'zaro bog'liqligi (ya'ni har bir harakatsiz kuzatuvchi boshqasining soatini kengaytirilgan deb hisoblaydi) qattiq tanqidga uchradi Gerbert Dingl va boshqalar. Masalan, Dingle bir qator xatlar yozgan Tabiat 1950 yillarning oxirida. Biroq, vaqtni kengaytirishning o'zaro bog'liqligi Lorentsning (1910 yildagi ma'ruzalarida, 1931 yilda nashr etilgan ma'ruzalarida) ilgari Lorents tomonidan illyustrativ tarzda namoyish etilgan edi.[A 21]) va boshqa ko'plab narsalar - ular faqat tegishli o'lchov qoidalarini diqqat bilan ko'rib chiqish kerakligini va bir vaqtning o'zida nisbiylik. Boshqa ma'lum paradokslar: Narvon paradoksi va Bellning kosmik kemasi paradoksi, bu ham bir vaqtning o'zida nisbiyligini hisobga olgan holda hal qilinishi mumkin.[A 22][A 23][C 7]

Eter va mutlaq bo'shliq

Ko'plab fiziklar (masalan Xendrik Lorents, Oliver Lodj, Albert Abraham Mishelson, Edmund Teylor Uittaker, Garri Beytmen, Ebenezer Kanningem, Charlz Emil Pikard, Pol Painlevé ) ning rad etilishi noqulay edi efir va Lorents, Larmor va Puankare kabi efirga asoslangan nazariyalarda bo'lgani kabi, Lorentsning o'zgarishini afzal qilingan ma'lumot bazasi mavjudligiga asoslangan holda talqin qilishni ma'qul ko'rdi. Biroq, har qanday kuzatuvdan yashirilgan efir g'oyasi asosiy ilmiy jamoatchilik tomonidan qo'llab-quvvatlanmadi, shuning uchun Lorents va Puankarening efir nazariyasini keyinchalik Minkovskiy to'rt o'lchovli vaqt oralig'ida shakllantirgan Eynshteynning maxsus nisbiyligi almashtirdi.[A 24][A 25][A 26][C 8][C 9][C 10]

Kabi boshqalar Herbert E. Ives eksperimental ravishda bunday efirning harakatini aniqlash mumkin deb ta'kidladi,[C 11] ammo Lorents o'zgarmasligining ko'plab eksperimental sinovlariga qaramay hech qachon topilmadi (qarang) maxsus nisbiylik testlari ).

Eynshteyn tomonidan umumiy nisbiylik asosida (1920) yoki shunga o'xshash zamonaviy fizikaga qandaydir relyativistik efirni (nisbiylik bilan mos keladigan) kiritishga urinishlar yoki Pol Dirak kvant mexanikasiga nisbatan (1951), ilmiy jamoatchilik tomonidan qo'llab-quvvatlanmadi (qarang) Yorqin nurli efir # Aterning oxiri? ).[A 27][B 19]

Uning ichida Nobel ma'ruzasi, Jorj F. Smut (2006) o'z tajribalarini tasvirlab berdi Kosmik mikroto'lqinli fon nurlanishi anizotropiya "Yangi Aetherning drift tajribalari". Smoot "engish kerak bo'lgan bitta muammo - bu Mayklson va Morli eksperimenti va" Maxsus nisbiylik "darsini o'rgangan yaxshi olimlarning kuchli xuruji", deb ta'kidladi. U "bu maxsus nisbiylikni buzmasligi, ammo koinotning kengayishi ayniqsa sodda ko'rinadigan ramka topganligiga ishontirish uchun ta'lim ishi bor edi", deb davom etdi.[B 20]

Muqobil nazariyalar

To'liq nazariya aether drag tomonidan taklif qilinganidek Jorj Gabriel Stokes (1844), ba'zi tanqidchilar tomonidan ishlatilgan Lyudvig Silberstayn (1920) yoki Filipp Lenard (1920) nisbiylikning qarshi modeli sifatida. Ushbu nazariyada, efir materiya ichida va uning atrofida butunlay sudrab borilgan va turli xil hodisalarni, masalan, efirning siljishi yo'qligini, ushbu model orqali "illyustrativ" tarzda tushuntirish mumkin deb hisoblangan. Biroq, bunday nazariyalar katta qiyinchiliklarga duch keladi. Ayniqsa nurning buzilishi nazariyaga zid edi va uni qutqarish uchun ixtiro qilingan barcha yordamchi gipotezalar o'zlariga zid, o'ta ishonib bo'lmaydigan yoki shunga o'xshash boshqa tajribalarga ziddir. Mishelson-Geyl-Pirson tajribasi. Xulosa qilib aytganda, to'liq efirga tortishning yaxshi matematik va fizik modeli hech qachon ixtiro qilinmagan, shuning uchun bu nazariya nisbiylikka jiddiy alternativa emas edi.[B 21][B 22][C 12][C 13]

Boshqa bir muqobil so'zda edi emissiya nazariyasi nur. Maxsus nisbiylikdagi kabi, efir tushunchasi bekor qilinadi, ammo nisbiylikdan asosiy farq shundaki, yorug'lik manbai tezligi yorug'likka mos ravishda nurga qo'shiladi. Galiley o'zgarishi. To'liq efirni tortib olish gipotezasi sifatida, barcha efirlarni siljitish tajribalarining salbiy natijalarini tushuntirish mumkin. Shunga qaramay, ushbu nazariyaga zid bo'lgan turli xil tajribalar mavjud. Masalan, Sagnac effekti yorug'lik tezligining manba tezligidan mustaqilligi va ning tasviriga asoslangan Ikki yulduzli yulduzlar ushbu modelga muvofiq aralashtirilishi kerak - bu kuzatilmagan. Shuningdek, zarrachalar tezlatgichlarida o'tkazilgan zamonaviy tajribalarda bunday tezlikka bog'liqlik kuzatilmadi.[A 28][B 23][B 24][C 14] Ushbu natijalar De Sitter ikki yulduzli tajribasi (1913), 1977 yilda K. Brexer tomonidan rentgen spektrida qatiy takrorlangan;[2]va Alväger tomonidan er usti tajribasi, va boshq. (1963);,[3] barchasi shuni ko'rsatadiki, yorug'lik tezligi eksperimental aniqlik doirasida manbaning harakatidan mustaqil.

Yorug'lik tezligining barqarorligi printsipi

Ba'zilar yorug'lik tezligining barqarorligi printsipi etarli darajada asoslanmagan. Biroq, allaqachon ko'rsatilgan Robert Daniel Karmayl (1910) va boshqalarda yorug'lik tezligining barqarorligi tabiiy natijasi sifatida talqin qilinishi mumkin ikkitasi eksperimental ravishda namoyish etilgan faktlar:[A 29][B 25]

  1. Yorug'lik tezligi manbaning tezligitomonidan namoyish etilganidek De Sitter ikki yulduzli tajribasi, Sagnac ta'siri va boshqalar (qarang emissiya nazariyasi ).
  2. Yorug'lik tezligi yo'nalishiga bog'liq emas kuzatuvchining tezligitomonidan namoyish etilganidek Mishelson - Morli tajribasi, Kennedi - Torndayk tajribasi va boshqalar (qarang nurli efir ).

E'tibor bering, yorug'lik tezligiga nisbatan o'lchovlar aslida yorug'likning ikki tomonlama tezligining o'lchovidir yorug'likning bir tomonlama tezligi soatlarni sinxronlashtirish uchun qaysi konventsiya tanlanganiga bog'liq.

Umumiy nisbiylik

Umumiy kovaryans

Eynshteyn muhimligini ta'kidladi umumiy kovaryans Umumiy nisbiylikni rivojlantirish uchun va uning 1915 yilgi tortishish nazariyasining umumiy kovaryansiyasi umumlashtirilgan nisbiylik printsipining amalga oshirilishini ta'minladi degan pozitsiyani egalladi. Ushbu qarashga qarshi chiqdi Erix Kretschmann (1917), kosmik va vaqtning har qanday nazariyasini (hattoki Nyuton dinamikasini ham) qo'shimcha parametrlar kiritilsa, kovariant tarzda shakllantirish mumkin, degan fikrni ilgari surgan va shuning uchun nazariyaning umumiy kovaryansiyasi o'z-o'zidan umumlashtirilgan nisbiylikni amalga oshirish uchun etarli bo'lmaydi. tamoyil. Eynshteyn (1918) ushbu dalilga qo'shilgan bo'lsa-da, Nyuton mexanikasi umuman kovariant shaklda amaliy foydalanish uchun juda murakkab bo'lishiga qarshi chiqdi. Hozirda Eynshteynning Kretschmanga bergan javobi xato bo'lganligi tushunilgan bo'lsa-da (keyingi maqolalarda bunday nazariya hali ham foydalidir), ammo umumiy kovaryans foydasiga yana bir dalil keltirilishi mumkin: bu tabiiy ifoda etish usuli ekvivalentlik printsipi, ya'ni, erkin tushayotgan kuzatuvchi va dam olayotgan kuzatuvchini tavsiflashdagi ekvivalentlik va shu sababli Nyuton mexanikasi bilan emas, balki umumiy nisbiylik bilan birgalikda umumiy kovaryansiyadan foydalanish qulayroq. Bunga bog'liq holda, shuningdek, mutlaq harakat masalasi ko'rib chiqildi. Eynshteyn uning tortishish nazariyasining umumiy kovaryansi qo'llab-quvvatlaydi deb ta'kidladi Mach printsipi, bu umumiy nisbiylik ichidagi har qanday "mutlaq harakat" ni yo'q qiladi. Biroq, ta'kidlanganidek Villem de Sitter 1916 yilda Mach printsipi umumiy nisbiylikda to'liq bajarilmadi, chunki maydon tenglamalarining materiyasiz echimlari mavjud. Bu shuni anglatadiki, tortishish kuchi va harakatsizlikni tavsiflovchi "inertio-tortishish maydoni" tortishish moddasi bo'lmagan holda mavjud bo'lishi mumkin. Biroq, Eynshteyn ta'kidlaganidek, bu kontseptsiya va Nyutonning muttasil makoni o'rtasida bitta tub farq bor: umumiy nisbiylikning inertio-tortishish maydoni materiya bilan belgilanadi, shuning uchun u mutlaq emas.[A 30][A 31][B 26][B 27][B 28]

Yomon Nauheym munozarasi

Eynshteyn va (boshqalar qatori) o'rtasidagi "Bad Nauheim munozarasi" da (1920). Filipp Lenard, ikkinchisi quyidagi e'tirozlarni bayon qildi: U Eynshteynning nisbiylik versiyasining "illyustratsiyasi" yo'qligini tanqid qildi, u taklif qilgan shartni faqat efir nazariyasi bilan qondirish mumkin edi. Eynshteyn fiziklar uchun "tasviriylik" yoki "mazmuni" deb javob berdiumumiy ma'noda "vaqt o'tishi bilan o'zgargan edi, shuning uchun uni endi fizik nazariyaning asosliligi mezonlari sifatida ishlatish mumkin emas edi. Lenard shuningdek, o'z nisbiylik tortishish nazariyasi bilan Eynshteyn sirni" makon "nomi ostida sukut bilan qayta kiritganligini ta'kidladi. tomonidan rad etildi (boshqalar qatori) tomonidan Hermann Veyl, 1920 yilda Leyden Universitetida, Bad Nauheimdagi munozaralardan ko'p o'tmay, ochilish marosimida, Eynshteynning o'zi o'zining umumiy nisbiylik nazariyasiga binoan, "bo'sh joy" deb ataladigan moddalar fizik xususiyatlarga ega ekanligini va aksincha. Lenard, shuningdek, Eynshteynning umumiy nisbiylik nazariyasi maxsus nisbiylik tamoyillariga zid ravishda o'ta yuqori tezliklarning mavjudligini tan oladi; masalan, Yer tinch holatda bo'lgan aylanadigan koordinatalar tizimida butun koinotning olis nuqtalari Yer atrofida superluminal tezlik bilan aylanmoqda. Biroq, Veyl ta'kidlaganidek, aylanadigan kengaytirilgan tizimni qattiq jism sifatida ishlatish noto'g'ri (na maxsus, na umumiy nisbiylikda) - shuning uchun signal tezligi ob'ektning yorug'lik tezligidan hech qachon oshib ketmasligi. Lenard tomonidan ham ko'tarilgan yana bir tanqid Gustav Mie Eynshteynning ekvivalentligi printsipiga ko'ra moddiy manbalar ishlab chiqargan jismlardan kam bo'lmagan real bo'lgan tezlashtiruvchi freymlarda "xayoliy" tortishish maydonlarining mavjudligiga tegishli. Lenard va Mie jismoniy kuchlarni faqat haqiqiy moddiy manbalar yaratishi mumkin, deb ta'kidladilar, ammo Eynshteyn tezlashayotgan mos yozuvlar tizimida mavjud bo'lishi kerak bo'lgan tortishish maydoni aniq jismoniy ma'noga ega emas. Eynshteyn bunga asoslanib javob berdi Mach printsipi, bu tortishish maydonlarini olis massalar ta'sirida deb o'ylash mumkin. Shu nuqtai nazardan, Lenard va Mie tanqidlari oqlandi, chunki zamonaviy konsensusga ko'ra, Eynshteynning o'zining etuk qarashlari bilan kelishilgan holda, Machning dastlab Eynshteyn tomonidan o'ylab topilgan printsipi yuqorida aytib o'tilganidek, aslida umumiy nisbiylik tomonidan qo'llab-quvvatlanmaydi.[A 32][C 15]

Silbershteyn-Eynshteyn bahslari

Lyudvik Silberstayn, dastlab maxsus nazariyaning tarafdori bo'lgan, turli xil holatlarda umumiy nisbiylikka qarshi chiqqan. 1920 yilda u ta'kidlaganidek, yorug'likning quyosh tomonidan o'zgarishi Artur Eddington va boshq. (1919), umumiy nisbiylikni tasdiqlashi shart emas, balki. Bilan izohlanishi mumkin Stoks-Plank nazariyasi to'liq efirga tortish. Biroq, bunday modellar nurning buzilishi va boshqa tajribalar ("Muqobil nazariyalar" ga qarang). 1935 yilda Silberstayn qarama-qarshilikni topdi deb da'vo qildi Umumiy nisbiylikdagi ikki tanali muammo. Da'voni Eynshteyn va Rozen rad etishdi (1935).[A 33][B 29][C 16]

Falsafiy tanqid

Nisbiylikning natijalari, masalan, makon va vaqtning oddiy tushunchalarining o'zgarishi, shuningdek, kiritilishi evklid bo'lmagan geometriya umuman nisbiylik, turli xil faylasuflar tomonidan tanqid qilingan falsafiy maktablar. Ko'plab falsafiy tanqidchilar nisbiylikning matematik va rasmiy asoslari to'g'risida etarli ma'lumotga ega emas edilar,[A 34] bu tanqidlarga sabab bo'lib, ko'pincha masalaning mohiyatini yo'qotadi. Masalan, nisbiylik ba'zi bir shakllar sifatida noto'g'ri talqin qilingan nisbiylik. Biroq, bu Eynshteyn yoki Plank ta'kidlaganidek noto'g'ri. Bir tomondan, makon va vaqt nisbiy bo'lib qolganligi va inersial mos yozuvlar tizimlari teng asosda ishlanganligi haqiqatdir. Boshqa tomondan, nazariya tabiiy qonuniyatlarni o'zgarmas holga keltiradi - yorug'lik tezligining barqarorligi yoki Maksvell tenglamalarining kovaryansiyasi misollar. Binobarin, Feliks Klayn (1910) uni nisbiylik nazariyasi o'rniga "Lorents guruhining o'zgarmas nazariyasi" deb atadi va Eynshteyn (u "mutlaq nazariya" kabi iboralarni ishlatganligi aytiladi) bu ibora bilan ham xayrixoh edi.[A 35][B 30][B 31][B 32]

Nisbiylikka tanqidiy javoblar tarafdorlari tomonidan ham bildirildi neokantianizm (Pol Natorp, Bruno Bauch va boshqalar) va fenomenologiya (Oskar Bekker, Morits Geyger va boshqalar.). Ularning ba'zilari faqat falsafiy oqibatlarni rad etgan bo'lsa, boshqalari nazariyaning jismoniy oqibatlarini ham rad etishdi. Eynshteyn buzganligi uchun tanqid qilindi Immanuil Kant "s aniq sxema, ya'ni, materiya va energiya allaqachon makon va vaqt tushunchalarini talab qilganligi sababli, materiya va energiya ta'sirida kosmik vaqt egriligini iloji yo'q deb da'vo qildilar. Shuningdek, kosmosning uch o'lchovliligi, Evklid geometriyasi va mutlaq birdamlikning mavjudligi dunyoni anglash uchun zarur deb da'vo qilingan; empirik topilmalar bilan ularning hech birini o'zgartirish mumkin emas. Ushbu tushunchalarni metafizik sohaga, tanqidning har qanday shakliga o'tkazish orqali Kantizm oldini olish mumkin edi. Boshqa psevdo-kantiyaliklar yoqadi Ernst Kassirer yoki Xans Reyxenbax (1920), Kant falsafasini o'zgartirishga harakat qildi. Keyinchalik Reyxenbax Kantianizmni umuman rad etdi va uning tarafdori bo'ldi mantiqiy pozitivizm.[A 36][B 33][B 34][C 17][C 18][C 19]

Asoslangan Anri Puankare "s an'anaviylik kabi faylasuflar Per Duxem (1914) va Ugo Dingler (1920) kosmik, vaqt va geometriyaning klassik tushunchalari tabiatshunoslikda eng qulay ifodalar bo'lgan va har doim ham shunday bo'ladi, shuning uchun nisbiylik tushunchalari to'g'ri bo'lolmaydi, degan fikrni ilgari surdi. Bu tarafdorlari tomonidan tanqid qilindi mantiqiy pozitivizm kabi Morits Shlik, Rudolf Karnap va Reyxenbax. Ular Puankare konventsionalizmini nisbiylik bilan muvofiqlashtirish uchun o'zgartirilishi mumkin deb ta'kidladilar. Nyuton mexanikasining asosiy taxminlari sodda ekanligi haqiqat bo'lsa-da, uni faqat yordamchi farazlarni ixtiro qilish orqali zamonaviy tajribalar bilan muvofiqlashtirish mumkin. Boshqa tomondan, nisbiylik bunday farazlarga muhtoj emas, shuning uchun kontseptual nuqtai nazardan, nisbiylik aslida Nyuton mexanikasiga qaraganda sodda.[A 37][B 35][B 36][C 20]

Ba'zi tarafdorlari Hayot falsafasi, Vitalizm, Tanqidiy realizm (nemis tilida so'zlashadigan mamlakatlarda) jismoniy, biologik va psixologik hodisalar o'rtasida tub farq borligini ta'kidladilar. Masalan, Anri Bergson Aks holda maxsus nisbiylik tarafdori bo'lgan (1921) buni ta'kidladi vaqtni kengaytirish biologik organizmlarga tatbiq etilishi mumkin emas, shuning uchun u egizak paradoksning relyativistik echimini inkor etdi. Biroq, bu da'volarni Pol Langevin rad etdi, André Metz va boshqalar. Biologik organizmlar fizik jarayonlardan iborat, shuning uchun ular vaqtni kengaytirish kabi relyativistik ta'sirga duch kelmaydi deb taxmin qilish uchun hech qanday sabab yo'q.[A 38][B 37][C 21]

Falsafasiga asoslanib Fantalizm, faylasuf Oskar Kraus (1921) va boshqalar nisbiylik asoslari faqat xayoliy va hatto o'zlariga zid bo'lgan deb da'vo qilishdi. Bunga yorug'lik tezligining barqarorligi, vaqt kengayishi, uzunlik qisqarishi misol bo'ldi. Ushbu effektlar umuman matematik jihatdan izchil bo'lib ko'rinadi, ammo aslida ular haqiqatan ham to'g'ri emas. Shunga qaramay, bu fikr darhol rad etildi. Nisbiylikning asoslari (masalan, ekvivalentlik printsipi yoki nisbiylik printsipi) xayoliy emas, balki eksperimental natijalarga asoslangan. Shuningdek, yorug'lik tezligining barqarorligi va bir vaqtning o'zida nisbiylik kabi ta'sirlar qarama-qarshi emas, balki bir-birini to'ldiradi.[A 39][C 22]

Sovet Ittifoqida (asosan 20-asrning 20-yillarida) falsafiy tanqid asosida ifoda etilgan dialektik materializm. Nisbiylik nazariyasi anti-materialistik va spekulyativ va mexanistik dunyoqarash sifatida rad etildi "umumiy ma'noda "muqobil ravishda talab qilingan. Shunga o'xshash tanqidlar Xitoy Xalq Respublikasi davomida Madaniy inqilob. (Boshqa tomondan, boshqa faylasuflar nisbiylikni mos keluvchi deb hisoblashgan Marksizm.)[A 40][A 41]

Nisbiylik shovqini va ommabop tanqid

Plank allaqachon 1909 yilda nisbiylik natijasida sodir bo'lgan o'zgarishlarni bilan taqqoslagan bo'lsa-da Kopernik inqilobi 1911 yilga qadar nazariy fiziklar va matematiklarning aksariyati tomonidan maxsus nisbiylik qabul qilingan bo'lsa-da, atrof tutilishi ekspeditsiyasining eksperimental natijalari (1919) nashr etilishidan oldin emas edi. Artur Stenli Eddington nisbiylik jamoatchilik tomonidan e'tiborga olingan. Tutilish natijalarini Eddington e'lon qilganidan so'ng, Eynshteyn ommaviy axborot vositalarida yorqin maqtovga sazovor bo'ldi va uni taqqoslashdi Nikolaus Kopernik, Yoxannes Kepler va Isaak Nyuton, bu mashhur "nisbiylik shov-shuvini" keltirib chiqardi ("Relativitätsrummel", buni Sommerfeld, Eynshteyn va boshqalar chaqirishgan). Bu zamonaviy fizika, shu jumladan nisbiylik nazariyasi va kvant mexanikasi tushunchalarini qabul qila olmaydigan ba'zi olimlar va ilmiy xodimlarning qarshi reaktsiyasini keltirib chiqardi. Eynshteynning tortishish nazariyasining ilmiy maqomi to'g'risida ilgari misli ko'rilmagan ommaviy munozaralar qisman matbuotda amalga oshirildi. Ba'zi tanqidlar nafaqat nisbiylikka, balki shaxsan Eynshteynga ham qaratilgan edi, uni ba'zi tanqidchilar nemis matbuotida reklama kampaniyasining orqasida turganlikda ayblashdi. [A 42][A 3]

Akademik va akademik bo'lmagan tanqid

Ba'zi akademik olimlar, xususan, eksperimental fiziklar, masalan, Nobel mukofoti sovrindorlari Filipp Lenard va Yoxannes Stark, shu qatorda; shu bilan birga Ernst Gehrke, Stjepan Mohorovichich, Rudolf Tomaschek va boshqalar zamonaviy fizikaning mavhumlashuvi va matematiklashuvi kuchayib borayotganini tanqid qildilar, ayniqsa nisbiylik nazariyasi va keyinroq kvant mexanikasi. Bu intuitiv "sog'lom fikr" ni yo'qotish bilan bog'liq bo'lgan mavhum nazariyani shakllantirish tendentsiyasi sifatida qaraldi. Aslida nisbiylik birinchi nazariya bo'lib, unda "illyustratsion" klassik fizikaning nomuvofiqligi isbotlangan deb o'ylangan. Eynshteynning ba'zi tanqidchilari ushbu o'zgarishlarni e'tiborsiz qoldirdilar va eski nazariyalarni qayta tiklashga harakat qilishdi, masalan, efirga tortish modellari yoki emissiya nazariyalari (qarang "Muqobil nazariyalar"). Biroq, ushbu sifatli modellar hech qachon zamonaviy nazariyalarning aniq eksperimental bashoratlari va tushuntirish kuchlarining muvaffaqiyati bilan raqobatlashish uchun etarlicha rivojlanmagan. Bundan tashqari, Germaniya universitetlarida professor-o'qituvchilar faoliyati va stullarni egallash borasida eksperimental va nazariy fiziklar o'rtasida katta raqobat mavjud edi. Fikrlar "Yomon Nauxaym munozaralar "1920 yilda Eynshteyn va (boshqalar qatorida) Lenard o'rtasida jamoatchilik e'tiborini tortgan.[A 43][A 42][C 15][C 23][C 24]

Bundan tashqari, g'oyalari ilmiy oqimdan tashqarida bo'lgan ko'plab tanqidchilar (jismoniy tarbiya bilan yoki jismoniy mashqlarsiz) bo'lgan. Ushbu tanqidchilar asosan Eynshteynning nisbiylik versiyasi nashr etilishidan ancha oldin o'z g'oyalarini ishlab chiqqan odamlar edilar va ular dunyoning ba'zi yoki barcha sirlarini to'g'ridan-to'g'ri hal qilishga harakat qilishdi. Shu sababli, Vazek (ba'zi nemis misollarini o'rgangan) ushbu "erkin tadqiqotchilar" ga "dunyo jumbog'ini hal qiluvchi" nomini berdi ("Welträtsellöser", masalan, Arvid Reuterdal, Hermann Fricke yoki Johann Heinrich Ziegler). Ularning qarashlari butunlay boshqacha ildizlarga ega edi monizm, Lebensreform, yoki okkultizm. Ularning qarashlari odatda barcha terminologiyani va zamonaviy ilm-fanning (birinchi navbatda matematik) usullarini deyarli rad etganliklari bilan ajralib turardi. Ularning asarlari xususiy noshirlar tomonidan yoki ommabop va ixtisos bo'lmagan jurnallarda nashr etilgan. Ko'pgina "erkin tadqiqotchilar" (ayniqsa monistlar) uchun barcha hodisalarni intuitiv va illyustrativ mexanik (yoki elektr) modellar bilan tushuntirish muhim edi, bu esa o'zlarining efirini himoya qilishda o'z ifodasini topdi. Shu sababli ular nisbiylik nazariyasining mavhumligi va noaniqligiga qarshi chiqdilar, bu hodisalar asosida yotgan haqiqiy sabablarni ochib bera olmaydigan sof hisoblash usuli deb hisoblandi. "Erkin tadqiqotchilar" ko'pincha foydalanganlar Gravitatsiyaning mexanik tushuntirishlari, unda tortishish qandaydir "efir bosimi" yoki "masofadan turib ommaviy bosim" tufayli yuzaga keladi. Bunday modellar Nyuton va Eynshteynning tortishish mavhum matematik nazariyalariga illyustratsion alternativ sifatida qaraldi. "Erkin tadqiqotchilar" ning o'ziga bo'lgan ulkan ishonchi diqqatga sazovordir, chunki ular nafaqat o'zlarini dunyoning buyuk jumboqlarini echishga ishonganlar, balki ko'pchilik ilmiy jamoatchilikni tezda ishontirishlariga umid qilishgan.[A 44][C 25][C 26][C 27]

Eynshteyn kamdan-kam hollarda ushbu hujumlardan o'zini himoya qilganligi sababli, bu vazifani boshqa nisbiylik nazariyotchilari o'z zimmalariga olganlar (Hentschelning fikriga ko'ra) Eynshteyn atrofida qandaydir "mudofaa kamari" hosil qilganlar. Ba'zi vakillar edi Maks fon Laue, Maks Born va boshqalar va ilmiy-ommabop va falsafiy darajada Xans Reyxenbax, André Metz etc., who led many discussions with critics in semi-popular journals and newspapers. However, most of these discussions failed from the start. Physicists like Gehrcke, some philosophers, and the "free researchers" were so obsessed with their own ideas and prejudices that they were unable to grasp the basics of relativity; consequently, the participants of the discussions were talking past each other. In fact, the theory that was criticized by them was not relativity at all, but rather a caricature of it. The "free researchers" were mostly ignored by the scientific community, but also, in time, respected physicists such as Lenard and Gehrcke found themselves in a position outside the scientific community. However, the critics didn't believe that this was due to their incorrect theories, but rather due to a fitna of the relativistic physicists (and in the 1920s and 1930s of the Yahudiylar as well), which allegedly tried to put down the critics, and to preserve and improve their own positions within the academic world. For example, Gehrcke (1920/24) held that the propagation of relativity is a product of some sort of mass suggestion. Therefore, he instructed a media monitoringi xizmati to collect over 5000 newspaper clippings which were related to relativity, and published his findings in a book. However, Gehrcke's claims were rejected, because the simple existence of the "relativity hype" says nothing about the validity of the theory, and thus it cannot be used for or against relativity.[A 45][A 46][C 28]

Afterward, some critics tried to improve their positions by the formation of ittifoqlar. One of them was the "Academy of Nations", which was founded in 1921 in the US by Robert T. Browne va Arvid Reuterdahl. Boshqa a'zolar edi Tomas Jefferson Jekson Qarang and as well as Gehrcke and Mohorovičić in Germany. It is unknown whether other American critics such as Charlz Leyn Kambag'al, Charlz Frensis Brush, Deyton Miller ham a'zo bo'lgan. The alliance disappeared as early as the mid-1920s in Germany and by 1930 in the USA.[A 47]

Chauvinism and antisemitism

Shortly before and during World War I, there appeared some nationalistically motivated criticisms of relativity and modern physics. Masalan, Per Duxem regarded relativity as the product of the "too formal and abstract" German spirit, which was in conflict with the "common sense". Similarly, popular criticism in the Soviet Union and China, which partly was politically organized, rejected the theory not because of factual objections, but as ideologically motivated as the product of western decadence.[A 48][A 40][A 41]

So in those countries, the Germans or the Western civilization were the enemies. However, in Germany the Yahudiy ancestry of some leading relativity proponents such as Einstein and Minkowski made them targets of racially minded critics, although many of Einstein's German critics did not show evidence of such motives. The engineer Pol Veylend, a known nationalistic agitator, arranged the first public meeting against relativity in Berlin in 1919. While Lenard and Stark were also known for their nationalistic opinions, they declined to participate in Weyland's rallies, and Weyland's campaign eventually fizzled out due to a lack of prominent speakers. Lenard and others instead responded to Einstein's challenge to his professional critics to debate his theories at the scientific conference held annually at Bad Nauheim. While Einstein's critics, assuming without any real justification that Einstein was behind the activities of the German press in promoting the triumph of relativity, generally avoided antisemitic attacks in their earlier publications, it later became clear to many observers that antisemitism did play a significant role in some of the attacks.

Reacting to this underlying mood, Einstein himself openly speculated in a newspaper article that in addition to insufficient knowledge of theoretical physics, antisemitism at least partly motivated their criticisms. Some critics, including Weyland, reacted angrily and claimed that such accusations of antisemitism were only made to force the critics into silence. However, subsequently Weyland, Lenard, Stark and others clearly showed their antisemitic biases by beginning to combine their criticisms with irqchilik. Masalan, Teodor Fritsh emphasized the alleged negative consequences of the "Jewish spirit" within relativity physics, and the juda to'g'ri -press continued this propaganda unhindered. After the murder of Uolter Ratenau (1922) and murder threats against Einstein, he left Berlin for some time. Gehrcke's book on "The mass suggestion of relativity theory" (1924) was not antisemitic itself, but it was praised by the far-right press as describing an alleged typical Jewish behavior, which was also imputed to Einstein personally. Philipp Lenard in 1922 spoke about the "foreign spirit" as the foundation of relativity, and afterward he joined the Natsistlar partiyasi 1924 yilda; Yoxannes Stark did the same in 1930. Both were proponents of the so-called Nemis fizikasi, which only accepted scientific knowledge based on experiments, and only if accessible to the senses. According to Lenard (1936), this is the "Oriy physics or physics by man of Nordic kind " as opposed to the alleged formal-dogmatic "Jewish physics". Additional antisemitic critics can be found in the writings of Vilgelm Myuller, Bruno Turing va boshqalar. For example, Müller erroneously claimed that relativity was a purely "Jewish affair" and it would correspond to the "Jewish essence" etc., while Thüring made comparisons between the Talmud and relativity.[A 49][A 50][A 51][A 42][A 52][A 53][B 38][C 29][C 30][C 31]

Accusations of plagiarism and priority discussions

Some of Einstein's critics, like Lenard, Gehrcke and Reuterdahl, accused him of plagiarism, and questioned his priority claims to the authorship of relativity theory. The thrust of such allegations was to promote more traditional alternatives to Einstein's abstract hypothetico-deductive approach to physics, while Einstein himself was to be personally discredited. It was argued by Einstein's supporters that such personal accusations were unwarranted, since the physical content and the applicability of former theories were quite different from Einstein's theory of relativity. However, others argued that between them Poincaré and Lorentz had earlier published several of the core elements of Einstein's 1905 relativity paper, including a generalized relativity principle that was intended by Poincaré to apply to all physics. Ba'zi misollar:[A 54][A 55][B 39][B 40][C 32][C 33]

  • Johann Georg von Soldner (1801) was credited for his calculation of the yorug'likning burilishi in the vicinity of celestial bodies, long before Einstein's prediction which was based on general relativity. However, Soldner's derivation has nothing to do with Einstein's, since it was fully based on Newton's theory, and only gave half of the value as predicted by general relativity.
  • Pol Gerber (1898) published a formula for the perihelion advance of Mercury, which was formally identical to an approximate solution given by Einstein. However, since Einstein's formula was only an approximation, the solutions are not identical. In addition, Gerber's derivation has no connection with General relativity and was even considered as meaningless.
  • Voldemar Voygt (1887) derived a transformatsiya, bu juda o'xshash Lorentsning o'zgarishi. As Voigt himself acknowledged, his theory was not based on electromagnetic theory, but on an elastic aether model. His transformation also violates the relativity principle.
  • Fridrix Xasenöhrl (1904) applied the concept of elektromagnit massa and momentum (which were known long before) to cavity- and thermal radiation. Yet, the applicability of Einstein's Massa-energiya ekvivalenti goes much further, since it is derived from the relativity principle and applies to all forms of energy.
  • Menyhért Palágyi (1901) developed a philosophical "space-time" model in which time plays the role of an imaginary fourth dimension. Palágyi's model was only a reformulation of Newtonian physics, and had no connection to electromagnetic theory, the relativity principle, or to the constancy of the speed of light.

Some contemporary historians of science have revived the question as to whether Einstein was possibly influenced by the ideas of Poincaré, who first stated the relativity principle and applied it to electrodynamics, developing interpretations and modifications of Lorentz's electron theory that appear to have anticipated what is now called special relativity. [A 56] Another discussion concerns a possible mutual influence between Einstein and Devid Xilbert as regards completing the maydon tenglamalari of general relativity (see Nisbiylik ustuvorligi bo'yicha nizo ).

A Hundred Authors Against Einstein

A collection of various criticisms can be found in the book Hundert Autoren gegen Einstein (A Hundred Authors Against Einstein), published in 1931.[4] It contains very short texts from 28 authors, and excerpts from the publications of another 19 authors. The rest consists of a list that also includes people who only for some time were opposed to relativity. Besides philosophic objections (mostly based on Kantizm ), also some alleged elementary failures of the theory were included; however, as some commented, those failures were due to the authors' misunderstanding of relativity. For example, Hans Reichenbach described the book as an "accumulation of naive errors", and as "unintentionally funny". Albert von Brunn interpreted the book as a backward step to the 16th and 17th century, and Einstein said, in response to the book, that if he were wrong, then one author would have been enough.[5][6]

According to Goenner, the contributions to the book are a mixture of mathematical–physical incompetence, hubris, and the feelings of the critics of being suppressed by contemporary physicists advocating for the new theory. The compilation of the authors show, Goenner continues, that this was not a reaction within the physics community—only one physicist (Karl Strehl) and three mathematicians (Jean-Marie Le Roux, Emanuel Lasker va Xjalmar Mellin ) were present—but a reaction of an inadequately educated academic citizenship, which didn't know what to do with relativity. As regards the average age of the authors: 57% were substantially older than Einstein, one third was around the same age, and only two persons were substantially younger.[A 57] Two authors (Reuterdahl, von Mitis) were antisemitic and four others were possibly connected to the Nazi movement. On the other hand, no antisemitic expression can be found in the book, and it also included contributions of some authors of Jewish ancestry (Salomo Friedländer, Ludwig Goldschmidt, Hans Israel, Emanuel Lasker, Oskar Kraus, Menyhért Palágyi ).[A 57][A 58][C 34]

Status of criticism

The theory of relativity is considered to be self-consistent, is consistent with many experimental results, and serves as the basis of many successful theories like kvant elektrodinamikasi. Therefore, fundamental criticism (like that of Gerbert Dingl, Lui Essen, Petr Bekman, Moris Allais va Tom van Flandern ) has not been taken seriously by the scientific community, and due to the lack of quality of many critical publications (found in the process of taqriz ) they were rarely accepted for publication in reputable scientific journals. Just as in the 1920s, most critical works are published in small publications houses, alternative journals (like "Apeiron" or "Galilean Electrodynamics"), or private websites.[A 4][A 5] Consequently, where criticism of relativity has been dealt with by the scientific community, it has mostly been in historical studies.[A 1][A 2][A 3]

However, this does not mean that there is no further development in modern physics. The progress of technology over time has led to extremely precise ways of testing the predictions of relativity, and so far it has successfully passed all tests (such as in particle accelerators to test special relativity, and by astronomical observations to test general relativity). In addition, in the theoretical field there is continuing research intended to unite general relativity and quantum theory, between which a fundamental incompatibility still remains.[7] The most promising models are torlar nazariyasi va halqa kvant tortishish kuchi. Some variations of those models also predict violations of Lorentz invariance on a very small scale.[B 41][B 42][B 43]

Shuningdek qarang

Adabiyotlar

  1. ^ Pruzan, Peter (2016). Research Methodology: The Aims, Practices and Ethics of Science (tasvirlangan tahrir). Springer. p. 81. ISBN  978-3-319-27167-5. Extract of page 81
  2. ^ Brecher, K. (1977), "Is the speed of light independent of the velocity of the source", Jismoniy tekshiruv xatlari, 39 (17): 1051–1054, Bibcode:1977PhRvL..39.1051B, doi:10.1103 / PhysRevLett.39.1051, S2CID  26217047.
  3. ^ Alväger, T.; Nilsson, A .; Kjellman, J. (1963), "A Direct Terrestrial Test of the Second Postulate of Special Relativity", Tabiat, 197 (4873): 1191, Bibcode:1963Natur.197.1191A, doi:10.1038/1971191a0, S2CID  4190242
  4. ^ Israel, Hans; Ruckhaber, Erich; Weinmann, Rudolf, eds. (1931). Hundert Autoren gegen Einstein. Leipzig: Voigtländer.
  5. ^ Russo, Remigio (1996). Mathematical Problems in Elasticity, Vol 18. Jahon ilmiy. p. 125. ISBN  978-981-02-2576-6. Extract of page 125
  6. ^ Xoking, Stiven (1998). Vaqtning qisqacha tarixi (10-nashr). Bantam kitoblari. p. 193. ISBN  978-0-553-38016-3.
  7. ^ Sachs, Mendel (2013). Kvant mexanikasi va tortishish kuchi. Springer Science & Business Media. p. 148. ISBN  978-3-662-09640-6. Extract of page 148

Historical analyses

  1. ^ a b v Hentschel (1990)
  2. ^ a b v Goenner (1993ab)
  3. ^ a b v d Wazeck (2009)
  4. ^ a b Farrell (2007)
  5. ^ a b Wazeck (2010)
  6. ^ Miller (1981), pp. 47–75
  7. ^ Miller (1981), pp. 75–85
  8. ^ a b Darrigol (2000), pp. 372–392
  9. ^ Janssen (2007), pp. 25–34
  10. ^ Pauli (1921), pp. 636–637
  11. ^ Pauli (1981), pp. 334–352
  12. ^ Staley (2009), pp. 219–259
  13. ^ Lalli (2012), pp. 171–186
  14. ^ Swenson (1970), pp. 63–68
  15. ^ Lalli (2012), pp. 187–212.
  16. ^ Pauli (1920), pp. 689–691
  17. ^ Laue (1921a), pp. 59, 75–76
  18. ^ Laue (1921a), pp. 25–26, 128–130
  19. ^ Pais (1982), pp. 177–207, 230–232
  20. ^ Pauli (1921), 672–673
  21. ^ Miller (1981), pp. 257–264
  22. ^ Chang (1993)
  23. ^ Mathpages: Dingle
  24. ^ Miller (1983), pp. 216–217
  25. ^ Warwick (2003), pp. 410–419, 469–475
  26. ^ Paty (1987), pp. 145–147
  27. ^ Kragh (1990), pp. 189–205
  28. ^ Norton (2004), pp. 14–22
  29. ^ Hentschel (1990), pp. 343–348.
  30. ^ Janssen (2008), pp. 3–4, 17–18, 28–38
  31. ^ Norton (1993)
  32. ^ Goenner (1993a), pp. 124–128
  33. ^ Havas (1993), pp. 97–120
  34. ^ Hentschel (1990), Chapter 6.2, pp. 555–557
  35. ^ Hentschel (1990), pp. 92–105, 401–419
  36. ^ Hentschel (1990), pp. 199–239, 254–268, 507–526
  37. ^ Hentschel (1990), pp. 293–336
  38. ^ Hentschel (1990), pp. 240–243, 441–455
  39. ^ Hentschel (1990), pp. 276–292
  40. ^ a b Vizgin/Gorelik (1987), pp. 265–326
  41. ^ a b Hu (2007), 549–555
  42. ^ a b v Goenner (1993a)
  43. ^ Hentschel (1990), pp. 74–91
  44. ^ Wazeck (2009), pp. 27–84
  45. ^ Hentschel (1990), pp. 163–195
  46. ^ Wazeck (2009), pp. 113–193, 217–292
  47. ^ Wazeck (2009), pp. 293–378
  48. ^ Hentschel (1990), pp. 123–131
  49. ^ Kleinert (1979)
  50. ^ Beyerchen (1982)
  51. ^ Hentschel (1990), pp. 131–150
  52. ^ Posch (2006)
  53. ^ Wazeck (2009), pp. 271–392
  54. ^ Hentschel (1990), pp. 150–162
  55. ^ Wazeck (2009), pp. 194–216
  56. ^ Darrigol (2004)
  57. ^ a b Goenner (1993b)
  58. ^ Wazeck (2009), pp. 356–361
In English: Pauli, V. (1981) [1921]. Nisbiylik nazariyasi. Fizikaning asosiy nazariyalari. 165. ISBN  978-0-486-64152-2.
  • Inglizcha tarjima: Wazeck, Milena (2013). Einstein's Opponents: The Public Controversy about the Theory of Relativity in the 1920s. Translated by Geoffrey S. Koby. Kembrij universiteti matbuoti. ISBN  978-1-107-01744-3.

Relativity papers

  1. ^ Lorentz (1904)
  2. ^ Poincaré (1906)
  3. ^ Eynshteyn (1905)
  4. ^ Planck (1906b)
  5. ^ Bucherer (1908)
  6. ^ Roberts (2006)
  7. ^ Born (1909)
  8. ^ Laue (1911)
  9. ^ Langevin (1911)
  10. ^ Langevin (1921)
  11. ^ Einstein (1908)
  12. ^ Eynshteyn (1912)
  13. ^ Eynshteyn (1916)
  14. ^ Poincaré (1906)
  15. ^ Carlip (1999)
  16. ^ a b PhysicsFaq: FTL
  17. ^ Sommerfeld (1907, 1914)
  18. ^ Brillouin (1914)
  19. ^ Dirac (1951)
  20. ^ Smoot (2006), pp. 123–124
  21. ^ Joos (1959), pp. 448ff
  22. ^ Michelson (1925)
  23. ^ De Sitter (1913)
  24. ^ Fox (1965)
  25. ^ Carmichael (1910)
  26. ^ De Sitter (1916ab)
  27. ^ Kretschmann (1917)
  28. ^ Einstein (1920, 1924)
  29. ^ Einstein/Rosen (1936)
  30. ^ Klein (1910)
  31. ^ Petzoldt (1921)
  32. ^ Planck (1925)
  33. ^ Reichenbach (1920)
  34. ^ Cassirer (1921)
  35. ^ Schlick (1921)
  36. ^ Reichenbach (1924)
  37. ^ Metz (1923)
  38. ^ Einstein (1920a)
  39. ^ Laue (1917)
  40. ^ Laue (1921b)
  41. ^ Mattingly (2005)
  42. ^ Will (2006)
  43. ^ Liberati (2009)

Critical works

  1. ^ Abraham (1904)
  2. ^ Kaufmann (1906)
  3. ^ Miller (1933)
  4. ^ Ehrenfest (1909)
  5. ^ Abraham (1912)
  6. ^ Poincaré (1904)
  7. ^ Dingle (1972)
  8. ^ Lodge (1925)
  9. ^ Michelson (1927)
  10. ^ Prokhovnik (1963)
  11. ^ Ives (1951)
  12. ^ Lenard (1921a)
  13. ^ Silberstein (1921a)
  14. ^ Ritz (1908)
  15. ^ a b Lenard, Einstein, Gehrcke, Weyl (1920)
  16. ^ Silberstein (1936)
  17. ^ Natorp (1910)
  18. ^ Linke (1921)
  19. ^ Friedlaender (1932)
  20. ^ Dingler (1922)
  21. ^ Bergson (1921)
  22. ^ Kraus (1921)
  23. ^ Gehrcke (1924a)
  24. ^ Mohorovičić (1923)
  25. ^ Fricke (1919)
  26. ^ Ziegler (1920)
  27. ^ Reuterdahl (1921)
  28. ^ Gehrcke (1924b)
  29. ^ Lenard (1936)
  30. ^ Stark/Müller (1941)
  31. ^ Thüring (1941)
  32. ^ Gehrke (1916)
  33. ^ Lenard (1921b)
  34. ^ Isroil va boshq. (1931)

Tashqi havolalar