Offshore shamol energiyasi - Offshore wind power

Offshore shamol energiyasi yoki offshor shamol energiyasi ning ishlatilishi shamol stansiyalari hosil olish uchun suv havzalarida, odatda okeanda qurilgan shamol energiyasi elektr energiyasini ishlab chiqarish uchun. Quruqlik bilan taqqoslaganda shamolning yuqori tezligi dengizda mavjud, shuning uchun offshor shamol energiyasining elektr energiyasi ishlab chiqarish quvvati miqdori bo'yicha yuqori bo'ladi,[1] va NIMBY qurilishga qarshi chiqish odatda ancha kuchsizroq.

Dengiz sanoatida "offshor" atamasining odatiy ishlatilishidan farqli o'laroq, offshor shamol energetikasi ko'llar, fyordlar va himoyalangan qirg'oq mintaqalari hamda chuqurroq suv zonalari kabi qirg'oqdagi suv zonalarini o'z ichiga oladi. Aksariyat dengizdagi shamol elektr stantsiyalari nisbatan sayoz suvda poydevorli shamol turbinalarini ishlatadilar. 2020 yilga kelib, chuqurroq suvlar uchun suzuvchi shamol turbinalari rivojlanish va joylashtirishning dastlabki bosqichida.

2018 yil oxirida butun dunyo bo'ylab shamol energiyasining umumiy quvvati 23,1 ga teng bo'ldi gigavatt (GW).[2] Hozirda barcha yirik dengiz shamollari elektr stantsiyalari Evropaning shimolida, ayniqsa Birlashgan Qirollik va Germaniyada joylashgan bo'lib, ular birgalikda butun dunyo bo'ylab o'rnatilgan shamol energiyasining uchdan ikki qismiga to'g'ri keladi. 2020 yilga kelib 1,2 GVt Hornsea Project One ichida Birlashgan Qirollik dunyodagi eng yirik shamol energetikasi hisoblanadi.[3] Boshqa loyihalar, shu jumladan rejalashtirish bosqichida Dogger banki Buyuk Britaniyada 4,8 GVt, Buyuk Changxua esa Tayvan 2,4 GVt.[4]

Dengizdagi shamol energiyasining narxi tarixiy jihatdan quruqlikdagi shamol ishlab chiqarishga qaraganda yuqori bo'lgan,[5] ammo so'nggi yillarda xarajatlar tez pasayib, 2019 yilda 78 dollar / MVt / soatgacha pasaymoqda.[6] Evropadagi offshor shamol energiyasi 2017 yildan beri an'anaviy energiya manbalari bilan narx raqobatbardosh bo'lib kelmoqda.[7] Dengizdan shamol ishlab chiqarish 2010-yillarda yiliga 30 foizdan oshgan. 2020 yilga kelib, offshor shamol energetikasi Shimoliy Evropada elektr energiyasini ishlab chiqarishning muhim qismiga aylandi, ammo u butun dunyoda ishlab chiqarilgan elektr energiyasining 1 foizidan kamini tashkil etdi.[8]

Tarix

5,000
10,000
15,000
20,000
25,000
30,000
1998
2002
2006
2010
2014
2019
Global offshor salohiyati (MW ).
Manbalar: GWEC (2011–2019)[9][10][11][2][12] va EWEA (1998–2010)[13]

Imkoniyatlar

1977 yildagi faraziy offshor shamol elektr stantsiyasining illyustratsiyasi

Evropada birinchi shamol energetikasi bilan dengizdagi shamol energetikasi bo'yicha dunyoda etakchi o'rinni egallaydi (Vindeby ) o'rnatilgan Daniya 1991 yilda.[14] 2009 yilda Evropada dengiz shamol turbinasining o'rtacha plita quvvati taxminan 3 MVtni tashkil etdi va kelajakdagi turbinalarning quvvati 5 MVt ga ko'tarilishi kutilmoqda.[14]

2013 yilda turbinalarning muhandislik jihatlari, shu jumladan quruqlikda ishlatiladigan o'lchamlar, shu jumladan elektr ulanishlari va konvertorlari atroflicha ko'rib chiqilganda, sanoat umuman foyda va xarajatlar nisbati haqida ortiqcha fikr yuritgan va "offshor shamol bozori yo'q" degan xulosaga keldi. t go'yo katta bo'lganday ".[15][16]2013 yilda offshore shamol energetikasi o'sha yili qurilgan shamol energiyasining umumiy quvvati 11.159 MVtdan 1567 MVt quvvatga ega bo'ldi.[17]

2014 yil yanvar oyiga qadar Evropada 692 ta o'rtacha shamol elektr stantsiyalari qurildi, ularning o'rtacha yillik quvvati 482 MVt.[18] Evropa suvlaridagi offshor shamol elektr stantsiyalarining umumiy o'rnatilgan quvvati 6562 MVt ga etdi.[18]The Birlashgan Qirollik 3.681 MVt quvvatga ega bo'lgan eng katta quvvatga ega edi. 1271 MVt quvvat bilan Daniya ikkinchi, 571 MVt quvvat bilan Belgiya uchinchi o'rinni egalladi. Germaniya 520 MVt bilan to'rtinchi, Gollandiya (247 MVt), Shvetsiya (212 MVt), Finlyandiya (26 MVt), Irlandiya (25 MVt), Ispaniya (5 MVt), Norvegiya (2 MVt) va Portugaliya (2 MVt) uchinchi o'rinni egalladi. ).[18]

2015 yil oxirida Evropaning 11 ta mamlakati bo'ylab 84 ta dengiz shamol stansiyalarida 3230 ta turbinalar o'rnatildi va tarmoqqa ulandi, ularning umumiy quvvati 11027 MVtni tashkil etdi.[19][20]

Evropadan tashqarida, Xitoy hukumati 2015 yilgacha o'rnatilgan 5 GVt va 2020 yilga qadar 30 GVt quvvatga ega bo'lgan offshor shamollarining ulkan maqsadlarini belgilab qo'ydi, bu esa boshqa mamlakatlarda tutilish imkoniyatini yaratadi. Biroq, 2014 yil may oyida hajmi Xitoyda offshor shamol energetikasi atigi 565 MVt edi.[21] Xitoyda offshor quvvati 2016 yilda 832 MVtga oshdi, shundan 636 MVt Xitoyda ishlab chiqarilgan.[22]

Offshore shamol qurilishi bozori ancha zich bo'lib qolmoqda. 2015 yil oxiriga kelib, Siemens shamol quvvati dunyodagi 11 GVtning 63 foizini o'rnatgan edi[23] offshor shamol energetikasi quvvati; Vestalar 19%, Senvion 8% bilan uchinchi o'rinni egalladi Adven 6%.[24][2]Taxminan 12 GVt quvvatga ega offshor shamol energetikasi quvvati asosan Shimoliy Evropada ishlagan, uning 3,755 MVti 2015 yil davomida Internetga ulangan.[25] 2020 yilga kelib, offshor global bozorning 90% Evropa kompaniyalari tomonidan namoyish etildi.[26]

2017 yilga kelib butun dunyo bo'ylab o'rnatilgan shamol energetikasi quvvati 20 GVtni tashkil etdi.[27] 2018 yilda offshor shamol global elektr ta'minotining atigi 0,3 foizini ta'minladi.[28] Shunga qaramay, faqatgina 2018 yilda butun dunyo miqyosida qo'shimcha ravishda 4,3 GVt quvvatga ega offshor shamol quvvati ishga tushirildi[28]. Daniyada 2018 yilda elektr energiyasining 50% shamol energiyasi bilan ta'minlandi, shundan 15% offshor bo'lgan.[29]

Xarajatlar

2010 yilda AQSh Energetika Axborot agentligi "dengizdagi shamol energetikasi keng ko'lamda tarqatish uchun ko'rib chiqilayotgan energiya ishlab chiqaruvchi eng qimmat texnologiya" ekanligini aytdi.[5]2010 yildagi offshor shamol energetikasi holati iqtisodiy muammolarni quruqlikdagi tizimlarga qaraganda ancha yuqori darajaga olib keldi, ularning narxi 2,5-3,0 million evro / MVt oralig'ida.[30] O'sha yili, Simens va Vestalar dengiz shamollarining 90% uchun turbinalarni etkazib beruvchilar edi Ørsted A / S (keyin DONG Energy deb nomlangan), Vattenfall va E.on etakchi offshor operatorlari bo'lgan.[1]

2011 yilda O'rsted offshor shamol turbinalari qazib olinadigan yoqilg'ilar bilan raqobatbardosh bo'lmasa-da, ular 15 yildan keyin bo'lishini taxmin qildi. Ungacha davlat tomonidan moliyalashtirish va pensiya jamg'armalari zarur bo'lar edi.[31] 2011 yil oxirida Belgiya, Daniya, Finlyandiya, Germaniya, Irlandiya, Niderlandiya, Norvegiya, Shvetsiya va Buyuk Britaniyaning yaqinidagi suvlarda 5300 evropalik shamol energetikasi mavjud edi, ularning ishlash quvvati 3813 MVt,[32] 5603 MVt qurilayotganda.[33]2011 yilda Evropa suvlarida qiymati 8,5 milliard evro (11,4 milliard dollar) bo'lgan offshor shamol elektrostansiyalari qurilmoqda.[34]

2012 yilda, Bloomberg offshor shamol turbinalaridan olinadigan energiya 161 evroni tashkil etadi (208 AQSh dollari) har bir MVt soatiga.[35]

Dengizdagi shamol energiyasining narxi kutilganidan ancha tez pasaymoqda. 2016 yilga kelib to'rtta shartnoma (Borssele va Krigerlar ) allaqachon taxmin qilingan 2050 narxlarining eng pastidan past bo'lgan.[36][37]

Kelajak rivojlanishi

2020 yilga mo'ljallangan prognozlar bo'yicha Evropaning suvlarida 40 GVt quvvatga ega shamol elektr stantsiyasining quvvati taxmin qilinmoqda, bu esa 4% Yevropa Ittifoqi elektr energiyasiga bo'lgan talab.[38]The Evropa shamol energiyasi assotsiatsiyasi 2020 yilga qadar o'rnatilgan 40 GVt va 2030 yilga qadar 150 GVt quvvatni belgilab qo'ydi.[14]Chet elda shamol energetikasi quvvati 2020 yilga qadar dunyo bo'ylab jami 75 GVt ga yetishi kutilmoqda, bu Xitoy va AQSh tomonidan katta hissa qo'shmoqda.[1]

The Iqtisodiy hamkorlik va taraqqiyot tashkiloti (OECD) 2016 yilda offshor shamol energetikasi 2030 yilga kelib okean iqtisodiyotining 8 foizigacha o'sishini va uning sanoatida 435 ming kishini ish bilan ta'minlab, 230 milliard dollar qiymatini qo'shishini taxmin qilgan edi.[39]

The Evropa komissiyasi kelajakda offshor shamol energetikasi muhim ahamiyat kasb etadi deb kutmoqda, chunki offshor shamol uning bir qismidir Yashil bitim.[40] Evropaning offshor shamol energetikasining to'liq potentsialini rivojlantirish "Yashil bitim" ning "Toza energiya" bo'limidagi muhim harakatlardan biridir.[40]

2050 yilga kelib, o'rnatilgan shamol energetikasi quvvati butun dunyo miqyosida 1550 GVt ga etadi.[27] 2017 yilgi quvvati bilan taqqoslaganda, bu 80 barobar o'sishga to'g'ri keladi.[27]

Dengiz sohasidagi hozirgi rivojlanishni tavsiflovchi yutuqlardan biri bu shamolning mavjudligi yuqori bo'lgan sohildan tashqarida shamol loyihalarini amalga oshirishga imkon beradigan texnologiyalardir. Ayniqsa, suzuvchi poydevor texnologiyalarini qabul qilish chuqur suvlarda shamol potentsialini ochish uchun istiqbolli texnologiya ekanligi isbotlandi.[41]

Iqtisodiyot

Bilan taqqoslash elektr energiyasining arzon narxlari Germaniyadagi boshqa manbalarga nisbatan offshor shamol energiyasining 2018 y[42]

Shamol turbinalarini offshorda joylashtirishning afzalligi shundaki, shamol qirg'oqlardan ancha kuchliroqdir va quruqlikdan shamoldan farqli o'laroq, offshore shabada tushdan keyin kuchli bo'lishi mumkin, odamlar elektr energiyasidan ko'proq foydalanadigan vaqtga to'g'ri keladi. Dengizdagi turbinalar, shuningdek, shaharlar bo'ylab yuk ko'tarish markazlariga yaqin joyda joylashishi mumkin, masalan, katta shaharlar, yangi uzoq masofali elektr uzatish liniyalariga ehtiyojni yo'q qiladi.[43]Biroq, offshor inshootlarning bir nechta kamchiliklari mavjud bo'lib, ular qimmatroq o'rnatish, kirish qiyinligi va bloklar uchun yanada og'ir sharoitlar bilan bog'liq.

Shamol turbinalarini offshorda topish jihozlarni yuqori namlik, sho'r suv va sho'r suv purkagichiga ta'sir qiladi, bu ularning ishlash muddatiga salbiy ta'sir qiladi, korroziya va oksidlanishga olib keladi, texnik xizmat ko'rsatish va ta'mirlash xarajatlarini ko'paytiradi va umuman o'rnatish va ekspluatatsiya qilishning har bir jihatini ancha qiyinlashtiradi, uzoq vaqt talab etadi. , quruqlikdagi saytlarga qaraganda ancha xavfli va ancha qimmat. Namlik va harorat tomonidan boshqariladi havo sovutish muhrlangan nacelle.[44]Barqaror yuqori tezlikda ishlash va ishlab chiqarish shuningdek aşınma, parvarishlash va ta'mirlash talablarini mutanosib ravishda oshiradi.

Turbinaning narxi atigi uchdan bir yarimni tashkil qiladi[30] bugungi kunda offshor loyihalardagi umumiy xarajatlarning qolgan qismi infratuzilma, texnik xizmat ko'rsatish va nazoratdan iborat. Qurilish shamollari bilan taqqoslaganda poydevor, o'rnatish, elektr aloqasi va ulardan foydalanish va texnik xizmat ko'rsatish (O&M) uchun xarajatlar dengizdagi qurilmalar uchun umumiy hajmning katta qismidir, shuningdek, o'rnatish va elektrga ulanish narxi ham qirg'oq va suv chuqurligidan masofa bilan tez o'sib boradi.[45]

Dengizdagi shamol energiyasining boshqa cheklovlari hali ham cheklangan miqdordagi qurilmalar bilan bog'liq. Offshore shamol sanoati hali to'liq sanoatlashtirilmagan, chunki etkazib berishdagi to'siqlar hali 2017 yilgacha mavjud.[46]

Investitsiya xarajatlari

Dengizdagi shamol elektr stantsiyalari quruqlikdagi qurilmalar bilan taqqoslaganda kattaroq turbinalarga ega va ularning hajmi doimiy ravishda o'sib boradi. Chet elda ishlaydigan shamol elektr stantsiyalarining iqtisodiyoti katta turbinalarga ustunlik beradi, chunki ishlab chiqarilgan energiya birligiga o'rnatish va tarmoqqa ulanish xarajatlari kamayadi.[45]Bundan tashqari, dengizdagi shamol elektr stantsiyalari quruqlikdagi shamol turbinalarining o'lchamlari bo'yicha bir xil cheklovlarga ega emas, masalan, erning mavjudligi yoki transport talablari.[45]

Operatsion xarajatlar

Shamol elektr stantsiyalari uchun operatsion xarajatlar Ta'mirlash (38%), Port faoliyati (31%), Operatsion (15%), Litsenziya to'lovlari (12%) va Turli xil xarajatlar (4%) o'rtasida taqsimlangan.[47]

Foydalanish va texnik xizmat ko'rsatish xarajatlari odatda ekspluatatsion xarajatlarning 53 foizini tashkil etadi va offshore shamol elektr stantsiyalari uchun umr ko'rish davri xarajatlarining 25% - 30%. O & Ms ushbu resursni yanada rivojlantirishning asosiy to'siqlaridan biri hisoblanadi.

Dengizdagi shamol elektr stantsiyalariga texnik xizmat ko'rsatish quruqlikdagi qurilmalarga qaraganda ancha qimmatga tushadi, masalan, pikap yuk mashinasidagi bitta texnik, deyarli har qanday ob-havo sharoitida quruqlikdagi turbinalarga tez, oson va xavfsiz kira oladi, o'z transport vositasidan chiqib ketishi va shunchaki piyoda yurishi mumkin. saytga etib kelganidan keyin bir necha daqiqada butun birlikka kirish huquqini olish uchun turbinali minoraga. Dengizdagi turbinalarga o'xshash kirish dock yoki rıhtga haydashni, kerakli asbob-uskuna va materiallarni qayiqqa yuklashni, shamol turbinasiga (lariga) sayohat qilishni, qayiqni turbinaning konstruktsiyasiga mahkamlashni, asbob-uskunalar va materiallarni qayiqqa va turbinaga va undan uzatishni o'z ichiga oladi. turbinani qayiqqa etkazish va qolgan qadamlarni teskari tartibda bajarish. Qattiq qalpoq, qo'lqop va himoya ko'zoynagi kabi standart xavfsizlik vositalaridan tashqari, offshor turbinalar texnikasi hayot yelekini, suvga chidamli yoki suvga chidamli kiyimni va hatto ish, dengiz va atmosfera sharoitlari tezlashadigan bo'lsa, omon qolish uchun kostyum kiyishni talab qilishi mumkin. suvga tushishi ehtimoldan yiroq yoki imkonsiz bo'lgan taqdirda qutqarish Odatda haydovchilik guvohnomasiga ega bo'lgan bitta texnik quruqlikda bajarishi mumkin bo'lgan vazifalar uchun dengizda katta quvvatli qayiqlarni boshqarish va boshqarish bo'yicha malakaga ega bo'lgan kamida ikkita texnik talab qilinadi. xarajatlarning bir qismi bo'yicha vaqt.

Energiya narxi

O'rnatilgan offshor turbinalar narxi 30 foizga pasayib, 2019 yilda 78 dollar / MVt / soatni tashkil etdi, bu boshqa qayta tiklanadigan energetikaga nisbatan tezroq pasayish.[6]Keng miqyosdagi innovatsiyalar 2020 yilga kelib offshor shamol narxining 25% pasayishiga olib kelishi mumkin degan fikrlar mavjud.[48]Dengizdagi shamol energetikasi bozori dunyoning aksariyat mamlakatlarida qayta tiklanadigan maqsadga erishishda muhim rol o'ynaydi.

Kelgusi loyihalar bo'yicha 2016 yilda kim oshdi savdosi narxi 54,5 evroga etdi megavatt soat (MVt) 700 ga teng MW Borssele 3&4[49] hukumat tanlovi va hajmi tufayli,[50] va 600 MVtda har bir MVt soatiga 49,90 evro (uzatishsiz) Krigers Flak.[51]

2017 yil sentyabr oyida shartnomalar tuzildi Birlashgan Qirollik a ish tashlash narxi har bir MVt soatiga 57,50 funt sterlingni tashkil etib, narxni yadrodan arzonlashtiradi va gaz bilan raqobatdosh.[52]

2018 yil sentyabr oyida AQShning Massachusets shtatidagi Vineyard Wind uchun har bir MVt soatiga 65-74 dollar miqdorida shartnomalar tuzildi.[53][54]

Offshore shamol manbalari

Global offshor shamol tezligi xaritasi (Global Shamol Atlasi 3.0)

Dengizdagi shamol manbalari tabiatiga ko'ra ulkan va juda tarqoq bo'lib, sayyoramizning okeanlar va dengizlar bilan qoplanadigan sirt maydonining quruqlik massasiga nisbatan nisbatini hisobga olgan holda. Shamolning quruqlikdagi tezligi quruqlikdagi ekvivalenti bilan taqqoslaganda ancha yuqori ekanligi ma'lum, chunki er massasi to'siqlari yo'qligi va suvning past pürüzlülüğü o'rmon va savanna kabi quruqlik xususiyatlari bilan solishtirganda, bu global shamol tezligi xaritalarida ko'rsatilgan. bir xil kirish ma'lumotlari va metodologiyasidan foydalangan holda quruqlik va offshor hududlarni qamrab oladi. Uchun Shimoliy dengiz, shamol turbinasi energiyasi 30 atrofidakVt soat / m2 dengiz sohasi, yiliga, tarmoqqa etkazib beriladi. Dengiz maydoniga to'g'ri keladigan energiya turbinaning kattaligidan deyarli mustaqil.[55]

Dengiz shamoli uchun texnik ekspluatatsiya qilinadigan resurs salohiyati shamolning o'rtacha tezligi va suv chuqurligining omilidir, chunki elektr energiyasini faqat turbinalarni langarga qo'yish mumkin bo'lgan dengizdagi shamol manbalaridan olish mumkin. Hozirgi vaqtda dengizga o'rnatilgan poydevorli shamol turbinalarini 50 metr (160 fut) chuqurlikgacha o'rnatish mumkin. Buning ortida, hozirda taklif etilayotgan texnologiyalar asosida bir kilometrgacha (3300 fut) chuqurlikda o'rnatishga imkon beradigan suzuvchi poydevor turbinalari kerak bo'ladi.[56] Suvning yashashga yaroqli chuqurligi va sekundiga etti metrdan (23 fut / s) oshadigan shamol tezligini tahlil qilish asosida 17 dan oshgani taxmin qilinmoqda teravatt Avstraliyaning, Yaponiyaning, AQShning yoki G'arbiy Evropaning aksariyat OECD davlatlarini hisobga olmaganda, o'rganilgan 50 ta mamlakatda (TW) offshor shamol texnik salohiyati. Argentina va Xitoy kabi yaxshi ta'minlangan mamlakatlar mos ravishda deyarli 2TW va 3TW potentsialga ega, bu esa ushbu joylarda offshor shamollarining katta imkoniyatlarini namoyish etadi.[57]

Rejalashtirish va ruxsat berish

Chet elda shamol elektr stantsiyasini foydalanishga topshirishni rejalashtirish uchun kerakli ma'lumotlarni olish uchun bir qator narsalar zarur. Dastlabki ma'lumot dengizning shamol xususiyatlari, rejalashtirish uchun qo'shimcha zarur ma'lumotlar suvning chuqurligi, oqimlari, dengiz tubi, migratsiya va to'lqin ta'sirini o'z ichiga oladi, bularning barchasi potentsial turbin konfiguratsiyalariga mexanik va konstruktiv yuklarni olib keladi. Boshqa omillar qatoriga dengiz o'sishi, sho'rlanish, muzlanish va dengiz yoki ko'l tubining geotexnik xususiyatlari kiradi.

O'lchovlar uchun mavjud bo'lgan uskunalar yorug'likni aniqlash va o'zgarishni o'z ichiga oladi (LIDAR ), Sonikni aniqlash va o'zgartirish (SODAR ), radar, avtonom suv osti transport vositalari (AUV) va masofadan turib sun'iy yo'ldosh orqali zondlash, garchi ushbu texnologiyalarni baholash va takomillashtirish kerak bo'lsa ham, universitetlar, sanoat va hukumat tadqiqotchilari koalitsiyasining hisobotiga binoan Barqaror kelajak uchun Atkinson markazi.[58]

Bunga ko'plab omillar sabab bo'lganligi sababli, offshor shamol elektr stantsiyalarining eng katta qiyinchiliklaridan biri bu yuklarni bashorat qilish qobiliyatidir. Tahlil tarjima (ko'tarilish, tebranish va ko'tarilish) va aylanma (rulon, pitch va yaw ) platforma harakatlari va turbinalar harakatlari, shuningdek suzuvchi tizimlar uchun bog'lash chiziqlarining dinamik xarakteristikasi. Poydevorlar va inshootlar dengizdagi shamol tizimlarining katta qismini tashkil qiladi va bu omillarning har birini hisobga olish kerak.[58] Yuk tashish grout minora va poydevor orasidagi eritmani siqib chiqarishi mumkin va elastomer rulmanlar bir nechta ingliz dengiz turbinalarida qo'llaniladi.[59]

Korroziya ham jiddiy muammo bo'lib, batafsil loyihalashtirishni talab qiladi. Korroziyani masofadan kuzatib borish istiqbollari dengizdagi neft / gaz sanoati va boshqa yirik sanoat korxonalari tajribasidan foydalangan holda juda istiqbolli ko'rinadi.

Dengiz shamollari elektr stantsiyalarini loyihalashtirish bo'yicha ba'zi ko'rsatmalar IEC 61400 -3,[60][61][62] ammo AQShda yana bir nechta standartlar zarur.[63] Evropa Ittifoqida xarajatlarni pasaytirish uchun turli xil milliy standartlar yanada uyg'un ko'rsatmalarga muvofiqlashtirilishi kerak.[64]Standartlar yuklarni tahlil qilish shamol, to'lqin va oqim kabi maydonga xos tashqi sharoitlarga asoslanganligini talab qiladi.[65]

Rejalashtirish va ruxsat berish bosqichi 10 million dollardan oshishi mumkin, 5-7 yil davom etishi va natijasi noaniq bo'lishi mumkin. Sanoat bu jarayonlarni yaxshilash uchun hukumatlarga bosim o'tkazmoqda.[66][67] Yilda Daniya, ushbu bosqichlarning aksariyati to'siqlarni minimallashtirish uchun hokimiyat tomonidan ataylab soddalashtirilgan,[68] va ushbu siyosat "bitta oyna" do'koni kontseptsiyasi bilan qirg'oqdagi shamol elektr stantsiyalari uchun kengaytirildi.[69] Qo'shma Shtatlar xuddi shunday modelni taqdim etdi "Boshidan aqlli" 2012 yilda.[70]

In Yevropa Ittifoqi, 2018 yilda qayta tiklanadigan qayta tiklanadigan energetika bo'yicha direktivada shamol loyihalarini boshlashga yordam berish uchun ruxsat berish jarayoni soddalashtirildi.[26]

Qonuniy asos

Dengizdagi shamol turbinalarini o'rnatish va ulardan foydalanish milliy va xalqaro qonunlarda tartibga solinadi. Tegishli xalqaro qonunchilik bazasi UNCLOS (Birlashgan Millatlar Tashkilotining Dengiz huquqi to'g'risidagi konventsiyasi), bu davlatlarning okeanlardan foydalanish bo'yicha huquq va majburiyatlarini tartibga soladi.[71] Dengiz zonasi dengizdagi shamol turbinalari qaysi me'yoriy hujjatlar qo'llanilishini belgilaydi.

In hududiy suvlar (qirg'oqning boshlang'ich qismidan 12 dengiz miligacha) qirg'oq shtati to'la suverenitet[71] va shuning uchun offshor shamol turbinalarini tartibga solish to'liq milliy yurisdiktsiyaga kiradi.

The eksklyuziv iqtisodiy zona (boshlang'ich chiziqdan 200 dengiz miliga qadar) Shtat hududining bir qismi emas, lekin tanlangan maqsadlar uchun qirg'oq davlatining eksklyuziv yurisdiksiyasi va nazoratiga bo'ysunadi, ulardan biri shamollardan energiya ishlab chiqarishdir.[71] Bu shuni anglatadiki, ushbu mintaqada dengiz sohilidagi davlat dengizga shamol elektr stantsiyalarini o'rnatish va ulardan foydalanish huquqiga ega va ularning atrofida barcha kemalar tomonidan hurmat qilinishi kerak bo'lgan xavfsizlik zonalarini o'rnatishi kerak, agar o'rnatish to'g'risida tegishli ogohlantirish berilgan bo'lsa. Shuningdek, na qurilmalar, na xavfsizlik zonalari xalqaro navigatsiya uchun zarur deb hisoblangan dengiz yo'llariga xalaqit bera olmaydi.[71]

Eksklyuziv iqtisodiy zonalardan tashqari ochiq dengizlar yoki xalqaro suvlar.[71] Ushbu zonada energiya ishlab chiqarish maqsadi ochiq dengiz erkinligi deb aniq aytilmagan va shuning uchun offshor shamol inshootlarining huquqiy maqomi noaniq. Akademik sohada, ochiq dengizdagi offshor shamol inshootlarining huquqiy maqomining noaniqligi foydalanish huquqi bo'yicha davlatlararo nizolarning ob'ektiga aylanishi mumkinligi haqida bahs yuritilgan.[72] Yechim sifatida, offshor shamol inshootlari kemalar deb hisoblanib yoki ochiq dengiz erkinligi sifatida kiritilishi mumkinligi aytilgan. sun'iy orollar, o'rnatish va inshootlar.[72]

2020 yilga kelib, ochiq dengizdagi shamollardan energiya ishlab chiqarish hali chuqurroq suvdan kelib chiqadigan asoratlar tufayli texnik jihatdan amalga oshirilmayapti.[73] Biroq, ning ilg'or texnologiyasi suzuvchi shamol turbinalari bu chuqur suvli shamol loyihalarini amalga oshirishga qaratilgan qadamdir.[73]

Dengizdagi shamol turbinalarining turlari

Kutilayotgan shamol turbinasi evolyutsiyasining chuqurroq suvga o'tishi
Vetnamda belgilangan va suzuvchi dengizdagi shamolning taxminiy texnik salohiyati qirg'oqdan 200 kilometr masofada megavatt (MVt) da o'rnatilgan quvvat hajmi bo'yicha
2008 yilda offshor shamol stansiyalari uchun tripodlar poydevori Wilhelmshaven, Germaniya

Umumiy qoida sifatida suv o'tkazmaydigan chuqurligi 50 metrdan (160 fut) kam bo'lgan shamolning o'rtacha tezligi sekundiga 7 metrdan (23 fut / s) yuqori bo'lgan joylarda barqaror poydevorli dengiz shamol turbinalari texnik jihatdan foydali hisoblanadi.[56] Suzib yuradigan dengiz shamol turbinalari suvning chuqurligi 50 metrdan 1000 metrgacha (160 dan 3280 futgacha) texnik jihatdan foydali hisoblanadi. Ning ko'rsatilgan xaritasi Vetnam o'sha mamlakat uchun suvning chuqurligi bo'yicha sobit poydevor va suzuvchi shamol turbinalari uchun texnik salohiyatni baholaydi.

Belgilangan poydevor offshor shamol turbinalari

Hozirda ishlaydigan deyarli barcha dengiz shamollari elektr stantsiyalarida, bir nechta tajriba loyihalarini hisobga olmaganda, qattiq poydevor turbinalari ishlaydi. O'rnatilgan poydevorda ishlaydigan shamol turbinalari suv ostida mustahkam poydevorlarga ega va 50 dan 60 metrgacha (160 dan 200 futgacha) nisbatan sayoz suvlarga o'rnatiladi. ).[74]

Suv osti inshootlarining turlari kiradi monopil, dengiz ostidagi turli xil poydevorlarga ega bo'lgan, uchburchak va ko'ylagi, shu jumladan monopil yoki ko'p sonli qoziqlar, tortishish bazasi va kessonlar.[74]Dengizdagi turbinalar suvning chuqurligiga qarab barqarorlik uchun har xil turdagi bazalarni talab qiladi. Bugungi kunga qadar turli xil echimlar mavjud:[14][75]

  • Ko'pgina poydevorlar diametri olti metr (20 fut) bo'lgan monopil (bitta ustunli) poydevor bo'lib, chuqurligi 30 metr (100 fut) gacha bo'lgan suvlarda ishlatiladi.
  • Neft va gaz sanoatida ishlatiladigan odatiy po'lat ko'ylagi konstruktsiyalari 20-80 metr (70-260 fut) chuqurlikdagi suvda.
  • Gravitatsiyaviy asosli inshootlar, 20-80 m chuqurlikdagi suvning ochiq joylarida foydalanish uchun.
  • Tripod yig'ilgan inshootlar, 20-80 m chuqurlikdagi suvda.
  • 20-80 m chuqurlikdagi suvda uchburchak kesson inshootlari.

Diametri 11 metrgacha (36 fut) 2000 tonnagacha bo'lgan monopillarni yaratish mumkin, ammo hozirgacha eng kattasi 1300 tonnani tashkil etadi, bu ba'zi bir kran kemalarining 1500 tonna chegarasidan pastdir. Turbinaning boshqa tarkibiy qismlari ancha kichik.[76]

The shtativ qoziq pastki tuzilish tizimi - bu monopil tizimlarga qaraganda chuqurroq suvlarga erishish uchun ishlab chiqilgan va 60 m gacha chuqurliklarga ega bo'lgan yangi kontseptsiya. Ushbu texnologiya yuqori qismdagi qo'shma qism orqali bir-biriga bog'langan uchta monopildan iborat. Ushbu echimning asosiy afzalligi - bu uchta monopileni o'rnatish va keyin yuqori bo'g'inni qo'shish orqali amalga oshiriladigan o'rnatilishning soddaligi. Kattaroq tayanch ham ag'darilish xavfini kamaytiradi.[77]

Chelik ko'ylagi konstruktsiyasi neft va gaz sanoatida o'nlab yillar davomida ishlatilgan kontseptsiyalarning offshor shamol sanoatiga moslashishidan kelib chiqadi. Ularning asosiy ustunligi yuqori chuqurliklarga (80 metrgacha) erishish imkoniyatidadir. Ularning asosiy cheklovlari qurilish va montaj xarajatlarining yuqori bo'lishiga bog'liq.[77]

Suzuvchi dengizdagi shamol turbinalari

Blue H Technologies - dunyodagi birinchi suzuvchi shamol turbinasi

Chuqurligi taxminan 60-80 m dan yuqori bo'lgan joylar uchun mustahkam poydevorlar iqtisodiy yoki texnik jihatdan yaroqsiz bo'lib, okean tubiga mahkamlangan suzuvchi shamol turbinasi kerak.[78][79][80] Blue H Technologiesnihoyat tomonidan sotib olingan Dengiz dengizining okean texnologiyasi, dunyodagi birinchi suzuvchi shamol turbinasini 2007 yilda o'rnatgan.[81][82][83]Hywind ga o'rnatilgan dunyodagi birinchi to'laqonli suzuvchi shamol turbinasi Shimoliy dengiz yopiq Norvegiya 2009 yilda.[84] Hywind Shotlandiya 2017 yil oktyabr oyida foydalanishga topshirilgan, quvvati 30 MVt bo'lgan birinchi operatsion suzuvchi shamol elektr stantsiyasi bo'lib, boshqa turdagi suzuvchi turbinalar ishga tushirildi va yana ko'plab loyihalar rejalashtirilgan.

Vertikal eksa dengizdagi shamol turbinalari

Garchi quruqlikda va barcha yirik miqyosdagi shamol turbinalari hozirda o'rnatilgan bo'lsa ham gorizontal o'q, vertikal eksa shamol turbinalari Offshore inshootlarida foydalanish uchun taklif qilingan.Offshor o'rnatish va ularning og'irlik markazining pastligi tufayli ushbu turbinalar printsipial ravishda gorizontal o'qli turbinalardan kattaroq qurilishi mumkin, va har bir turbinaga 20 MVt quvvatga ega loyihalash loyihalari mavjud.[45]Bu offshor shamol elektr stantsiyalari miqyosidagi iqtisodiyotni yaxshilashi mumkin.[45]Biroq, ushbu texnologiyaning hozirgi keng ko'lamli namoyishlari mavjud emas.

Turbinali qurilish materiallari haqida fikrlar

Dengizdagi shamol turbinalari okeanlarda va katta ko'llarda joylashganligi sababli, turbinalar uchun ishlatiladigan materiallar quruq shamol turbinalari uchun ishlatiladigan materiallardan o'zgartirilishi va sho'r suvga nisbatan korroziyaga chidamliligi uchun optimallashtirilgan bo'lishi kerak va minoraning boshidan o'tgan yangi yuk kuchlari qisman. suvga botgan. Dengizdagi shamol energiyasiga qiziqishning asosiy sabablaridan biri shamolning yuqori tezligi bo'lganligi sababli, yuklanishning ayrim farqlari shamol turbinasining yuqori va pastki qismidagi shamol tezligining farqiga ko'ra yuqori siljish kuchlaridan kelib chiqadi. Bundan tashqari, minora poydevori atrofidagi to'lqinlar ta'sir qiladigan bufetli yuklarni hisobga olish kerak, bu esa dengizdan shamolni ishlatish uchun po'lat quvurli minoralardan foydalanishga yaqinlashadi.[85]

Dengizdagi shamol turbinalari uchun doimiy ravishda tuz va suv ta'sirida bo'lganligi sababli, monopil va turbinali minora uchun ishlatiladigan po'lat korroziyaga chidamliligi bilan ishlov berilishi kerak, ayniqsa minoraning pog'onasida "chayqalish zonasi" da minoraga qarshi sindirish va monopil. Ikkita texnikadan foydalanish mumkin katodik himoya va umumiy manba bo'lgan korroziya chuqurlarini kamaytirish uchun qoplamalardan foydalanish vodorodni keltirib chiqaradigan stress yorilishi.[86] Katodik himoya qilish uchun galvanizli anodlar monopilga biriktirilgan va potentsial farqning etarli bo'lishi, monopilda ishlatiladigan po'latdan korroziyaga tushishi kerak. Dengizdagi shamol turbinalariga tatbiq etilgan ba'zi qoplamalar orasida issiq sinkli qoplamalar va poliuretan qoplamali 2-3 epoksi qoplamalar mavjud.[86]

O'rnatish

Portdagi offshor shamol turbinalari uchun bir necha poydevor inshootlari

Ixtisoslashgan jekup uskunalari (Turbinani o'rnatish kemalari) poydevor va turbinani o'rnatish uchun ishlatiladi. 2019 yildan boshlab 3-5 ming tonnani 160 metrgacha ko'tarishga qodir bo'lgan keyingi avlod kemalari qurilmoqda.[87] Katta qismlarni o'rnatish qiyin bo'lishi mumkin va giroskoplar ishlov berishning aniqligini yaxshilashi mumkin.[88]

Ko'p sonli monopil asoslar So'nggi yillarda sayoz suvli joylarda tejamkor dengiz ostidagi shamol elektr stantsiyalarini qurish uchun foydalanilgan.[89][90] Ularning har biri sirtdan katta strukturaning barcha yuklarini (og'irligi, shamol va boshqalarni) qo'llab-quvvatlash uchun bitta, umuman katta diametrli, poydevor strukturaviy elementidan foydalanadi. Boshqa turlari tripodlar (po'lat) va tortishish asoslari (beton).

Shamol turbinasi sub-dengiz monopil poydevori uchun qumda odatiy qurilish jarayoni a dan foydalanishni o'z ichiga oladi qoziq haydovchisi qoziq atrofidagi eroziyani minimallashtirish uchun katta tosh va shag'al qatlamidan 0,5 metr (20 dyuym) qatlam orqali dengiz tubiga 25 metr (82 fut) chuqurlikdagi katta bo'shliq po'lat qoziqni haydash. Ushbu qoziqlar taxminan 50 millimetr (2,0 dyuym) qalin devorlari bilan to'rt metr (13 fut) diametrga ega bo'lishi mumkin. O'tish qismi (qayiqqa qo'nishni tashkil qilish kabi oldindan o'rnatilgan xususiyatlar bilan to'ldirilgan, katodik himoya, dengiz osti kabellari uchun kabel kanallari, turbinalar minorasi gardishi va boshqalar) hozir chuqur boshqariladigan qoziqqa biriktirilgan, qum va suv qoziq markazidan chiqarilib, o'rniga beton. Diametri 0,5 m gacha bo'lgan undan ham kattaroq toshning qo'shimcha qatlami uzoq vaqt eroziyadan himoyalanish uchun dengiz tubiga qo'llaniladi.[90]

Minoralarni o'rnatish va dengiz tubiga ulash uchun qulaylik uchun ular ikki qismga o'rnatiladi, suv sathidan past qism va suv ustidagi qism.[85] Minoraning ikkita qismi birlashtirilib, ulangan ulanish bilan to'ldirilgan o'tish qismi bilan birlashtiriladi. Tuproqli ulanish turbina minorasi boshidan o'tgan yuklarni turbinaning barqarorroq monopil poydevoriga o'tkazishga yordam beradi. Ulanishlarda ishlatiladigan eritmani mustahkamlashning bir usuli - bu monopil va minora o'rtasida siljishlarning oldini olish uchun, eritma ulanish uzunligi bo'ylab qirqish kalitlari deb nomlanadigan payvand choklarini kiritish.[91]

Tarmoq aloqasi

Uy-joy qurish uchun offshor inshoot an HVDC konvertor stantsiyasi offshor shamol parklari uchun a ko'chirilmoqda og'ir yuk ko'taruvchi kema Norvegiyada.

Dengizdagi shamol energetikasini quruqlikdagi tarmoqqa qo'shishning maqbul variantlari sifatida o'rganilayotgan bir necha xil turdagi texnologiyalar mavjud. Eng an'anaviy usul yuqori voltli o'zgaruvchan tok (HVAC) uzatish liniyalari orqali amalga oshiriladi. HVAC uzatish liniyalari hozirda dengiz shamol turbinalari uchun eng ko'p ishlatiladigan tarmoq ulanish shakli hisoblanadi.[92] Biroq, HVACning amaliy bo'lishiga to'sqinlik qiladigan muhim cheklovlar mavjud, ayniqsa, offshor turbinalarga masofa oshib boradi. Birinchidan, HVAC simi zaryadlovchi oqimlari bilan cheklangan,[92] bu kabellardagi sig'imning natijasidir. Dengiz osti o'zgaruvchan kabellari elektr uzatish kabellariga qaraganda ancha yuqori sig'imga ega, shuning uchun sig'im tufayli yo'qotishlar ancha ahamiyatli bo'ladi va elektr uzatish liniyasining qabul qilish uchidagi kuchlanish kattaligi qabul qilish uchidagi kattalikdan sezilarli darajada farq qilishi mumkin. Ushbu yo'qotishlarni qoplash uchun tizimga qo'shimcha kabellar yoki reaktiv kompensatsiyalar qo'shilishi kerak. Ularning ikkalasi ham tizimga xarajatlarni oshiradi.[92] Bundan tashqari, HVAC kabellari ikkalasiga ham ega haqiqiy va reaktiv quvvat ular orqali oqayotgan, qo'shimcha yo'qotishlar bo'lishi mumkin.[93] Ushbu yo'qotishlar tufayli Yerosti HVAC liniyalari ularning uzaytirilishi chegaralangan. Dengizdagi shamol energiyasi uchun HVAC uzatish uchun maksimal mos masofa taxminan 80 kilometr (50 mil) deb hisoblanadi.[92]

Yuqori kuchlanishli to'g'ridan-to'g'ri oqim (HVDC) kabellaridan foydalanish HVAC kabellaridan foydalanishga taklif qilingan alternativa bo'ldi. HVDC uzatish kabellariga simi zaryadlovchi oqimlari ta'sir qilmaydi va kam quvvat yo'qotadi, chunki HVDC reaktiv quvvatni uzatmaydi.[94] Kamroq yo'qotish bilan dengiz ostidagi HVDC liniyalari HVAC ga qaraganda ancha uzoqqa cho'zilishi mumkin. Bu shamol turbinalarini offshorda o'tirish uchun HVDC ni afzal ko'radi. Biroq, HVDC o'zgaruvchan tok tarmog'iga ulanish uchun quvvat konvertorlarini talab qiladi. Ikkalasi ham chiziqli komutlangan konvertorlar (LKK) va kuchlanish manbai konvertorlari (VSC) Buning uchun ko'rib chiqilgan. Garchi LCC-lar ancha keng tarqalgan texnologiya va arzonroq bo'lsa-da, VSC-lar juda ko'p afzalliklarga ega, shu jumladan mustaqil faol quvvat va reaktiv quvvatni boshqarish.[94] DC kabel orqali VSC ga ulangan LCC ga ega bo'lgan HVDC gibrid texnologiyalarini ishlab chiqishda yangi tadqiqotlar o'tkazildi.[94]

Energiyani dengizdagi shamol turbinalaridan quruqlikdagi energetik stansiyalarga etkazish uchun kabellarni okean tubi bo'ylab joylashtirish kerak. Kablolama katta miqdordagi tokni samarali o'tkazishi kerak, bu kabel uchun ishlatiladigan materiallarni optimallashtirishni, shuningdek minimal miqdordagi kabel materiallaridan foydalanish uchun kabel yo'llarini aniqlashni talab qiladi.[85] Ushbu qo'llanmalarda ishlatiladigan kabellar narxini pasaytirishning bir usuli mis o'tkazgichlarni alyuminiy o'tkazgichlarga aylantirishdir, ammo taklif qilingan almashtirish simi harakatining kuchayishi va potentsial shikastlanish masalasini keltirib chiqaradi, chunki alyuminiy misdan kamroq.

Texnik xizmat

Dengizning shamol turbinalari Rodsand shamol xo'jaligi ichida Fehmarn kamari, Boltiq dengizining g'arbiy qismi Germaniya va Daniya o'rtasida (2010)

Chet elda turbinalar kamroq ishlaydi (xizmat ko'rsatish kemasidan foydalanishni talab qiladi yoki vertolyot muntazam kirish uchun va a jekup uskunasi vites qutisini almashtirish kabi og'ir xizmat uchun) va shu tariqa ishonchlilik quruqlikdagi turbinadan ko'ra muhimroqdir.[1] Mumkin bo'lgan quruqlikdagi bazalardan uzoqda joylashgan ba'zi shamol elektr stantsiyalarida xizmat ko'rsatuvchi guruhlar mavjud offshor turar joy birliklari.[95] Korozyonning shamol turbinasi pichoqlariga ta'sirini cheklash uchun elastomer materiallarning himoya lentasi qo'llaniladi, ammo tomchilar eroziyasidan himoya qiluvchi qoplamalar elementlardan yaxshi himoya qiladi.[96]

Ta'minot tashkiloti tarkibiy qismlarni ta'mirlash va ta'mirlashni amalga oshiradi, deyarli barcha resurslarini turbinalarga sarflaydi. Pichoqlarni tekshirishning an'anaviy usuli ishchilar uchun rappel pichoqni pastga tushiring, turbinaga bir kun sarflang. Ba'zi fermer xo'jaliklari kuniga uchta turbinaning pichoqlarini tekshirishadi suratga olish ularni monopiladan a 600 mm ob'ektiv, ko'tarilishni oldini olish.[97] Boshqalar foydalanadi kamera dronlari.[98]

Because of their remote nature, prognosis and health-monitoring systems on offshore wind turbines will become much more necessary. They would enable better planning just-in-time maintenance, thereby reducing the operations and maintenance costs. According to a report from a coalition of researchers from universities, industry, and government (supported by the Barqaror kelajak uchun Atkinson markazi ),[58] making field data from these turbines available would be invaluable in validating complex analysis codes used for turbine design. Reducing this barrier would contribute to the education of engineers specializing in wind energy.

Ishdan chiqarish

As the first offshore wind farms reach their end of life, a demolition industry develops to recycle them at a cost of DKK 2-4 million ($300,000-600,000 USD) roughly per MW, to be guaranteed by the owner.[99]The first offshore wind farm to be decommissioned was Yttre Stengrund in Sweden in November 2015, followed by Vindeby 2017 yilda va Blyt 2019 yilda.

Atrof muhitga ta'siri

Offshore wind farms have very low global isish salohiyati per unit of electricity generated, comparable to that of onshore wind farms. Offshore installations also have the advantage of limited impact of noise and on the landscape compared to land-based projects. Furthermore, in a few local cases there is evidence that offshore wind installations have contributed to the restoration of damaged ecosystems by functioning as artificial reefs.[100]

While the offshore wind industry has grown dramatically over the last several decades, there is still a great deal of uncertainty associated with how the construction and operation of these wind farms affect marine animals and the marine environment.[101]Common environmental concerns associated with offshore wind developments include:

  • The risk of seabirds being struck by wind turbine blades or being displaced from critical habitats;
  • The underwater noise associated with the installation process of driving monopile turbines into the seabed;
  • The physical presence of offshore wind farms altering the behavior of marine mammals, fish, and seabirds with attraction or avoidance;
  • The potential disruption of the nearfield and farfield marine environment from large offshore wind projects.[101]

Because offshore wind is a relatively new industry, there is not yet any evidence on the long-term environmental impacts of offshore wind activities nor any studies on the cumulative effects on several marine activities in the same area.[102]

The Tethys database provides access to scientific literature and general information on the potential environmental effects of offshore wind energy.[101]

Largest offshore wind farms

Four offshore wind farms are in the Temza daryosi maydon: Kentish Flats, Gunfleet Sands, Tanet va London massivi. The latter was the largest in the world until September 2018.
Offshore wind farms with a capacity of at least 400 MW
Shamol fermasiManzilSite coordinatesImkoniyatlar
(MW )
Turbines & modelIshga tushirish
sana
Ref
Hornsea 1 Birlashgan Qirollik53°53′06″N 1°47′28″E / 53.885°N 1.791°E / 53.885; 1.791 (Hornsea 1)1,218174 x Siemens SWT-7.0-1542020[103][104][105]
Walney Extension Birlashgan Qirollik54°5′17″N 3°44′17″W / 54.08806°N 3.73806°W / 54.08806; -3.73806 (Walney Extension)65940 x MHI -Vestalar 8.25 MW
47 x Siemens Gamesa 7 MW
2018[106]
London massivi Birlashgan Qirollik51°38′38″N 01°33′13″E / 51.64389°N 1.55361°E / 51.64389; 1.55361 (London massivi)630175 × Simens SWT-3.6-1202013[107][108][109]
Gemini Wind Farm Gollandiya54°2′10″N 05°57′47″E / 54.03611°N 5.96306°E / 54.03611; 5.96306 (Gemini Wind Farm)600150 × Siemens SWT-4.02017[110][111][112][113]
Beatris Birlashgan Qirollik58°7′48″N 3°4′12″W / 58.13000°N 3.07000°W / 58.13000; -3.07000 (Beatrice Wind Farm)58884 × Siemens SWT-7.0-1542019[114]
Gode Wind (phases 1+2) Germaniya54 ° 04′N 7°02′E / 54.067°N 7.033°E / 54.067; 7.033 (Gode Wind I+II)58297 x Siemens SWT-6.0-1542017[115][116]
Gwynt y Môr Birlashgan Qirollik53 ° 27′00 ″ N 03°35′00″W / 53.45000°N 3.58333°W / 53.45000; -3.58333 (Gwynt y Môr)576160 × Siemens SWT-3.6-1072015[117]
Race Bank Birlashgan Qirollik53 ° 16′N 0 ° 50′E / 53.267°N 0.833°E / 53.267; 0.833 (Race Bank)57391 x Siemens SWT-6.0-1542018[118][119]
Greater Gabbard Birlashgan Qirollik51°52′48″N 1°56′24″E / 51.88000°N 1.94000°E / 51.88000; 1.94000 (Buyuk Gabbard shamol stansiyasi)504140 × Siemens SWT-3.6-1072012[120][121][122]
Hohe See Germaniya54 ° 26′N 6°19′E / 54.433°N 6.317°E / 54.433; 6.31749771 x Siemens SWT-7.0-1542019[123]
Borkum Riffgrund 2 Germaniya53°57′7″N 6°29′17″E / 53.95194°N 6.48806°E / 53.95194; 6.48806 (Borkum Riffgrund 2)45056 x MHI Vestas V164-8.0 MW2019[124]
Horns Rev 3 Daniya55 ° 49′N 7°42′E / 55.817°N 7.700°E / 55.817; 7.700 (Horns Rev 3)40749 x MHI Vestas V164-8.3 MW2019[125]
Dudgeon Birlashgan Qirollik53°14′56″N 1°23′24″E / 53.24889°N 1.39000°E / 53.24889; 1.39000 (Dudgeon Offshore Wind Farm)40267 × Siemens SWT-6.0-1542017[126]
Veja Mate Germaniya54°19′1″N 5°52′15″E / 54.31694°N 5.87083°E / 54.31694; 5.87083 (Veja Mate Wind Farm)40267 × Siemens SWT-6.0-1542017[127][128]
Anholt Daniya56°36′00″N 11°12′36″E / 56.60000°N 11.21000°E / 56.60000; 11.21000 (Anholt Offshore Wind Farm)400111 × Siemens SWT-3.6-1202013[129][130][131][132]
BARD Offshore 1 Germaniya54°22′0″N 5°59′0″E / 54.36667°N 5.98333°E / 54.36667; 5.98333 (BARD Offshore 1)40080 × BARD 5.0MW2013[133][134][135]
Global Tech I [de ] Germaniya54°30′00″N 6°21′30″E / 54.50000°N 6.35833°E / 54.50000; 6.35833 (Global Tech I)40080 × Areva Multibrid M5000 5.0MW2015[136]
Rampion Birlashgan Qirollik50 ° 40′N 0 ° 06′W / 50.667°N 0.100°W / 50.667; -0.100 (Rampion)400116 x MHI Vestas V112-3.45 MW2018[137]
Shimoliy Binxay Xitoy34°40′04″N 120°21′29″E / 34.66778°N 120.35806°E / 34.66778; 120.35806 (Binhai North Wind)400100 x Siemens SWT-4.0-1202018[138]

Loyihalar

Most of the current projects are in European and East Asian waters.

There are also several proposed developments in North America.Projects are under development in the United States in wind-rich areas of the East Coast, Great Lakes, and Pacific coast. In January 2012, a "Smart for the Start" regulatory approach was introduced, designed to expedite the siting process while incorporating strong environmental protections. Specifically, the Department of Interior approved “wind energy areas” off the coast where projects can move through the regulatory approval process more quickly.[139] The first offshore wind farm in the USA is the 30-megawatt, 5 turbine Blok orolining shamol xo'jaligi which was commissioned in December 2016.[140][141] Ko'pchilik sportfishermen and marine biologists believe the bases of the five, 6-megawatt wind turbines off of Blok oroli are acting as an artificial reef.[142]

Another offshore wind farm that is in the planning phase is off the coast of Virjiniya plyaji. On 3 August 2018, Dominion Energy announced its two wind turbine pilot program that will be 27 miles offshore from Virginia Beach. The area is undergoing a survey that will last for 4–6 weeks.[143]

Canadian wind power in the province of Ontario is pursuing several proposed locations in the Buyuk ko'llar, including the suspended[144] Trillium Power Wind 1 approximately 20 km from shore and over 400 MW in capacity.[145] Other Canadian projects include one on the Pacific west coast.[146]

India is looking at the potential of offshore wind power plants, with a 100 MW demonstration plant being planned off the coast of Gujarat (2014).[147] In 2013, a group of organizations, led by Global Wind Energy Council (GWEC) started project FOWIND (Facilitating Offshore Wind in India) to identify potential zones for development of off-shore wind power in India and to stimulate R & D activities in this area. In 2014 FOWIND commissioned Center for Study of Science, Technology and Policy (CSTEP) to undertake pre-feasibility studies in eight zones in Tamil Nadu which have been identified as having potential.[148]

Offshore wind power by country

Offshore wind turbines near Kopengagen, Daniya

Most of offshore wind farms are currently in northern Europe. The United Kingdom and Germany alone accounted for roughly two thirds of the total offshore wind power capacity installed worldwide in 2016.Other countries, such as China, are rapidly expanding their offshore wind power capacity.

List of countries by cumulative installed offshore wind power capacity (MW)[2][12]
RankMamlakat2016201720182019
1Birlashgan Qirollik5,1566,6517,9639,723
2Germaniya4,1085,4116,3807,493
3Xitoy1,6272,7884,5886,838
4Daniya1,2711,2681,3291,703
5Belgiya7128771,1861,556
6Gollandiya1,1181,1181,1181,118
7Shvetsiya202202192191
8Tayvan088128
9Vetnam99999999
10Yaponiya60656585
11Janubiy Koreya35387373
12Finlyandiya32928771
13Qo'shma Shtatlar30303030
14Irlandiya25252525
15Ispaniya5555
16Norvegiya2222
17Frantsiya0222
Jahon jami14,48218,65823,14029,142

Shuningdek qarang

Adabiyotlar

  1. ^ a b v d Madsen & Krogsgaard. Offshore Wind Power 2010 Arxivlandi 30 June 2011 at the Orqaga qaytish mashinasi BTM Consult, 22 November 2010. Retrieved: 22 November 2010.
  2. ^ a b v d "Global Wind Report 2018" (PDF). gwec.net. Global Wind Energy Council (GWEC). Olingan 22 may 2019.
  3. ^ "Hornsea Project One - Fully Commissioned Offshore Wind Farm - United Kingdom | 4C Offshore". www.4coffshore.com.
  4. ^ "Orsted clears Taiwan hurdle". reNEWS - Renewable Energy News. 2017 yil 6-dekabr. Olingan 7 dekabr 2017.
  5. ^ a b Levelized Cost of New Generation Resources in the Annual Energy Outlook 2011. Released 16 December 2010. Report of the US Energy Information Administration (EIA) of the AQSh Energetika vazirligi (DOE).
  6. ^ a b Lee, Andrew (22 October 2019). "Offshore wind power price plunges by a third in a year". Recharge | Renewable energy news and articles.
  7. ^ "After a decade of dithering, the US east coast went all in on offshore wind power this week". Olingan 29 sentyabr 2018.
  8. ^ Reed, Stanley (4 June 2020). "A New Weapon Against Climate Change May Float". The New York Times. Olingan 10 iyun 2020.
  9. ^ "GWEC Global Wind Statistics 2014" (PDF). Global Wind Energy Council. 2015 yil 10-fevral.
  10. ^ "Global Wind Statistics 2015" (PDF). Global Wind Energy Council (GWEC). 2016 yil 10-fevral. Olingan 14 aprel 2017.
  11. ^ "OFFSHORE WIND | GWEC". www.gwec.net. Olingan 5 avgust 2017.
  12. ^ a b "Global Wind Report 2019". GWEC.
  13. ^ "Wind in our Sails, A report by the European Wind Energy Association - 2011" (PDF). European Wind Energy Association. 2011. p. 11. Olingan 27 fevral 2015.
  14. ^ a b v d Atrof-muhit va energetikani o'rganish instituti (Oktyabr 2010). "Offshore Wind Energy" (PDF).
  15. ^ Platt, Jim (2013). "The offshore wind energy nano-industry". Nanotechnology Perceptions. 9 (2): 91–95. doi:10.4024/N04PL13A.ntp.09.02.
  16. ^ "The offshore wind energy nano-industry". Olingan 20 may 2016.
  17. ^ "Wind in power 2013 European statistics" The European Wind Energy Association, 2014
  18. ^ a b v The European offshore wind industry - key trends and statistics 2013 ,The European Wind Energy Association, 2014
  19. ^ "Wind in Power: 2014 European statistics". European Wind Energy Association (EWEA). Olingan 16 mart 2014.
  20. ^ Ho, Andrew (2015). The European offshore wind industry - key trends and statistics 2015 (PDF). European Wind Energy Association. p. 10. Olingan 29 aprel 2019.
  21. ^ "Detailed appraisal of the offshore wind industry in China". The Carbon Trust. 2014 yil may. Olingan 22 iyul 2014.
  22. ^ "China tops offshore turbine chart". reNEWS - Renewable Energy News. 2017 yil 22-fevral. Olingan 26 fevral 2017.
  23. ^ Ryan, Joe (2 May 2016). "A U.S. State Has Key to $10 Billion Offshore Wind Boom". Bloomberg.com. Olingan 2 iyun 2016.
  24. ^ Jessica Shankleman (28 April 2016). "World's Biggest Windmills Now Make Jumboi Jets Look Tiny". Bloomberg.com. Olingan 2 iyun 2016.
  25. ^ "Global Wind Industry Hits Record 62 GW Installed In 2015". CleanTechnica. 2016 yil 3-fevral.
  26. ^ a b European Commission (22 April 2020). "Onshore and offshore wind". Evropa komissiyasi. Olingan 28 may 2020.
  27. ^ a b v DNV GL (2019). Energy Transition Outlook 2019. A global and regional forecast to 2050. https://eto.dnvgl.com/2019: DNV GL. p. 124.CS1 tarmog'i: joylashuvi (havola)
  28. ^ a b IEA (2019). Offshore Wind Outlook 2019. https://www.iea.org/reports/offshore-wind-outlook-2019: International Energy Agency. p. 15.CS1 tarmog'i: joylashuvi (havola)
  29. ^ IEA (2020). Offshore Wind Outlook 2019. https://www.iea.org/reports/offshore-wind-outlook-2019: International Energy Agency. p. 16.CS1 tarmog'i: joylashuvi (havola)
  30. ^ a b Lindvig, Kaj. The installation and servicing of offshore wind farms p6 A2SEA, 16 September 2010. Accessed: 9 October 2011.
  31. ^ Nymark, Jens. Seaturbines competitive in 15 years Arxivlandi 16 November 2011 at the Orqaga qaytish mashinasi Borsen, 15 November 2011. Accessed: 10 December 2011.
  32. ^ Justin Wilkes et al. The European offshore wind industry key 2011 trends and statistics European Wind Energy Association, January 2012. Accessed: 26 March 2012.
  33. ^ 17 EU countries planning massive offshore wind power ROV world, 30 November 2011. Accessed: 10 December 2011.
  34. ^ Tildy Bayar (30 September 2011). "Wind Energy Markets: Experts See Solid Offshore Growth". Qayta tiklanadigan energiya dunyosi.
  35. ^ Bakewell, Sally (29 October 2012). "Largest Offshore Wind Farm Generates First Power in U.K." Bloomberg. Olingan 19 dekabr 2012.
  36. ^ Stiesdal, Henrik (21 December 2016). "Midt i en disruptionstid". Ingeniøren. Olingan 21 dekabr 2016. Real prices have moved to half of what the experts predicted
  37. ^ "Price diagram: Real and predicted prices for offshore wind power".
  38. ^ Tillessen, Teena (2010). "High demand for wind farm installation vessels". Hansa International Maritime Journal. Vol. 147 no. 8. pp. 170–171.
  39. ^ The Ocean Economy in 2030, pp.205-212. OECD iLibrary, 27 April 2016. ISBN  9264251723 . Web read
  40. ^ a b European Commission (2020). "A European Green Deal". Evropa komissiyasi. Olingan 28 may 2020.
  41. ^ IEA (2019). Offshore Wind Outlook 2019. https://www.iea.org/reports/offshore-wind-outlook-2019: International Energy Agency. 22-23 betlar.CS1 tarmog'i: joylashuvi (havola)
  42. ^ "Studie: Stromgestehungskosten erneuerbare Energien - März 2018". Fraunhofer ISE. 2018 yil. Olingan 2 aprel 2018.
  43. ^ "Wind Power". Nyu-York Tayms. 27 January 2002.
  44. ^ Prinds, Karsten (20 April 2011). "Where offshore wind was invented". LORC. Arxivlandi from the original on 29 April 2016. Olingan 27 fevral 2017.
  45. ^ a b v d e Sun, Xiaojing; Huang, Diangui; Wu, Guoqing (May 2012). "The current state of offshore wind energy technology development". Energiya. 41 (1): 298–312. doi:10.1016/j.energy.2012.02.054.
  46. ^ Poulsen, Thomas; Lema, Rasmus (1 June 2017). "Is the supply chain ready for the green transformation? The case of offshore wind logistics". Qayta tiklanadigan va barqaror energiya sharhlari. 73: 758–771. doi:10.1016/j.rser.2017.01.181.
  47. ^ Röckmann C., Lagerveld S., Stavenuiter J. (2017) Operation and Maintenance Costs of Offshore Wind Farms and Potential Multi-use Platforms in the Dutch North Sea. In: Buck B., Langan R. (eds) Aquaculture Perspective of Multi-Use Sites in the Open Ocean. Springer, Cham
  48. ^ "Offshore Wind Accelerator". Uglerodlarga ishonish. Olingan 22 iyul 2014.
  49. ^ "Oil & Gas Giant to Build Dutch Borssele III & IV Offshore Wind Farms". Offshore Wind. 2016 yil 12-dekabr. Olingan 14 dekabr 2016.
  50. ^ "Tender design, output gains key to DONG's record-low Borssele 1&2 offshore bid price". 2016 yil 17-avgust. Arxivlandi asl nusxasidan 2016 yil 17 sentyabrda. Olingan 17 sentyabr 2016.
  51. ^ Steel, William (9 November 2016). "Vattenfall wins Kriegers Flak with record €49.90/MWh". Recharge. Arxivlandi asl nusxasidan 2016 yil 10-noyabrda. Olingan 10-noyabr 2016.
  52. ^ "Offshore wind cheaper than nuclear as auction smashes expectations". 11 sentyabr 2017 yil. Olingan 29 sentyabr 2018.
  53. ^ "A Stunningly Low Price for Offshore Wind: Massachusetts Moves Forward". 26 sentyabr 2018 yil. Olingan 29 sentyabr 2018.
  54. ^ "First Large US Offshore Wind Project Sets Record-Low Price Starting at $74 per MWh". 2018 yil avgust. Olingan 29 sentyabr 2018.
  55. ^ Stiesdal, Henrik. "Pi and turbines - a useful context " Original, in Danish Ingeniøren, 13 March 2015. Accessed: 13 March 2015.
  56. ^ a b ESMAP. 2019. "Global: Expanding Offshore Wind to Emerging Markets ". Vashington, DC: Jahon banki. Accessed: 30 April 2020
  57. ^ ESMAP. 2020. "Offshore Wind Technical Potential by Country": Xaritalar va Tabular Data. Accessed: 30 April 2020.
  58. ^ a b v Zehnder, Alan; Warhaft, Zellman, eds. (2011). "University Collaboration on Wind Energy" (PDF). Kornell universiteti. Olingan 13 yanvar 2016.
  59. ^ Tramontana, Tea (31 October 2012). "Overcoming problems with crumbling grout". LORC. Arxivlandi asl nusxasidan 2016 yil 12 mayda. Olingan 27 fevral 2017.
  60. ^ "Wind turbines Part 3: Design requirements for offshore wind turbines" Avstriya standartlari xalqaro. Retrieved: 16 August 2012.
  61. ^ International Standard IEC 61400-3 Xalqaro elektrotexnika komissiyasi, August 2005. Accessed: 12 March 2011.[o'lik havola ]
  62. ^ Quarton, D.C. "An international design standard for offshore wind turbines: IEC 61400-3" Arxivlandi 2011 yil 21 iyul Orqaga qaytish mashinasi Garrad Hassan, 2005. Accessed: 12 March 2011.
  63. ^ Musial, W. D.; Sheppard, R. E.; Dolan, D.; Naughton, B. "Development of Offshore Wind Recommended Practice for U.S. Waters " Qayta tiklanadigan energiya milliy laboratoriyasi, April 2013. Accessed: 20 November 2013. OSTI ID: 1078076
  64. ^ "Arxivlangan nusxa". Arxivlandi asl nusxasi 2016 yil 9-avgustda. Olingan 6 iyun 2016.CS1 maint: nom sifatida arxivlangan nusxa (havola)
  65. ^ Jonkman, J.M. "Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine" Technical Report NREL/TP-500-41958 page 75, NREL November 2007. Retrieved: 25 June 2012.
  66. ^ Jamie D. (11 June 2009). "N.J. must make wind farm permitting process as quick and easy as possible | Commentary | NewJerseyNewsroom.com - Your State. Your News". NewJerseyNewsroom.com. Olingan 6 iyul 2013.
  67. ^ "Subtask 1: Critical Deployment Issues". Arxivlandi asl nusxasi on 28 August 2009.
  68. ^ Streamline Renewable Energy Policy and make Australia a World Leader Energy Matters, 11 August 2010. Retrieved: 6 November 2010.
  69. ^ "Nearshore wind turbines in Denmark"[doimiy o'lik havola ] (Daniya tilida). Daniya energetika agentligi, June 2012. Retrieved: 26 June 2012.
  70. ^ "Smart from the Start " Okean energiyasini boshqarish byurosi. Accessed: 20 November 2013.
  71. ^ a b v d e United Nations (10 December 1982). "Birlashgan Millatlar Tashkilotining dengiz huquqi to'g'risidagi konvensiyasi" (PDF). Birlashgan Millatlar. Olingan 28 may 2020.
  72. ^ a b Elsner, Paul & Suarez, Suzette (2019). "Renewable energy from the high seas: Geo-spatial modelling of resource potential and legal implications for developing offshore wind projects beyond the national jurisdiction of coastal States" (PDF). Energiya siyosati. 128: 919–929. doi:10.1016/j.enpol.2019.01.064.CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  73. ^ a b IEA (2019). Offshore Wind Outlook 2019. https://www.iea.org/reports/offshore-wind-outlook-2019: International Energy Agency. p. 23.CS1 tarmog'i: joylashuvi (havola)
  74. ^ a b "Challenges in design of foundations for offshore wind turbines". The E&T Energy and Power Hub. The E&T Energy and Power Hub. 9 August 2017. Archived from asl nusxasi 2017 yil 7-dekabrda. Olingan 7 dekabr 2017.
  75. ^ "Offshore wind foundation shift hinges on serial build gains | New Energy Update". analysis.newenergyupdate.com. 2019 yil 15-may. Arxivlandi from the original on 5 October 2019.
  76. ^ "Installation Vessels: Reaching the Limit and Beyond". 2017 yil 27 mart. Olingan 19 aprel 2017.
  77. ^ a b Perez-Collazo, C (2 January 2015). "A review of combined wave and offshore wind energy". Qayta tiklanadigan va barqaror energiya sharhlari. 42: 141–153. doi:10.1016/j.rser.2014.09.032. hdl:10026.1/4547.
  78. ^ "Classification and Certification of Floating Offshore Wind Turbines" Arxivlandi 2013 yil 3-dekabr kuni Orqaga qaytish mashinasi Bureau Veritas, November 2010. Retrieved: 16 August 2012.
  79. ^ Elaine Kurtenbach. "Japan starts up offshore wind farm near Fukushima " Sidney Morning Herald, 12 November 2013. Accessed: 11 November 2013.
  80. ^ "Japan: Experimental Offshore Floating Wind Farm Project " OffshoreWind, 11 October 2013. Accessed: 12 October 2013.
  81. ^ "Floating Wind Turbines". Floating Wind Turbines. Olingan 21 iyul 2020.
  82. ^ "Blue H Technologies Launches World's First Floating Wind Turbine". MarineBuzz. Olingan 21 iyul 2020.
  83. ^ de Vries, Eize (1 April 2020). "Seawind steps up development of radical two-blade offshore turbine". Shamol kuchi oyiga. Windpower Monthly. Arxivlandi asl nusxasidan 2020 yil 21 iyunda. Olingan 24 iyul 2020.
  84. ^ Madslien, Jorn (5 June 2009). "Floating wind turbine launched". BBC yangiliklari. Olingan 14 sentyabr 2009.
  85. ^ a b v Chong, Ng (3 March 2016). Offshore wind farms : technologies, design and operation. Ng, Chong, Ran, Li. Duxford, UK: Elsevier, WP Woodhead Publishing. ISBN  978-0-08-100780-8. OCLC  944186047.CS1 tarmog'i: sana va yil (havola)
  86. ^ a b Black, Anders Rosborg; Mathiesen, Troels; Hilbert, Lisbeth Rischel (12 May 2015). "Corrosion Protection of Offshore Wind Foundations". NACE International. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  87. ^ Lars Paulsson, Jeremy Hodges, and Chris Martin (13 May 2019). "Offshore Wind Will Need Bigger Boats. Much Bigger Boats". Bloomberg.CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  88. ^ "Load-orienting technology will make offshore installation safer". Riviera. 16 October 2020.
  89. ^ Offshore Wind Turbine Foundations Arxivlandi 28 February 2010 at the Orqaga qaytish mashinasi, 2009-09-09, accessed 12 April 2010.
  90. ^ a b Constructing a turbine foundation Arxivlandi 21 May 2011 at the Orqaga qaytish mashinasi Horns Rev project, Elsam monopile foundation construction process, accessed 12 April 2010]
  91. ^ Tziavos, Nikolaos I.; Hemida, Hassan; Metje, Nicole; Baniotopoulos, Charalampos (8 June 2016). "Grouted connections on offshore wind turbines: a review" (PDF). Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics. 169 (4): 183–195. doi:10.1680/jencm.16.00004. ISSN  1755-0777.
  92. ^ a b v d Daniel, John; Liu, Shu; Ibanez, Eduardo; Pennock, Ken; Reed, Gregory; Hanes, Spencer. "National Offshore Wind Energy Grid Interconnection Study Executive Summary" (PDF). Olingan 1 may 2019.
  93. ^ Anaya-Lara, Olimpo; Campos-Gaona, David; Moreno-Goytia, Edgar; Adam, Grain (10 April 2014). Grid Integration of Offshore Wind Farms – Case Studies. Vili. doi:10.1002/9781118701638.ch5. ISBN  9781118701638.
  94. ^ a b v Torres-Olguin, Raymundo; Molinas, Marta; Undeland, Tore (October 2012). "Offshore Wind Farm Grid Integration by VSC Technology With LCC-Based HVDC Transmission". IEEE Transactions on Sustainable Energy. 3 (4): 899. Bibcode:2012ITSE....3..899T. doi:10.1109/TSTE.2012.2200511. S2CID  44047871.
  95. ^ Accommodation Platform Arxivlandi 2011 yil 19-iyul kuni Orqaga qaytish mashinasi DONG Energy, February 2010. Retrieved: 22 November 2010.
  96. ^ Valaker, E.A.; Armada, S.; Wilson, S. (2015). "Droplet Erosion Protection Coatings for Offshore Wind Turbine Blades". Energiya protseduralari. 80: 263–275. doi:10.1016/j.egypro.2015.11.430.
  97. ^ Bjørn Godske (2 June 2016). "Dong bruger supertele til vingeinspektion". Ingeniøren. Olingan 5 iyun 2016.
  98. ^ "3 Ways to Inspect a Blade". E.ON energized. Olingan 5 iyun 2016.
  99. ^ "Aldrende havmølleparker åbner marked for klog nedrivning". Ingeniøren. 2016 yil 20-fevral. Olingan 20 may 2016.
  100. ^ Wilson, Jennifer C., Mike Elliott, Nick D. Cutts, Lucas Mander, Vera Mendao, Rafael Perez-Dominguez & Anna Phelps (2010). "Coastal and Offshore Wind Energy Generation: Is It Environmentally Benign?". Energiya. 13 (7): 1383–1422. doi:10.3390/en3071383.CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  101. ^ a b v "Environmental Effects of Wind and Marine renewable Energy". Tetis. 2017.
  102. ^ Bergström, Lena, Lena Kautsky, Torleif Malm, Rutger Rosenberg, Magnus Wahlberg, Nastassja Åstrand, Capetillo and Dan Wilhelmsson (2014). "Effects of offshore wind farms on marine wildlife - a generalised impact assessment". Environ. 9 (3): 034012. Bibcode:2014ERL.....9c4012B. doi:10.1088/1748-9326/9/3/034012.CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  103. ^ "DONG Tables Hornsea Project One Offshore Construction Schedule". Offshore Wind. Arxivlandi from the original on 20 April 2018. Olingan 20 aprel 2018.
  104. ^ "World's Largest Offshore Wind Farm Fully Up and Running". Offshore Wind. 30 yanvar 2020 yil. Olingan 3 fevral 2020.
  105. ^ "World's Largest Offshore Wind Farm Fully Up and Running". 30 yanvar 2020 yil.
  106. ^ "Arxivlangan nusxa". Arxivlandi asl nusxasidan 2018 yil 6 sentyabrda. Olingan 6 sentyabr 2018.CS1 maint: nom sifatida arxivlangan nusxa (havola)
  107. ^ "London Array's own website announcement of commencement of offshore works" (PDF). londonarray.com. Arxivlandi (PDF) asl nusxasidan 2011 yil 22 iyulda. Olingan 8 mart 2011.
  108. ^ Wittrup, Sanne. First foundation Arxivlandi 9 March 2011 at the Orqaga qaytish mashinasi Ing.dk, 8 March 2011. Accessed: 8 March 2011.
  109. ^ "London Array - The Project". londonarray.com. Arxivlandi asl nusxasidan 2014 yil 21 fevralda. Olingan 10 iyun 2015.
  110. ^ "Arxivlangan nusxa". Arxivlandi asl nusxasi 2018 yil 10 aprelda. Olingan 8 may 2017.CS1 maint: nom sifatida arxivlangan nusxa (havola)
  111. ^ "The 600-MW Gemini offshore wind farm is successfully up & running". Windpower Engineering & Development. Arxivlandi from the original on 21 January 2019. Olingan 12 fevral 2019.
  112. ^ "Arxivlangan nusxa". Arxivlandi from the original on 21 January 2019. Olingan 8 may 2017.CS1 maint: nom sifatida arxivlangan nusxa (havola)
  113. ^ "Egizaklar". 4coffshore.com. Arxivlandi from the original on 24 January 2016. Olingan 4 sentyabr 2015.
  114. ^ "Oleg Strashnov Installs First Beatrice Jacket Foundation". Offshore Wind. Arxivlandi asl nusxasidan 2017 yil 7 oktyabrda. Olingan 18 oktyabr 2017.
  115. ^ "Gode Wind foundation installed successfully". 4coffshore.com. Arxivlandi from the original on 24 January 2016. Olingan 4 sentyabr 2015.
  116. ^ "DONG Energy Inaugurates 582 Megawatt Gode Wind I & 2 Offshore Wind Farms". CleanTechnica. Arxivlandi asl nusxasidan 2017 yil 16 sentyabrda. Olingan 3 iyul 2017.
  117. ^ "World's second largest offshore wind farm opens off coast of Wales". Uels Onlayn. Arxivlandi asl nusxasi 2015 yil 19 iyunda. Olingan 18 iyun 2015.
  118. ^ "Full power at Race Bank Offshore Wind Farm". orsted.com. Arxivlandi asl nusxasidan 2018 yil 12 oktyabrda. Olingan 2 fevral 2018.
  119. ^ "Innovation Installs First Foundation at Race Bank". offshorewind.biz/. Arxivlandi asl nusxasidan 2016 yil 2 iyulda. Olingan 2 iyul 2016.
  120. ^ "UK: Greater Gabbard Offshore Wind Farm Generates Power". Arxivlandi from the original on 11 October 2012. Olingan 7 sentyabr 2012.
  121. ^ "Offshore Wind Farms 2008" (PDF). EWEA. 2 February 2009. Arxivlandi (PDF) asl nusxasidan 2009 yil 19 aprelda. Olingan 4 fevral 2009.
  122. ^ "SSE plc - The UK's broadest-based energy company". scottish-southern.co.uk. Arxivlandi 2011 yil 11 yanvarda asl nusxadan. Olingan 10 iyun 2015.
  123. ^ "Foundation first at Hohe See". reNEWS - Renewable Energy News. 17 April 2018. Arxivlandi asl nusxasidan 2018 yil 19 aprelda. Olingan 20 aprel 2018.
  124. ^ "MHI Vestas Sets Up Borkum Riffgrund 2 Base in Emden". Offshore Wind. Arxivlandi from the original on 20 April 2018. Olingan 20 aprel 2018.
  125. ^ "Horns Rev 3 offshore wind farm Arxivlandi 2016-10-22 at the Orqaga qaytish mashinasi " Vattenfall, 27 June 2016. Accessed: 29 October 2016.
  126. ^ Ltd, Renews (4 October 2017). "Dudgeon hits CfD milestone". reNEWS - Renewable Energy News.
  127. ^ "World's Largest OW Jack-Up Vessel Installs World's Heaviest Monopile at Veja Mate OWF". Arxivlandi asl nusxasidan 2016 yil 17 iyunda. Olingan 6 iyun 2016.
  128. ^ "Construction complete for 402-MW Veja Mate offshore wind park". Renewables Now. Arxivlandi from the original on 21 January 2019. Olingan 31 may 2017.
  129. ^ "VIPs cut ribbon at 400MW Anholt Arxivlandi 2013-09-07 at the Orqaga qaytish mashinasi " Recharge News, 4 September 2013. Accessed: 4 September 2013.
  130. ^ Jan Bjerre Lauridsen & Søren Andersen. "Queen says Good Wind to giant turbines Arxivlandi 2013-09-13 da Orqaga qaytish mashinasi " Berlingske, 4 September 2013. Accessed: 4 September 2013.
  131. ^ "All turbines at Anholt Offshore wind farm now operational" (Matbuot xabari). DONG Energy. 20 June 2013. Archived from asl nusxasi 2013 yil 6 oktyabrda. Olingan 27 avgust 2013.
  132. ^ Anholf Offshore wind farm in 4C Offshore Arxivlandi 2012 yil 27 iyun Orqaga qaytish mashinasi Retrieved 27 August 2013
  133. ^ "BARD 1 (4c)". 4coffshore.com. Arxivlandi from the original on 24 January 2016. Olingan 10 iyun 2015.
  134. ^ Rösler eröffnet Offshore-Windpark Bard 1 Arxivlandi 2013 yil 28 avgust Orqaga qaytish mashinasi Retrieved 26 August 2013
  135. ^ German Federal Minister Inaugurates BARD Offshore 1 Arxivlandi 30 August 2013 at the Orqaga qaytish mashinasi Retrieved 26 August 2013
  136. ^ "Global Tech I officially inaugurated". sunwindenergy.com/. Arxivlandi asl nusxasidan 2015 yil 11 sentyabrda. Olingan 4 sentyabr 2015.
  137. ^ "Rampion Offshore Wind Farm Hits Full Stride". Offshore Wind. Arxivlandi asl nusxasidan 2018 yil 18 aprelda. Olingan 3 may 2018.
  138. ^ "SPIC Binhai North H2 400MW". www.4coffshore.com. Arxivlandi asl nusxasidan 2018 yil 30 iyulda. Olingan 26 noyabr 2018.
  139. ^ Kit Kennedy (2 February 2012). "Offshore Wind One Step Closer to Reality in the Mid-Atlantic". Qayta tiklanadigan energiya dunyosi.
  140. ^ "America Is Finally Getting Its First Offshore Wind Farm. Conservatives Are Trying to Make Sure It's the Last". Yangi respublika. 2015 yil 14-may. Olingan 15 may 2015.
  141. ^ "Block Island Wind Farm - Deepwater Wind". Deepwater Wind. Olingan 20 may 2016.
  142. ^ Prevost, Lisa (4 November 2019). "In Rhode Island, offshore wind farm emerging as popular fishing spot". Energy News Network. Olingan 28 aprel 2020.
  143. ^ "Offshore wind energy heading to waters off Virginia Beach". WVEC. Olingan 14 avgust 2018.
  144. ^ Offshore wind development hits a snag in Ontario Arxivlandi 9 January 2012 at the Orqaga qaytish mashinasi Alberta Oil Magazine, April 2011. Accessed: 29 September 2011.
  145. ^ Hamilton, Tyler (15 January 2008). "Ontario to approve Great Lakes wind power". Yulduz. Toronto. Olingan 2 may 2008.
  146. ^ "Naikun Wind Development, Inc". Olingan 21 may 2008.
  147. ^ "MOU Signed for First Ever Offshore Wind Power Project in India". www.pib.nic.in. Hindiston hukumati matbuot axborot byurosi. 1 oktyabr 2014 yil. Olingan 30 aprel 2015.
  148. ^ R. Srikanth; Sangeetha Kandavel (29 January 2015). "Tapping the offshore wind". Hind. Olingan 30 aprel 2015.