Otto Xen - Otto Hahn

Otto Xen
Otto Xen 1970.jpg
Otto Xen
Talaffuz
  • Nemischa: [ˈʔɔto ˈhaːn]
Tug'ilgan(1879-03-08)8 mart 1879 yil
O'ldi1968 yil 28-iyul(1968-07-28) (89 yosh)
MillatiNemis
Olma materMarburg universiteti
Ma'lum
Turmush o'rtoqlarEdit Junghans [de ] (1887-1968) (Uylangan: 1913-1968)
BolalarHanno Xahn [de ] (1922–1960)
Mukofotlar
Ilmiy martaba
Maydonlar
Institutlar
Doktor doktoriTeodor Zincke
Boshqa ilmiy maslahatchilar
Doktorantlar
Imzo
Otto Hahn signature.svg

Otto Xen (talaffuz qilingan [ˈƆto ˈhaːn] (Ushbu ovoz haqidatinglang); 8 mart 1879 - 1968 yil 28 iyul) nemis edi kimyogar va sohalarda kashshof radioaktivlik va radiokimyo. Hahn otasi deb nomlanadi yadro kimyosi. Hahn va Lise Meitner radioaktiv topilgan radium izotoplari, torium, protaktinium va uran. Shuningdek, u radioaktiv orqaga qaytish va yadro izomeriyasi va kashshoflik qildi rubidiy-stronsiyum uchrashuvi. 1938 yilda Xahn, Lise Meitner va Fritz Strassmann yadroviy bo'linishni kashf etdi, buning uchun Xahn 1944 yilni qabul qildi Kimyo bo'yicha Nobel mukofoti. Yadro bo'linishi uchun asos bo'lgan atom reaktorlari va yadro qurollari.

Bitiruvchisi Marburg universiteti, Xen Sirda o'qigan Uilyam Ramsay da London universiteti kolleji va McGill universiteti ostida Monrealda Ernest Rezerford, u erda bir nechta yangi radioaktiv izotoplarni kashf etdi. U 1906 yilda Germaniyaga qaytib keldi va Emil Fischer sobiq yog'ochni qayta ishlash sexini Kimyo instituti podvaliga joylashtirdi Berlin universiteti laboratoriya sifatida foydalanish uchun uning ixtiyorida. Hahn buni tugatdi habilitatsiya 1907 yil bahorida va a Privatdozent. 1912 yilda u yangi tashkil etilgan radioaktivlik bo'limining boshlig'i bo'ldi Kayzer Vilgelm kimyo instituti. Hozir ularning nomlari bilan ataladigan binoda avstriyalik fizik Lise Meitner bilan ishlaganida, u 1918 yilda eng uzoq umr ko'rgan protaktiniy izotopini ajratib olish bilan yakun topgan bir qator yangi kashfiyotlarni amalga oshirdi.

Davomida Birinchi jahon urushi u a bilan xizmat qilgan Landver polk G'arbiy front va bilan kimyoviy urush boshchiligidagi qism Fritz Xaber G'arbda, Sharqiy va Italyancha jabhalar, daromad olish Temir xoch (2-sinf) Ipres jangi. Urushdan keyin u o'z bo'limini boshqarishda davom etar ekan, Kayzer Vilgelm kimyo institutining rahbari bo'ldi. 1934-1938 yillarda u Strassmann va Meitner bilan uran va toriumning neytron bombardimon qilinishi natijasida hosil bo'lgan izotoplarni o'rganish ustida ish olib bordi, bu esa yadroviy bo'linishni kashf etishga olib keldi. U raqib edi milliy sotsializm va yahudiylarni ta'qib qilish tomonidan Natsistlar partiyasi Bu ko'plab hamkasblarini, shu jumladan 1938 yilda Germaniyadan qochishga majbur bo'lgan Meitnerni olib tashlashga sabab bo'ldi. davomida Ikkinchi jahon urushi, u ishlagan Germaniyaning yadro quroli dasturi, katalogi bo'linish mahsulotlari uran. Natijada, urush oxirida u Ittifoq kuchlari tomonidan hibsga olingan va qamoqqa olingan Farm Hall 1945 yil iyuldan 1946 yil yanvargacha bo'lgan boshqa to'qqiz nemis olimlari bilan.

Xahn so'nggi prezident bo'lib ishlagan Kaiser Wilhelm Fanni Rivojlantirish Jamiyati 1946 yilda va uning o'rnini bosuvchi prezident sifatida Maks Plank jamiyati 1948 yildan 1960 yilgacha. 1959 yilda u Berlinda birgalikda asos solgan Germaniya olimlari federatsiyasi, mas'uliyatli fan idealiga sodiq bo'lgan nodavlat tashkilot. U urushdan keyingi eng nufuzli va obro'li fuqarolardan biriga aylandi G'arbiy Germaniya va nemis ilmini tiklash uchun ishlagan.

Hayotning boshlang'ich davri

Otto Xan tug'ilgan Frankfurt am Main 1879 yil 8-martda Geynrix Xonning kenja o'g'li (1845-1922), farovon edi sirlangan (va Glasbau Hahn kompaniyasining asoschisi) va Charlotte Hahn nee Gies (1845-1905). Uning katta ukasi Karl, onasining oldingi turmushidan o'g'li va ikkita akasi Xayner va Yuli bor edi. Oila otasining ustaxonasi ustida yashar edi. Kichik uch o'g'il o'qigan Klinger Oberrealschule Frankfurtda. 15 yoshida u kimyo faniga alohida qiziqishni boshladi va oilaviy uyning kir yuvish xonasida oddiy tajribalarni o'tkazdi. Uning otasi Otto arxitekturani o'rganishni xohlagan, chunki u bir nechta turar-joy va biznes ob'ektlarini qurgan yoki sotib olgan, ammo Otto uni o'z ambitsiyasi sanoat kimyogari.[1]

1897 yilda, uni olganidan keyin Abitur, Hahn o'qishni boshladi kimyo da Marburg universiteti. Uning yordamchi sub'ektlari edi matematika, fizika, mineralogiya va falsafa. Xan talabalar birodarligi va bugungi kunning kashshofi bo'lgan Tabiiy fanlar va tibbiyot talabalari uyushmasiga qo'shildi Landsmannschaft Nibelungi (Coburger Convent der akademischen Landsmannschaften und Turnerschaften ). U uchinchi va to'rtinchi semestrlarini Myunxen universiteti, ostida organik kimyo o'rganish Adolf fon Baeyer, fizik kimyo Fridrix Vilgelm Mutman va noorganik kimyo Karl Andreas Xofmann. 1901 yilda Xon Marburgda doktorlik dissertatsiyasini "Isoeugenolning bromli hosilalari to'g'risida" nomli dissertatsiyasi uchun oldi, bu klassik mavzudir. organik kimyo. U 81 yillik piyoda polkida bir yillik harbiy xizmatini (doktorlik darajasiga ega bo'lgani uchun odatdagidek ikki o'rniga) tugatgan, ammo akalaridan farqli o'laroq komissiyaga murojaat qilmagan. Keyin u Marburg universitetiga qaytib, u erda ikki yil davomida doktorlik ilmiy rahbarining yordamchisi bo'lib ishlagan, Geygeymrat Professor Teodor Zincke.[2][3]

Radiotoriy va boshqa "yangi elementlar" ning kashf etilishi

Uilyam Ramsay, London 1905 yil
Ernest Rezerford Monrealdagi McGill Universitetida 1905 yil

Xahnning maqsadi sanoatda ishlash edi. U Evgen Fisherdan ishga taklif qildi, direktor Kalle & Co. [de ] (va organik kimyogarning otasi Xans Fischer ), ammo ishlash sharti shundaki, Xann boshqa mamlakatda yashashi va boshqa tilni oqilona bilishi kerak edi. Buni yodda tutgan va ingliz tilidagi bilimlarini oshirish uchun Xon postga joylashdi London universiteti kolleji 1904 yilda Sirning qo'l ostida ishlagan Uilyam Ramsay, kashf qilgani bilan tanilgan inert gazlar. Bu erda Xahn ishlagan radiokimyo, o'sha paytda juda yangi maydon. 1905 yil boshlarida, tuzlari bilan ishlash jarayonida radiy, Xahn o'zi chaqirgan yangi moddani kashf etdi radiothorium (torium-228), bu o'sha paytda yangi deb ishonilgan radioaktiv element.[2] (Aslida, bu edi izotop ma'lum bo'lgan element torium; izotop tushunchasi, atama bilan birga faqat 1913 yilda ingliz kimyogari tomonidan yaratilgan Frederik Soddi ).[4]

Uning institutida yana bir yangi element topilganida Ramsay g'ayratli edi va u kashfiyotni shunga mos ravishda e'lon qilishni niyat qildi. An'anaga ko'ra, bu azizlar qo'mitasi oldida amalga oshirildi Qirollik jamiyati. 1905 yil 16 martda Qirollik jamiyatining sessiyasida Ramzay Xonning radiotorium kashf etganligi to'g'risida xabar berdi.[5] The Daily Telegraph o'z o'quvchilariga quyidagilarni ma'lum qildi:

Yangi element - Yaqinda ilmiy maqolalar Gower Street-ning ko'plab ajoyib g'alabalariga qo'shilgan yangi kashfiyot bilan juda yaxshi bo'ladi. Universitet kollejida ishlaydigan doktor Otto Xen Seylondan Toryanit nomli mineraldan olingan yangi radioaktiv elementni kashf etdi va ehtimol u toryumni radioaktiv qiluvchi moddani taxmin qilmoqda. Uning faoliyati toriumnikidan kamida 250 000 baravar katta, og'irligi og'irligi. Toriydan chiqadigan radioaktiv emissiya bilan bir xil bo'lgan gazni (odatda ematsiya deb ataladi) chiqaradi. Chuqur qiziqishning yana bir nazariyasi shundaki, u radiyning o'ziga qaraganda kuchliroq va hozirgi kungacha radiumda ma'lum bo'lgan barcha qiziq effektlarni yaratishga qodir bo'lgan radioaktiv elementning mumkin bo'lgan manbasidir. - Kashfiyotchi o'tgan hafta Qirollik Jamiyatiga bag'ishlangan maqolani o'qidi va bu nashr etilgandan so'ng, so'nggi ilmiy adabiyotlarga qo'shgan hissalarining eng asl nusxasi qatoriga kirishi kerak.[6]

Hahn natijalarini e'lon qildi Qirollik jamiyati materiallari 1905 yil 24 martda.[7] Bu Otto Xonning radiokimyo sohasidagi 250 dan ortiq ilmiy nashrlaridan birinchisi edi.[8] Londonda bo'lgan vaqtining oxirida Ramsay Xandan kelajakdagi rejalari to'g'risida so'radi va Xen Kalle & Co kompaniyasidan ish taklifi haqida Ramsay unga radiokimyoning kelajagi porloq ekanligini va yangi radioaktiv kashf etgan kishi haqida gapirib berdi. elementiga o'tish kerak Berlin universiteti. Ramsay yozgan Emil Fischer, u erda kimyo instituti rahbari, u Xan laboratoriyasida ishlashi mumkin, ammo a bo'lishi mumkin emas deb javob berdi Privatdozent chunki u erda radiokimyo o'qitilmagan. Shu o'rinda Xah, avvalo bu mavzu haqida ko'proq ma'lumotga ega bo'lishi kerak, deb qaror qildi va shu sababli ushbu sohadagi etakchi mutaxassisga shunday deb yozdi: Ernest Rezerford. Rezerford Xannni yordamchi sifatida olishga rozi bo'ldi va Xannning ota-onasi Xannning xarajatlarini to'lashni o'z zimmalariga oldilar.[9]

1905 yil sentyabrdan 1906 yil o'rtalariga qadar Xan Rezerford guruhi bilan Makdonald fizika binosining podvalida ishlagan. McGill universiteti yilda Monreal. Radiothorium borligi haqida bir oz shubha bor edi, bu Bertram Boltvud Torium X va ahmoqlikning birikmasi sifatida eslab qolingan. Boltvud tez orada uning mavjudligiga amin bo'ldi, garchi u va Xann nima borasida farq qilsalar ham yarim hayot edi. Uilyam Genri Bragg va Richard Kliman deb ta'kidlagan edi alfa zarralari radioaktiv moddalardan chiqarilgan energiya har doim bir xil energiyaga ega bo'lib, ularni aniqlashning ikkinchi usulini taqdim etadi, shuning uchun Xaxn radioteriumning alfa zarrachalari chiqindilarini o'lchashga kirishdi. Ushbu jarayonda u torium A (polonyum -216) va torium B (qo'rg'oshin -212) tarkibida qisqa muddatli "element" ham mavjud bo'lib, u uni torium deb nomladi (keyinchalik polonyum-212 deb aniqlandi). Hahn uni ajrata olmadi va uning yarim umri juda qisqa (taxminan 300 ns) degan xulosaga keldi. Shuningdek, u radioaktinium (torium-227) va radium D ni (keyinchalik qo'rg'oshin-210 deb aniqlangan) aniqladi.[10][11] Rezerford shunday deb ta'kidladi: "Xann yangi elementlarni kashf qilish uchun maxsus burunga ega".[12]

Mezotorium I ning kashf etilishi

Xahn va Meitner, 1913, ning kimyoviy laboratoriyasida Kayzer Vilgelm kimyo instituti. U tanimagan hamkasbi ular ilgari uchrashganliklarini aytganda, Meitner shunday javob berdi: "Siz meni professor Xan bilan adashtirgan bo'lishingiz mumkin".[13]

1906 yilda Xann Germaniyaga qaytib keldi, u erda Fischer o'zining ixtiyoriga sobiq yog'ochni qayta ishlash sexini joylashtirdi (Holzwerkstatt) kimyo instituti podvalida laboratoriya sifatida foydalanish. Hahn uni jihozladi elektroskoplar alfa va ni o'lchash uchun beta-zarralar va gamma nurlari. Monrealda bular tashlangan kofe qutilaridan tayyorlangan edi; Xen Berlindagilarni misdan, alyuminiy chiziqlar bilan sarg'ish izolyatsiya qilingan. Ularga qattiq rezina tayoqchalar qo'yilgan, u ularni kostyumining yenglariga silagan.[14] Yog'och do'konida tadqiqot o'tkazish mumkin emas edi, ammo Alfred Stok, noorganik kimyo kafedrasi mudiri, Xan o'zining ikkita shaxsiy laboratoriyasidan birida bo'sh joy ishlatishiga ruxsat bering.[15] Xahn ikki milligramm radiyni sotib oldi Fridrix Oskar Gizel, kashfiyotchisi emaniy (radon), 100 marka milligramm uchun,[14] va toriumni Berlin firmasi torium mahsulotlarini yirik ishlab chiqaruvchisi bo'lgan Otto Knöflerdan bepul oldi.[16]

Bir necha oy ichida Xahn kashf etdi mezotorium I (radium-228), mezotorium II (aktinium-228) va Boltvuddan mustaqil ravishda - radiyning asosiy moddasi ioniy (keyinchalik aniqlangan) torium-230 ). Keyingi yillarda mesothorium I katta ahamiyatga ega bo'ldi, chunki radium-226 singari (kashf etgan Per va Mari Kyuri ), u tibbiy nurlanishda foydalanish uchun juda mos edi, ammo uni ishlab chiqarish uchun atigi yarim baravar qimmat turadi. Yo'lda, Xan toriumni radiothoriumdan ajrata olmaganidek, mezotoriyani ham radiydan ajrata olmasligini aniqladi.[17][18]

Hahn buni tugatdi habilitatsiya 1907 yil bahorida va a Privatdozent. Tezis talab qilinmadi; kimyo instituti uning o'rniga radioaktivlik bo'yicha nashrlaridan birini qabul qildi.[19] Kimyo institutining aksariyat organik kimyogarlari Xannning ishini haqiqiy kimyo deb hisoblashmagan.[20] Fischer Xahnning o'zini tiklashda bahslashishiga qarshi chiqdi kollokvium ko'pgina radioaktiv moddalar juda oz miqdordagi mavjud bo'lib, ularni faqat ularning radioaktivligi bilan aniqlash mumkin edi, chunki u har doim o'z hidini sezish qobiliyati bilan moddalarni topa olgan, ammo tez orada taslim bo'ldi.[15] Bir bo'lim boshlig'i ta'kidladi: "nima bo'lishini aql bovar qilmaydigan narsa Privatdozent shu kunlarda!"[20]

1920 yilda Berlinda fiziklar va kimyogarlar. Birinchi qator, chapdan o'ngga: Herta Sponer, Albert Eynshteyn, Ingrid Frank, Jeyms Frank, Lise Meitner, Fritz Xaber va Otto Xen. Orqa qator, chapdan o'ngga: Valter Grotrian, Wilhelm Westphal, Otto fon Baeyer [de ], Piter Pringsxaym [de ] va Gustav Xertz

Fiziklar Xannning ishini ko'proq qabul qilar edilar va u Fizika Institutidagi kollokviumda qatnashishni boshladi. Geynrix Rubens. Aynan shu kollokviyalarning birida, 1907 yil 28 sentyabrda u avstriyalik fizik bilan tanishgan. Lise Meitner. O'zi bilan deyarli bir xil yoshda, u doktorlik dissertatsiyasini olgan ikkinchi ayol edi Vena universiteti va allaqachon radioaktivlik to'g'risida ikkita maqola chop etgan edi. Rubens unga mumkin bo'lgan hamkori sifatida taklif qildi. Shunday qilib, ikki olim o'rtasidagi o'ttiz yillik hamkorlik va umrbod yaqin do'stlik boshlandi.[20][21]

Monrealda Xah fiziklar bilan ishlagan, shu jumladan kamida bitta ayol, Harriet Bruks, lekin dastlab Meitner uchun qiyin bo'lgan. Ayollar hali universitetlarga qabul qilinmagan Prussiya. Meitnerga o'zining tashqi kirish joyi bo'lgan, ammo institutning qolgan qismiga, shu jumladan Xannning yuqori qavatdagi laboratoriya maydoniga qadam bosolmaydigan yog'och do'konida ishlashga ruxsat berildi. Agar u hojatxonaga borishni xohlasa, ko'chadan pastdagi restorandan birini ishlatishi kerak edi. Keyingi yili ayollar universitetlarga qabul qilindi va Fischer cheklovlarni bekor qildi va binoga ayollar hojatxonasi o'rnatildi.[22] Fizika instituti kimyogarlarga qaraganda ko'proq qabul qilar edi va u u erdagi fiziklar bilan do'stlashdi, shu jumladan Otto fon Baeyer [de ], Jeyms Frank, Gustav Xertz, Robert Pol, Maks Plank, Piter Pringsxaym [de ] va Wilhelm Westphal.[21]

Radioaktiv orqaga qaytish kashfiyoti

Berlindagi sobiq Kaiser Wilhelm kimyo instituti binosi. Ikkinchi Jahon urushi paytida bombardimon qilish natijasida jiddiy zarar ko'rgan, u qayta tiklangan va tarkibiga kirgan Berlin bepul universiteti. 1956 yilda Otto Xan binosi, 2010 yilda Xan-Meitner binosi deb o'zgartirildi.[23][24]

Garriet Bruks kuzatgan a radioaktiv orqaga qaytish 1904 yilda, ammo uni noto'g'ri talqin qilgan. Xann va Meitner radioaktiv orqaga qaytish hodisasini namoyish etishga muvaffaq bo'lishdi alfa zarrachasi emissiya va uni to'g'ri talqin qilgan. Xahn hisobotni ta'qib qildi Stefan Meyer va Egon Shvaydler Aktiniyning parchalanish mahsuloti, yarim umri taxminan 11,8 kun. Xah bu aktiniy X ekanligini aniqladi (radium-223 ). Bundan tashqari, u radioaktiyum (torium-227) atomi alfa zarrachasini chiqaradigan paytda, uni katta kuch bilan bajarishini va X aktiniyam orqaga qaytishini boshdan kechirdi. Bu kimyoviy birikmalardan xalos bo'lish uchun etarli va u musbat zaryadga ega va salbiy elektrodda to'planishi mumkin.[25] Xen faqat aktiniyum haqida o'ylar edi, lekin uning qog'ozini o'qiyotganda, Meitner unga radioaktiv moddalarni aniqlashning yangi usulini topganligini aytdi. Ular bir nechta testlarni o'rnatdilar va tez orada aktinium S ni topdilar'' (talliy-207) va torium S'' (talliy-208).[25] Fizik Uolter Gerlax radioaktiv orqaga qaytishni "fizikada juda katta kashfiyot bo'lib, uning oqibatlari katta" deb ta'riflagan.[26]

1910 yilda Xann Prussiya madaniyat va ta'lim vaziri tomonidan professor etib tayinlandi, Avgust fon Trott zu Solz. Ikki yil o'tgach, Xan yangi tashkil etilgan radioaktivlik bo'limining boshlig'i bo'ldi Kayzer Vilgelm kimyo instituti Berlin-Dahlemda (bugungi kunda Xan-Meitner binosi Berlin bepul universiteti ). Bu yillik ish haqi 5000 marka bilan keldi. Bundan tashqari, u 1914 yilda Knöflerdan mezotoriya jarayoni uchun 66000 marka olgan (shundan 10 foizini Maytnerga bergan). 1912 yil 23 oktyabrda yangi institut ochilish marosimi bo'lib o'tdi Kaiser Wilhelm II.[27] Qorong'i xonada Kaiser yonib turgan radioaktiv moddalar namoyish etildi.[28]

Yog'och do'koni to'kilgan radioaktiv suyuqliklar va radioaktiv gazlar chiqadigan, so'ngra chirigan va radioaktiv changga aylanib, sezgir o'lchovlarni amalga oshira olmaydigan moddalar bilan yaxshilab ifloslanganligi sababli, yangi turar joyga ko'chish juda foydalidir. Yangi va yangi laboratoriyalar shu tarzda qolishini ta'minlash uchun Xahn va Meitner qat'iy tartiblarni o'rnatdilar. Kimyoviy va fizikaviy o'lchovlar turli xonalarda o'tkazildi, radioaktiv moddalar bilan muomala qiladigan odamlar protokollarga rioya qilishlari kerak edi, ular qo'l berib ko'rmaslikni o'z ichiga olgan va har bir telefon va eshik tutqichlari yoniga tualet qog'ozi osilgan. Kuchli radioaktiv moddalar eski yog'och do'konida, keyinchalik institut hududida maxsus qurilgan radiyli uyda saqlangan.[29]

Edit Junghans bilan nikoh

Professor Massimo Ragnolini tomonidan Lotin yozuvidagi marmar plakat, Otto Xann va uning rafiqasi Editning Punta San Vigilioda o'tgan asal oyini yodga olish marosimi, Garda ko'li, Italiya, 1913 yil mart va aprel oylarida.

Muntazam daromad bilan Xahn endi turmush qurish haqida o'ylashga qodir edi. 1911 yil iyun oyida konferentsiyada qatnashayotganda Stettin, Hahn uchrashdi Edit Junghans [de ], talaba Berlindagi Qirollik san'at maktabi. Ular Berlinda yana bir-birlarini ko'rishdi va 1912 yil noyabrda unashtirishdi. 1913 yil 22 martda er-xotin Editning tug'ilgan shahri Stettinda turmushga chiqdilar, u erda uning otasi Pol Ferdinand Jungxan yuqori martabali huquqshunos va shahar parlamenti prezidenti bo'lgan. 1915 yilda vafotiga qadar. Punta-San-Vigilio shahridagi asal oyidan keyin Garda ko'li Italiyada ular Vena, keyin Budapeshtga tashrif buyurishdi, u erda qolishdi Jorj de Xvesi.[30]

Ularning yagona farzandi, Hanno Xahn [de ], 1922 yil 9-aprelda tug'ilgan. Ikkinchi Jahon urushi paytida, u 1942 yilda armiya safiga qo'shilgan va xizmatida alohida xizmat qilgan. Sharqiy front panzer komandiri sifatida. U jangda qo'lini yo'qotdi. Urushdan keyin u taniqli san'atshunos va me'morchilik bo'yicha tadqiqotchiga aylandi (Rimdagi Xertziana shahrida), o'zining kashfiyotlari bilan tanilgan Tsisterlar me'morchiligi 12 asr. 1960 yil avgust oyida Frantsiyada o'quv safarida bo'lganida, Xanno rafiqasi va yordamchisi Ilse Xon bilan birga avtohalokatda vafot etdi. nee Pletz. Ular o'n to'rt yoshli o'g'li Ditrix Xonni tark etishdi.[31]

1990 yilda Hanno va Ilse Han mukofotlari [de ] yosh va iste'dodli san'atshunoslarni qo'llab-quvvatlash uchun Xanno va Ilse Xan xotirasiga Italiya san'at tarixiga qo'shgan ulkan hissalari uchun asos solindi. Ikki yilda bir marta mukofotlanadi Biblioteka Xertziana - Maks Plank nomidagi San'atshunoslik instituti Rimda.[32]

Birinchi jahon urushi

1915 yilda forma kiygan Xahn.

1914 yil iyulda - kasallik boshlanishidan sal oldin Birinchi jahon urushi —Hahn a. Yilda qo'shin bilan xizmatga chaqirildi Landver polk. Ular Belgiya bo'ylab yurishgan, u erda u qo'mondonlik qilgan vzvod qo'lga olingan pulemyotlar bilan qurollangan. U mukofotga sazovor bo'ldi Temir xoch (2-sinf) Ipres jangi. U quvonchli ishtirokchi edi Rojdestvo sulhi 1914 yil va a sifatida foydalanishga topshirilgan leytenant.[33] 1915 yil yanvar oyining o'rtalarida u kimyogar bilan uchrashish uchun chaqirildi Fritz Xaber, kim xandaq chiqmasidan chiqish rejasini tushuntirdi xlorli gaz. Hahn bu masalani ko'tardi Gaaga konvensiyasi tarkibida zaharli gazlar bo'lgan snaryadlardan foydalanishni taqiqladi, ammo Xaber frantsuzlar allaqachon ko'z yosh oqizuvchi gaz granatalari bilan kimyoviy urush boshlaganini va u konvensiya xatidan o'tishni qobiq o'rniga ballonlardan chiqarib, rejalashtirishni rejalashtirganini tushuntirdi.[34]

Xaberning yangi bo'limi 35-kashshof polki deb nomlandi. Berlindagi qisqa mashg'ulotlardan so'ng Xan fiziklar Jeyms Frank va Gustav Xertz bilan birgalikda Flandriya yana saytni izlash uchun birinchi gaz hujumi. U hujumga guvoh bo'lmagan, chunki u va Frank keyingi hujum uchun pozitsiyani tanlamagan edilar. Polshaga ko'chirildi Bolimov jangi 1915 yil 12-iyunda ular xlor va fosgen gazi aralashmasini chiqarishdi. Ba'zi nemis qo'shinlari gaz orqaga qaytara boshlagach, oldinga borishni xohlamadilar, shuning uchun Xon ularni olib o'tdi Hech kimning erlari yo'q. U zaharlagan ruslarning o'lim azoblariga guvoh bo'ldi va ba'zilarini gaz maskalari bilan qayta tiklashga muvaffaq bo'lmadi. U Berlinga inson sifatida Gvineya-cho'chqa sifatida zaharli gazlar va gaz niqoblarini sinovdan o'tkazgan. 7-iyul kuni ularning navbatdagi urinishlarida gaz yana Germaniya yo'nalishlariga qaytdi va Xertz zaharlandi. Ushbu topshiriqni Flandriyadagi va 1916 yilda yana yuborilgan missiya to'xtatdi Verdun fosgen bilan to'ldirilgan chig'anoqlarni G'arbiy front. Keyin yana ikki marotaba gaz hujumlari uyushtiriladigan joylarni qidirib yurdi. 1916 yil dekabrda u Imperial shtab-kvartirasidagi yangi gazni boshqarish qismiga qo'shildi.[34][35]

Amaliyotlar orasida Xen Berlinga qaytib keldi, u erda eski laboratoriyasiga qaytib borib, Meitnerga tadqiqotlarida yordam berdi. 1917 yil sentyabrda u avstriyalik forma kiyib olgan uch zobitdan biri edi Isonzo old tomoni Italiyada yangi ishlab chiqilgan miltiqlardan foydalangan holda hujum uchun mos joyni topish minenverferlar bir vaqtning o'zida yuzlab konteyner zaharli gazni dushman nishonlariga uloqtirdi. Ular gaz buluti saqlanib qolishi uchun italiyalik xandaklar chuqur vodiyda saqlanadigan joyni tanladilar. The Kaporetto jangi Italiya chizig'ini kesib o'tdi va Markaziy kuchlar Italiyaning shimoliy qismidan ustun keldi. 1918 yilda Germaniyaning g'arbdagi hujumi orqali sindirilgan Ittifoqchilar ularning eritmalaridan gaz katta miqdorda chiqarilgandan keyin. O'sha yozda Xahn yangi modeldagi gaz niqobini sinovdan o'tkazayotganda tasodifan fosgen bilan zaharlandi. Urush tugagandan so'ng u bulutni isitadigan va bo'shatadigan qozonni sinab ko'rish uchun maxfiy topshiriq bilan muftiyda dalada edi. arsenal.[36][34]

Protaktiniyning kashf etilishi

Aktiniyumning parchalanish zanjiri. Alfa yemirilishi ikkita elementni pastga siljitadi; beta-parchalanish bitta elementni yuqoriga siljitadi.

1913 yilda kimyogarlar Frederik Soddi va Kasimir Fajans mustaqil ravishda buni kuzatdi alfa yemirilishi atomlarning ikki pog'onani pastga siljishiga olib keldi davriy jadval, ikkita beta zarrachaning yo'qolishi uni asl holatiga keltirdi. Natijada davriy tizimni qayta tashkil etish jarayonida radiy II guruhga joylashtirildi, aktinium III guruhda, tori IV guruhda va uran VI guruhda. Bu torium va uran o'rtasida bo'shliqni qoldirdi. Soddi o'zi aytgan ushbu noma'lum elementni bashorat qilgan (keyin Dmitriy Mendeleyev ) "ekatantalium" sifatida kimyoviy xossalari o'xshash alfa emitent bo'ladi tantaliy. Yaqinda Fajans va Osvald Helmut Goxring uni toriumning beta-emissiya mahsulotining parchalanish mahsuloti sifatida kashf etdi. Asosida Fajans va Soddining radioaktiv siljish qonuni, bu etishmayotgan elementning izotopi bo'lib, ular uni "brevium" ning qisqa umr ko'rish muddati deb atashgan. Biroq, bu beta-emitent edi va shuning uchun aktiniyumning ona izotopi bo'lishi mumkin emas edi. Bu xuddi shu elementning yana bir izotopi bo'lishi kerak edi.[37]

Xahn va Meitner yo'qolgan ona izotopini topishga kirishdilar. Ular tantal guruhini pitchblenddan ajratishning yangi texnikasini ishlab chiqdilar, bu esa yangi izotopning izolatsiyasini tezlashtiradi deb umid qildilar. Ish tomonidan to'xtatildi Birinchi jahon urushi. Meitner Avstriya armiyasi kasalxonalarida ishlaydigan rentgen hamshirasi bo'ldi, ammo u 1916 yil oktyabrda Kayzer Vilgelm institutiga qaytib keldi. Nafaqat Xann, balki talabalar, laborantlar va texniklarning aksariyati chaqirilgan edi, shuning uchun u hamma narsani qilishi kerak edi o'zi, ta'tilga uyga qaytganida Xahn qisqa vaqt ichida yordam berdi. 1917 yil dekabrga qadar u moddani ajratib olishga muvaffaq bo'ldi va qo'shimcha ishlardan so'ng uning haqiqatan ham yo'qolgan izotop ekanligini isbotlashga muvaffaq bo'ldi. U 1918 yil mart oyida o'zlarining topilmalarini nashrga topshirdi.[37]

Fajans va Göhring bu elementni birinchi bo'lib kashf etgan bo'lsalar-da, urf-odatlarga ko'ra, element eng uzun umr ko'rgan va eng ko'p izotopi bilan ifodalanishi kerak edi va brevium o'rinli ko'rinmadi. Fajans Meitnerga element nomini berishga rozi bo'ldi protoaktinmium va unga kimyoviy belgini berib, 1918 yil iyun oyida Soddi va Jon Krenston izotop namunasini olishganini e'lon qildi, ammo Meitnerdan farqli o'laroq uning xususiyatlarini ta'riflay olmadi. Ular Meitnerning ustuvorligini tan olishdi va bu nomga rozi bo'lishdi. Uran bilan aloqa sir bo'lib qoldi, chunki bu ikkalasi ham ma'lum emas edi uranning izotoplari parchalanib protaktiniyga aylangan. Bu ona izotopigacha hal qilinmagan, uran-235, 1929 yilda kashf etilgan.[37][38]

Xan va Meitner o'zlarining kashfiyotlari uchun 1920 yillarda bir necha bor kimyo bo'yicha Nobel mukofotiga nomzod bo'lganlar, ular orasida Maks Plank, Geynrix Goldschmidt va Fajansning o'zi.[39][40] 1949 yilda Xalqaro sof va amaliy kimyo ittifoqi (IUPAC ) yangi elementni aniq protaktinium deb nomladi va Xann va Meytnerni kashfiyotchilar sifatida tasdiqladi.[41]

Yadro izomeriyasining kashf etilishi

Uran-238 ning parchalanish zanjiri

Protaktiniy kashf etilishi bilan uranning parchalanadigan zanjirlarining aksariyati xaritaga tushirildi. Urushdan keyin Xahn o'z ishiga qaytgach, 1914 yilgi natijalariga nazar tashladi va ishdan bo'shatilgan yoki e'tibordan chetda qolgan ba'zi anomaliyalarni ko'rib chiqdi. U uran tuzlarini a gidroflorik kislota bilan hal qilish tantalik kislota. Dastlab ruda tarkibidagi tantal, keyin protaktiniy cho'kindi. Xan uranidan X1 (torium-234) va uran X2 (protaktinium-234) dan tashqari, yarim umri 6 dan 7 soatgacha bo'lgan radioaktiv moddaning izlarini aniqladi. Yarim umr 6,2 soat bo'lgan bitta izotop bor edi, mezotorium II (aktinium-228). Bu ehtimoliy parchalanish zanjirida bo'lmagan, ammo bu ifloslanish bo'lishi mumkin edi, chunki Kayzer Vilgelm kimyo instituti u bilan tajriba o'tkazgan edi. Xahn va Meitner 1919 yilda aktiniyni gidroflorik kislota bilan ishlaganda, u erimaydigan qoldiqda qolishini namoyish etishdi. Mesothorium II aktiniyumning izotopi bo'lganligi sababli, modda II mezotorium emas edi; bu protaktiniy edi.[42][43]Xon endi yangi izotopini "uran Z" deb nomlagan narsani topganiga ishonch hosil qildi va 1921 yil fevral oyida u o'zining kashfiyoti to'g'risida birinchi hisobotni e'lon qildi.[44]

Xahn uran Z ning yarim umrini 6,7 soat atrofida bo'lganligini (ikki foizlik xato bilan) va X1 uranining parchalanishi bilan u 99,75 foizga, X uraniga esa 0,25 foizga, Z uraniga esa 0,25 foizga teng bo'lganligini aniqladi. vaqt. U X uranining Z uraniga nisbati bir necha kilogrammdan ajratib olinganligini aniqladi uranil nitrat vaqt o'tishi bilan doimiy bo'lib, uran X uran Z ning onasi ekanligini aniq ko'rsatib berdi. Buni isbotlash uchun Xahn yuz kilogramm uranil nitrat oldi; X uranini undan ajratish bir necha hafta davom etdi. U uranning ota-onasining yarim umri ma'lum bo'lgan X1 uranining 24 kunlik yarim umridan ikki-uch kundan ortiq bo'lmaganligi bilan farq qilganini aniqladi, ammo aniqroq qiymatga ega bo'lolmadi. Xahn uran Z va uran X2 ikkalasi ham protaktiniy izotopi (protaktinium-234 ) va ular ikkalasi ham uran II ga (uran-234) parchalanib ketishgan, ammo yarim umrlari boshqacha.[42][43][45]

Uran Z birinchi misol bo'ldi yadro izomeriyasi. Keyinchalik Uolter Gerlax bu "o'sha paytda tushunilmagan, ammo keyinchalik yadro fizikasi uchun juda muhim bo'lgan kashfiyot" ekanligini ta'kidladi.[26] 1936 yilgacha emas edi Karl Fridrix fon Vaytsekker hodisaga nazariy tushuntirish berishga qodir.[46][47] Butun ahamiyatini juda ozchilik tan olgan ushbu kashfiyot uchun Xan yana kimyo bo'yicha Nobel mukofotiga taklif qildi. Bernxard Naunin, Goldschmidt va Plank.[39]

Amaliy radiokimyo

1924 yilda Xahnning to'liq a'zoligiga saylandi Prussiya Fanlar akademiyasi Berlindagi ikkita qora uchun o'ttiz oq to'pning ovozi bilan.[48] U hali ham o'z bo'limining boshlig'i bo'lib qolganda, 1924 yilda Kayzer Vilgelm instituti direktorining kimyo bo'yicha o'rinbosarini qabul qildi va 1928 yilda Alfred Stokni direktor etib tayinladi.[49] Meitner fizik radioaktivlik bo'limining direktori bo'ldi, Xan esa kimyoviy radioaktivlik bo'limini boshqargan.[50] 20-yillarning boshlarida u yangi tadqiqot yo'nalishini yaratdi. Yaqinda o'zi ishlab chiqqan "emanatsiya usuli" va "emanatsiya qobiliyati" dan foydalangan holda, u umumiy kimyoviy va fizik-kimyoviy masalalarni o'rganish uchun "amaliy radiokimyo" deb nomlangan narsaga asos soldi. 1936 yilda Cornell University Press ingliz tilida (keyinchalik rus tilida) kitob nashr ettirdi Amaliy radiokimyo unda Xon tashrif buyurgan professor bo'lganida o'qigan ma'ruzalari mavjud edi Kornell universiteti yilda Ithaka, Nyu-York, 1933 yilda. Ushbu muhim nashr 1930-1940 yillarda AQSh, Buyuk Britaniya, Frantsiya va Sovet Ittifoqidagi deyarli barcha yadro kimyogarlari va fiziklariga katta ta'sir ko'rsatdi.[51]

1966 yilda, Glenn T. Seaborg, ko'plab transuranium elementlarini birgalikda kashf etgan ushbu kitob haqida quyidagicha yozgan:

1930-yillarning o'rtalarida Berkli shahridagi Kaliforniya Universitetining yosh aspiranti sifatida va bir necha yil o'tgach plutoniy bilan ishlashimiz munosabati bilan men uning kitobidan foydalandim. Amaliy radiokimyo mening injilim Ushbu kitob professor Xann 1933 yilda Kornelda o'qigan bir qator ma'ruzalar asosida yaratilgan; u uchun "qonunlar" ni belgilab qo'ygan birgalikda yog'ingarchilik suvli eritmalardan erimaydigan moddalar cho'ktirilganda radioaktiv materiallarning daqiqalik miqdori. Ushbu yog'ingarchilik qonunlaridagi har bir so'zni bir necha bor o'qiganimni va qayta o'qiganimni, ishimiz uchun har qanday ko'rsatma berishga harakat qilganimni va, ehtimol, g'ayratim bilan ularni ustozning o'zi o'ylagandan ko'ra ko'proq o'qiganimni eslayman. Men boshqa biron bir kitobdagi bo'limlarni Xonnikiga qaraganda ko'proq diqqat bilan yoki tez-tez o'qiganimga shubha qilaman Amaliy radiokimyo. Darhaqiqat, men butun jildni qayta-qayta o'qidim va eslaymanki, bundan ko'nglim qolgani uning uzunligi edi. Bu juda qisqa edi.[51]

Milliy sotsializm

Fritz Strassmann Kaiser Wilhelm kimyo institutiga ishga joylashish istiqbollarini yaxshilash uchun Xann ostida o'qish uchun kelgan edi. Keyin Natsistlar partiyasi 1933 yilda Germaniyada hokimiyat tepasiga kelgan Strassmann ish topish uchun foydali taklifni rad etdi, chunki bu siyosiy tayyorgarlik va natsistlar partiyasiga a'zolikni talab qildi va u iste'foga chiqdi Nemis kimyogarlari jamiyati u fashistlarning bir qismiga aylanganda Germaniya mehnat fronti fashistlar nazorati ostidagi tashkilotga a'zo bo'lish o'rniga. Natijada, u kimyo sanoatida ishlay olmadi yoki akademik lavozim uchun zarur bo'lgan habilitatsiyasini ololmadi. Meitner Xenni Strassmanni yordamchi sifatida yollashga ishontirdi. Yaqinda u ular ishlab chiqargan qog'ozlarning uchinchi hamkori sifatida tan olinadi va ba'zida hatto birinchi o'rinda turadi.[52][53]

Xahn 1933 yil fevraldan iyungacha AQSh va Kanadada tashrif buyurgan professor sifatida o'tkazgan Kornell universiteti.[54] U intervyu berdi Toronto Yulduzli haftalik unda u xushomadgo'y portretini chizgan Adolf Gitler:

Men natsist emasman. Ammo Gitler bu nemis yoshlarining umidi, kuchli umididir ... Kamida 20 million odam uni hurmat qiladi. U hech kimdan boshlangan va u o'n yil ichida nima bo'lganini ko'rasiz.… Har holda, yoshlar uchun, kelajak millati uchun Gitler - qahramon, fyurer, avliyo ... Kundalik hayotida u deyarli avliyo. Spirtli ichimliklar, hatto tamaki ham, go'sht ham yo'q, ayollar ham yo'q. Bir so'z bilan aytganda: Gitler - bu aniq Masih.[55]

1933 yil aprel Professional davlat xizmatini tiklash to'g'risidagi qonun yahudiylar va kommunistlarni akademiyadan taqiqladi. Meitner uning ta'siridan ozod qilindi, chunki u Germaniya fuqarosi emas, balki avstriyalik edi.[56] Xaber ham Birinchi Jahon urushi faxriysi sifatida ozod qilingan, ammo 1933 yil 30-aprelda Kayzer Vilgelm fizik kimyo va elektrokimyo instituti direktorligini iste'foga chiqarishni tanlagan, ammo boshqa Kayzer Vilgelm institutlari direktorlari, hattoki yahudiylar ham yangi qonunga muvofiq,[57] umuman KWSga va 50% dan ortiq davlat ko'magi bilan Kaiser Wilhelm institutlariga murojaat qildi, bu esa kimyo uchun KWIni ozod qildi.[58] Shuning uchun Hahn o'zining biron kunlik ishchisini ishdan bo'shatishi shart emas edi, lekin Xaber institutining vaqtinchalik direktori sifatida u xodimlarning to'rtdan bir qismini, shu jumladan uchta bo'lim boshlig'ini ishdan bo'shatdi. Gerxart Jander Xaberning eski institutining yangi direktori etib tayinlandi va g'alati qilib, uni kimyoviy urush tadqiqotlariga yo'naltirdi.[59]

Aksariyat KWS institutlari direktorlari singari, Xaber ham katta miqdordagi mablag 'to'plagan edi. Bu ishdan bo'shatilgan xodimlarga ularning emigratsiyasini engillashtirish uchun tarqatilishini uning xohishi edi, ammo Rokfeller jamg'armasi mablag'larni ilmiy tadqiqotlar uchun ishlatilishini yoki qaytarilishini talab qildi. Xan vositachilik qildi, bunda mablag'larning 10 foizi Xabar odamlariga ajratiladi. 1933 yil avgust oyida KWS ma'murlari Rokfeller jamg'armasi tomonidan moliyalashtirilgan uskunalarning bir nechta qutilariga jo'natilishi haqida ogohlantirildi. Gerbert Freundlich, Xan ishdan bo'shatgan bo'lim boshliqlaridan biri, Angliyada. Xah yukni to'xtatish to'g'risidagi buyruqni bajardi, ammo 1930 yildan beri KWS prezidenti Plank ta'tildan qaytgach, Xanga yukni tezlashtirishni buyurdi.[59][60]

Xaber 1934 yil 29-yanvarda vafot etdi. Uning o'limining birinchi yilligida xotirlash marosimi bo'lib o'tdi. Universitet professor-o'qituvchilariga qatnashish taqiqlangan, shuning uchun ular o'z xotinlarini o'z o'rniga yuborishgan. Hahn, Plank va Jozef Kit ishtirok etdi va ma'ruzalar qildi.[59][61] Qarigan Plank qayta saylanishga intilmadi va 1937 yilda prezident sifatida muvaffaqiyat qozondi Karl Bosch, kimyo bo'yicha Nobel mukofoti sovrindori va Boshqaruv Raisi IG Farben, 1932 yildan beri natsistlar partiyasini bankrot qilgan kompaniya. Ernst Telsxov KWS kotibi bo'ldi. Telschov fashistlarning g'ayratli tarafdori edi, lekin Xannga sodiq edi, chunki u sobiq shogirdlaridan biri edi va Xan uning tayinlanishini mamnuniyat bilan kutib oldi.[62][59] Hahn's chief assistant, Otto Erbacher, became the KWI for Chemistry's party steward (Vertrauensmann).[63]

Rubidiy-stronsiyum bilan tanishish

While Hahn was in North America, his attention was drawn to a mica-like mineral from Manitoba o'z ichiga olgan rubidium. Some years before he had studied the radioactive decay of rubidium-87, and had estimated its half life at 2 x 1011 yil. It occurred to Hahn that by comparing the quantity of strontium in the mineral (which had once been rubidium) with that of the remaining rubidium, he could measure the age of the mineral, assuming that his original calculation of the half life was reasonably accurate. This would be a superior dating method to studying the decay of uranium, because some of the uranium turns into helium, which then escapes, resulting in rocks appearing to be younger than they really were. Jacob Papish helped Hahn obtain several kilograms of the mineral.[64]

From 1,012 grams of the mineral, Strassmann and Ernst Walling extracted 253.4 milligrams of strontium carbonate, all of which was the strontium-87 isotope, indicating that it had all been produced from radioactive decay of rubidium-87. The age of the mineral had been estimated at 1,975 million years from uranium minerals in the same deposit, which implied that the half life of rubidium-87 was 2.3 x 1011 years: quite close to Hahn's original calculation.[65][66] Rubidiy-stronsiyum bilan tanishish became a widely used technique for dating rocks in the 1950s, when mass-spektrometriya keng tarqalgan bo'lib qoldi.[67]

Discovery of nuclear fission

This was touted for many years as the table and experimental apparatus with which Otto Hahn discovered nuclear fission in 1938. The table and instruments are representative of the ones used, but not necessarily the originals, and would not have been together on the one table in the same room. Pressure from historians, scientists and feminists caused the museum to alter the display in 1988 to acknowledge Lise Meitner, Otto Frish va Fritz Strassmann.[68]

Keyin Jeyms Chadvik kashf etgan neytron 1932 yilda,[69] Iren Kyui va Frederik Joliot irradiated aluminium foil with alpha particles, they found that this results in a short-lived radioactive isotope of phosphorus. They noted that positron emission continued after the neutron emissions ceased. Not only had they discovered a new form of radioactive decay, they had transmuted an element into a hitherto unknown radioactive isotope of another, thereby inducing radioactivity where there had been none before. Radiochemistry was now no longer confined to certain heavy elements, but extended to the entire periodic table.[70][71] Chadwick noted that being electrically neutral, neutrons could penetrate the atom yadrosi more easily than protons or alpha particles.[72] Enriko Fermi and his colleagues in Rome picked up on this idea,[73] and began irradiating elements with neutrons.[74]

The radioactive displacement law of Fajans and Soddy said that beta decay causes isotopes to move one element up on the periodic table, and alpha decay causes them to move two down. When Fermi's group bombarded uranium atoms with neutrons, they found a complex mix of half lives. Fermi therefore concluded that the new elements with atomic numbers greater than 92 (known as transuranium elementlari ) had been created.[74] Meitner and Hahn had not collaborated for many years, but Meitner was eager to investigate Fermi's results. Hahn, initially, was not, but he changed his mind when Aristid fon Grosse suggested that what Fermi had found was an isotope of protactinium.[75] "The only question", Hahn later wrote, "seemed to be whether Fermi had found isotopes of transuranian elements, or isotopes of the next-lower element, protactinium. At that time Lise Meitner and I decided to repeat Fermi's experiments in order to find out whether the 13-minute isotope was a protactinium isotope or not. It was a logical decision, having been the discoverers of protactinium."[76]

Between 1934 and 1938, Hahn, Meitner and Strassmann found a great number of radioactive transmutation products, all of which they regarded as transuranic.[77] At that time, the existence of aktinidlar was not yet established, and uranium was wrongly believed to be a group 6 element o'xshash volfram. It followed that first transuranic elements would be similar to group 7 to 10 elements, i.e. reniy va platinoids. They established the presence of multiple isotopes of at least four such elements, and (mistakenly) identified them as elements with atomic numbers 93 through 96. They were the first scientists to measure the 23-minute half life of uranium-239 and to establish chemically that it was an isotope of uranium, but were unable to continue this work to its logical conclusion and identify the real element 93.[78] They identified ten different half lives, with varying degrees of certainty. To account for them, Meitner had to hypothesise a new class of reaction and the alpha decay of uranium, neither of which had ever been reported before, and for which physical evidence was lacking. Hahn and Strassmann refined their chemical procedures, while Meitner devised new experiments to shine more light on the reaction processes.[78]

Otto Hahn's notebook

In May 1937, they issued parallel reports, one in Zeitschrift für Physik with Meitner as the principal author, and one in Chemische Berichte with Hahn as the principal author.[78][79][80] Hahn concluded his by stating emphatically: Vor allem steht ihre chemische Verschiedenheit von allen bisher bekannten Elementen außerhalb jeder Diskussion ("Above all, their chemical distinction from all previously known elements needs no further discussion");[80] Meitner was increasingly uncertain. She considered the possibility that the reactions were from different isotopes of uranium; three were known: uranium-238, uranium-235 and uranium-234. However, when she calculated the neutron cross section, it was too large to be anything other than the most abundant isotope, uranium-238. She concluded that it must be another case of the nuclear isomerism that Hahn had discovered in protactinium. She therefore ended her report on a very different note to Hahn, reporting that: "The process must be neutron capture by uranium-238, which leads to three isomeric nuclei of uranium-239. This result is very difficult to reconcile with current concepts of the nucleus."[79][81]

Bilan Anschluss, Germany's unification with Austria on 12 March 1938, Meitner lost her Austrian citizenship,[82] and fled to Sweden. She carried only a little money, but before she left, Hahn gave her a diamond ring he had inherited from his mother.[83] Meitner continued to correspond with Hahn by mail. In late 1938 Hahn and Strassmann found evidence of isotopes of an alkaline earth metal in their sample. Finding a group 2 alkaline earth metal was problematic, because it did not logically fit with the other elements found thus far. Hahn initially suspected it to be radium, produced by splitting off two alpha-particles from the uranium nucleus, but chipping off two alpha particles via this process was unlikely. The idea of turning uranium into bariy (by removing around 100 nucleons) was seen as preposterous.[84]

During a visit to Copenhagen on 10 November, Hahn discussed these results with Nil Bor, Lise Meitner va Otto Robert Frish.[84] Further refinements of the technique, leading to the decisive experiment on 16–17 December 1938, produced puzzling results: the three isotopes consistently behaved not as radium, but as barium. Hahn, who did not inform the physicists in his Institute, described the results exclusively in a letter to Meitner on 19 December:

We are more and more coming to the awful conclusion that our Ra isotopes behave not like Ra, but like Ba... Perhaps you can come up with some fantastic explanation. We ourselves realize that it qila olmaydi actually burst apart into Ba. Now we want to test whether the Ac-isotopes derived from the "Ra" behave not like Ac but like La.[85]

Plaque commemorating Hahn and Strassmann's discovery of fission in Berlin (unveiled in 1956)

In her reply, Meitner concurred. "At the moment, the interpretation of such a thoroughgoing breakup seems very difficult to me, but in nuclear physics we have experienced so many surprises, that one cannot unconditionally say: 'it is impossible'." On 22 December 1938, Hahn sent a manuscript to Naturwissenschaften reporting their radiochemical results, which were published on 6 January 1939.[86] On 27 December, Hahn telephoned the editor of Naturwissenschaften and requested an addition to the article, speculating that some platinum group elements previously observed in irradiated uranium, which were originally interpreted as transuranium elements, could in fact be texnetsiy (then called "masurium"), mistakenly believing that the atomic masses had to add up rather than the atom raqamlari. By January 1939, he was sufficiently convinced that formation of light elements that he published a new revision of the article, retracting former claims of observing transuranic elements and neighbours of uranium.[87]

As a chemist, Hahn was reluctant to propose a revolutionary discovery in physics, but Meitner and Frisch worked out a theoretical interpretation of yadro bo'linishi, a term appropriated by Frisch from biology. In January and February they published two articles discussing and experimentally confirming their theory.[88][89][90] In their second publication on nuclear fission, Hahn and Strassmann used the term Uranspaltung (uranium fission) for the first time, and predicted the existence and liberation of additional neutrons during the fission process, opening up the possibility of a yadro zanjiri reaktsiyasi.[91] This was proved to be the case by Frédéric Joliot and his team in March 1939.[92] Edvin MakMillan va Filipp Abelson ishlatilgan siklotron da Berkli radiatsiya laboratoriyasi to bombard uranium with neutrons, were able to identify an isotope with a 23-minute half life that was the daughter of uranium-239, and therefore the real element 93, which they named neptuniy.[93] "There goes a Nobel Prize", Hahn remarked.[94]

At the Kaiser Wilhelm Institute for Chemistry, Kurt Starke independently produced element 93, using only the weak neutron sources available there. Hahn and Strassmann then began researching its chemical properties.[95] They knew that it should decay into the real element 94, which according to the latest version of the suyuq tomchi modeli of the nucleus propounded by Bohr and John Archibald Wheeler, would be even more bo'linadigan than uranium-235, but were unable to detect its radioactive decay. They concluded that it must have an extremely long half life, perhaps millions of years.[93] Part of the problem was that they still believed that element 94 was a platinoid, which confounded their attempts at chemical separation.[95]

Ikkinchi jahon urushi

On 24 April 1939, Pol Xartek and his assistant, Wilhelm Groth, yozgan edi Reich Ministry of War, alerting it to the possibility of the development of an atom bombasi. In response, the Army Weapons Branch (HWA) had established a physics section under nuclear physicist Kurt Diebner. Keyin Ikkinchi jahon urushi broke out on 1 September 1939, the HWA moved to control the Germaniyaning yadro quroli dasturi. From then on, Hahn was participated in a ceaseless series of meetings related to the project. After the Director of the Kaiser Wilhelm Institute for Physics, Piter Debye, left for the United States in 1940 and never returned, Diebner was installed as its director.[96] Hahn reported to the HWA on the progress of his research. Together with his assistants, Hans-Joachim Born, Zigfrid Flygge, Hans Götte, Walter Seelmann-Eggebert and Strassmann, he catalogued about one hundred bo'linish mahsuloti izotoplar. They also investigated means of isotope separation; the chemistry of element 93; and methods for purifying uranium oxides and salts.[97]

On the night of 15 February 1944, the Kaiser Wilhelm Institute for Chemistry building was struck by a bomb.[97] Hahn's office was destroyed, along with his correspondence with Rutherford and other researchers, and many of his personal possessions.[98][99] The office was the intended target of the raid, which had been ordered by Brigada generali Lesli Groves, direktori Manxetten loyihasi, in the hope of disrupting the German uranium project.[100] Albert Sper, Reich Minister of Armaments and War Production, arranged for the institute to move to Tailfingen Germaniyaning janubida. All work in Berlin ceased by July. Hahn and his family moved to the house of a textile manufacturer there.[98][99]

Life became precarious for those married to Jewish women. One was Philipp Hoernes, a chemist working for Auergesellschaft, the firm that mined the uranium ore used by the project. After the firm let him go in 1944, Hoernes faced being conscripted for forced labour. At the age of 60, it was doubtful that he would survive. Hahn and Nikolaus Rixl arranged for Hoernes to work at the Kaiser Wilhelm Institute for Chemistry, claiming that his work was essential to the uranium project and that uranium was highly toxic, making it hard to find people to work with it. Hahn was aware that uranium ore was fairly safe in the laboratory, although not so much for the 2,000 female slave labourers from Zaxsenhauzen kontslageri who mined it in Oranienburg —for other reasons. Another physicist with a Jewish wife was Heinrich Rausch von Traubenberg [de ]. Hahn certified that his work was important to the war effort, and that his wife Maria, who had a doctorate in physics, was required as his assistant. After he died on 19 September 1944, Maria faced being sent to a concentration camp. Hahn mounted a lobbying campaign to get her released, but to no avail, and she was sent to the Theresienstadt Getto in January 1945. She survived the war, and was reunited with her daughters in England after the war.[101][102]

Hibsga olish

On 25 April 1945, an armoured task force from the Alsos missiyasi arrived in Tailfingen, and surrounded the Kaiser Wilhelm Institute for Chemistry. Hahn was informed that he was under arrest. When asked about reports related to his secret work on uranium, Hahn replied: "I have them all here", and handed over 150 reports. Uni olib ketishdi Xechingen, u qaerga qo'shildi Erix Bagge, Horst Korsching, Maks fon Laue, Carl Friedrich von Weizsäcker and Karl Wirtz. They were then taken to a dilapidated château in Versal, where they heard about the signing of the Taslim bo'lishning nemis vositasi da Reyms 7 may kuni. Over the following days they were joined by Kurt Diebner, Walther Gerlach, Paul Harteck and Werner Heisenberg.[103][104][105] All were physicists except Hahn and Harteck, who were chemists, and all had worked on the German nuclear weapons program except von Laue, although he was well aware of it.[106]

Farm Hall (seen here in 2015)

They were relocated to the Château de Facqueval in Modave, Belgium, where Hahn used the time to work on his memoirs and then, on 3 July, were flown to England. Ular etib kelishdi Farm Hall, Godmanchester, yaqin Kembrij, on 3 July. Unbeknown to them, their every conversation, indoors and out, was recorded from hidden microphones. They were given British newspapers, which Hahn was able to read. He was greatly disturbed by their reports of the Potsdam konferentsiyasi, where German territory was ceded to Poland and the USSR. In August 1945, the German scientists were informed of the Xirosimani atom bombasi. Up to this point the scientists, except Harteck, were completely certain that their project was further advanced than any in other countries, and the Alsos Mission's chief scientist, Semyuel Gudsmit, did nothing to correct this impression. Now the reason for their incarceration in Farm Hall suddenly became apparent.[106][107][108][109]

As they recovered from the shock of the announcement, they began to rationalise what had happened. Hahn noted that he was glad that they had not succeeded, and von Weizsäcker suggested that they should claim that they had not wanted to. They drafted a memorandum on the project, noting that fission was discovered by Hahn and Strassmann. The revelation that Nagasaki had been destroyed by a plutonium bomb came as another shock, as it meant that the Allies had not only been able to successfully conduct uranni boyitish, but had mastered yadro reaktori technology as well. The memorandum became the first draft of a postwar apologia. The idea that Germany had lost the war because its scientists were morally superior was as outrageous as it was unbelievable, but struck a chord in postwar German academia.[110] It infuriated Goudsmit, whose parents had died in Osvensim.[111] On 3 January 1946, exactly six months after they had arrived at Farm Hall, the group was allowed to return to Germany.[112] Hahn, Heisenberg, von Laue and von Weizsäcker were brought to Göttingen, which was controlled by the British occupation authorities.[113]

The Nobel Prize in Chemistry 1944

Otto Hahn stamp, Germany 1979.

On 16 November 1945 the Shvetsiya Qirollik Fanlar akademiyasi announced that Hahn had been awarded the 1944 Kimyo bo'yicha Nobel mukofoti "for his discovery of the fission of heavy atomic nuclei."[114][115] Hahn was still at Farm Hall when the announcement was made; thus, his whereabouts were a secret, and it was impossible for the Nobel committee to send him a congratulatory telegram. Instead, he learned about his award on 18 November through the Daily Telegraph.[116] His fellow interned scientists celebrated his award by giving speeches, making jokes, and composing songs.[117]

Hahn had been nominated for the chemistry and the physics Nobel prizes many times even before the discovery of nuclear fission. Several more followed for the discovery of fission.[39] The Nobel prize nominations were vetted by committees of five, one for each award. Although Hahn and Meitner received nominations for physics, radioactivity and radioactive elements had traditionally been seen as the domain of chemistry, and so the Nobel kimyo qo'mitasi evaluated the nominations. The committee received reports from Teodor Svedberg va Arne Westgren [de; sv ]. These chemists were impressed by Hahn's work, but felt that of Meitner and Frisch was not extraordinary, and did not understand why the physics community regarded their work as seminal. As for Strassmann, although his name was on the papers, there was a long-standing policy of conferring awards on the most senior scientist in a collaboration. The committee therefore recommended that Hahn alone be given the chemistry prize.[118]

5 DM coin, Germany, honouring Hahn and his discovery of fission, 1979

Under Nazi rule, Germans had been forbidden to accept Nobel prizes after the Tinchlik bo'yicha Nobel mukofoti bilan taqdirlangan edi Karl fon Ossiyetskiy 1936 yilda.[119] The Nobel Committee for Chemistry's recommendation was therefore rejected by the Royal Swedish Academy of Sciences in 1944, which also decided to defer the award for one year. When the Academy reconsidered the award in September 1945, the war was over and thus the German boycott had ended. Also, the chemistry committee had now become more cautious, as it was apparent that much research had taken place in the United States in secret, and suggested deferring for another year, but the Academy was swayed by Göran Liljestrand, who argued that it was important for the Academy to assert its independence from the Ikkinchi jahon urushining ittifoqchilari, and award the prize to a German, as it had done after World War I when it had awarded it to Fritz Haber. Hahn therefore became the sole recipient of the 1944 Nobel Prize for Chemistry.[118]

The invitation to attend the Nobel festivities was transmitted via the British Embassy in Stockholm.[120] On 4 December, Hahn was persuaded by two of his Alsos captors, American Podpolkovnik Horace K. Calvert and British Leytenant komandir Eric Welsh, to write a letter to the Nobel committee accepting the prize but stating that he would not be able to attend the award ceremony on 10 December since his captors would not allow him to leave Farm Hall. When Hahn protested, Welsh reminded him that Germany had lost the war.[121] Under the Nobel Foundation statutes, Hahn had six months to deliver the Nobel Prize lecture, and until 1 October 1946 to cash the 150,000 Shved kronasi cheque.[122][123]

Hahn was repatriated from Farm Hall on 3 January 1946, but it soon became apparent that difficulties obtaining permission to travel from the British government meant that he would be unable to travel to Sweden before December 1946. Accordingly, the Academy of Sciences and the Nobel Foundation obtained an extension from the Swedish government.[123] Hahn attended the year after he was awarded the prize. On 10 December 1946, the anniversary of the death of Alfred Nobel Shoh Shvetsiyalik Gustav V presented him with his Nobel Prize medal and diploma.[115][123][124] Hahn gave 10,000 krona of his prize to Strassmann, who refused to use it.[124][125]

Founder and President of the Max Planck Society

Monument in Berlin-Dahlem, in front of the Otto-Hahn-Platz

O'z joniga qasd qilish Albert Vogler on 14 April 1945 left the KWS without a president.[49] The British chemist Bertie Blount was placed in charge of its affairs while the Allies decided what to do with it, and he decided to install Max Planck as an interim president. Now aged 87, Planck was in the small town of Rogätz, in an area that the Americans were preparing to hand over to the Sovet Ittifoqi. The Dutch astronomer Jerar Kuyper from the Alsos Mission fetched Planck in a jeep and brought him to Göttingen on 16 May.[126][127] Planck wrote to Hahn, who was still in captivity in England, on 25 July, and informed Hahn that the directors of the KWS had voted to make him the next president, and asked if he would accept the position.[49] Hahn did not receive the letter until September, and did not think he was a good choice, as he regarded himself as a poor negotiator, but his colleagues persuaded him to accept. After his return to Germany, he assumed the office on 1 April 1946.[128][129]

Ittifoq nazorat kengashi Law No. 25 on the control of scientific research dated 29 April 1946 restricted German scientists to conducting basic research only,[49] and on 11 July the Allied Control Council dissolved the KWS on the insistence of the Americans,[130] who considered that it had been too close to the national socialist regime, and was a threat to world peace.[131] However, the British, who had voted against the dissolution, were more sympathetic, and offered to let the Kaiser Wilhelm Society continue in the Britaniya zonasi, on one condition: that the name be changed. Hahn and Heisenberg were distraught at this prospect. To them it was an international brand that represented political independence and scientific research of the highest order. Hahn noted that it had been suggested that the name be changed during the Veymar Respublikasi, lekin Germaniya sotsial-demokratik partiyasi had been persuaded not to.[132] To Hahn, the name represented the good old days of the Germaniya imperiyasi, however authoritarian and undemocratic it was, before the hated Weimar Republic.[133] Heisenberg asked Niels Bohr for support, but Bohr recommended that the name be changed.[132] Lise Meitner wrote to Hahn, explaining that:

Outside of Germany it is considered so obvious that the tradition from the period of Kaiser Wilhelm has been disastrous and that changing the name of the KWS is desirable, that no one understands the resistance against it. For the idea, that the Germans are the chosen people and have the right to use any and all means to subordinate the "inferior" people, has been expressed over and over again by historians, philosophers, and politicians and finally the Nazis tried to translate it into fact... The best people among the English and Americans wish that the best Germans would understand that there should be a definitive break with this tradition, which has brought the entire world and Germany itself the greatest misfortune. And as a small sign of German understanding the name of the KWS should be changed. What’s in a name, if it is a matter of the existence of Germany and thereby Europe? [134]

In September 1946, a new Max Planck Society was established at Bad Driburg in the British Zone.[131] On 26 February 1948, after the US and British zones were fused into Bizonia, it was dissolved to make way for the Maks Plank jamiyati, with Hahn as the founding president. It took over the 29 institutes of the former Kaiser Wilhelm Society that were located in the British and American zones. Qachon Germaniya Federativ Respublikasi (or West-Germany) was formed in 1949, the five institutes located in the French zone joined them.[135] The Kaiser Wilhelm Institute for Chemistry, now under Strassmann, built and renovated new accommodation in Maynts, but work proceeded slowly, and it did not relocate from Tailfingen until 1949.[136] Hahn's insistence on retaining Ernst Telschow as the general secretary nearly caused a rebellion against his presidency.[137] In his efforts to rebuild German science, Hahn was generous in issuing persilschein (whitewash certificates), writing one for Gottfried von Droste, kim qo'shilgan Sturmabteilung (SA) in 1933 and the NSDAP in 1937, and wore his SA uniform at the Kaiser Wilhelm Institute for Chemistry,[138] va uchun Heinrich Hörlein va Fritz ter Meer from IG Farben.[139] Hahn served as president of the Max Planck Society until 1960, and succeeded in regaining the renown that had once been enjoyed by the Kaiser Wilhelm Society. New institutes were founded and old ones expanded, the budget rose from 12 million Deutsche Marks in 1949 to 47 million in 1960, and the workforce grew from 1,400 to nearly 3,000.[49]

Spokesman for social responsibility

After the Second World War, Hahn came out strongly against the use of nuclear energy for military purposes. He saw the application of his scientific discoveries to such ends as a misuse, or even a crime. Lawrence Badash wrote: "His wartime recognition of the perversion of science for the construction of weapons and his postwar activity in planning the direction of his country's scientific endeavours now inclined him increasingly toward being a spokesman for social responsibility."[140]

Otto Hahn with his wife Edith, 1959

In early 1954, he wrote the article "Cobalt 60 – Danger or Blessing for Mankind?", about the misuse of atomic energy, which was widely reprinted and transmitted in the radio in Germany, Norway, Austria, and Denmark, and in an English version worldwide via the BBC. The international reaction was encouraging.[141] The following year he initiated and organized the Mainau deklaratsiyasi of 1955, in which he and a number of international Nobel Prize-winners called attention to the dangers of atomic weapons and warned the nations of the world urgently against the use of "force as a final resort", and which was issued a week after the similar Russell-Einstein Manifesto. In 1956, Hahn repeated his appeal with the signature of 52 of his Nobel colleagues from all parts of the world.[142]

Hahn was also instrumental in and one of the authors of the Göttingen manifesti of 13 April 1957, in which, together with 17 leading German atomic scientists, he protested against a proposed nuclear arming of the West German armed forces (Bundesver ).[143] This resulted in Hahn receiving an invitation to meet with the Germaniya kansleri, Konrad Adenauer and other senior officials, including the Mudofaa vaziri, Frants Yozef Strauss, and Generals Xans Speydel va Adolf Xeyuzer (who both had been a General in the Nazi era). The two generals argued that the Bundesver needed nuclear weapons, and Adenauer accepted their advice. A communique was drafted that said that the Federal Republic did not manufacture nuclear weapons, and would not ask its scientists to do so.[144] Instead, the German forces were equipped with US nuclear weapons.[145]

Otto Hahn on a stamp of the Germaniya Demokratik Respublikasi, 1979

On 13 November 1957, in the Konzerthaus (Concert Hall) in Vena, Hahn warned of the "dangers of A- and H-bomb-experiments", and declared that "today war is no means of politics anymore – it will only destroy all countries in the world". His highly acclaimed speech was transmitted internationally by the Austrian radio, Österreichischer Rundfunk (ÖR). On 28 December 1957, Hahn repeated his appeal in an English translation for the Bulgarian Radio in Sofiya, which was broadcast in all Warsaw pact davlatlar.[146][147]

In 1959 Hahn co-founded in Berlin the Federation of German Scientists (VDW), a non-governmental organization, which has been committed to the ideal of responsible science. The members of the Federation feel committed to taking into consideration the possible military, political, and economical implications and possibilities of atomic misuse when carrying out their scientific research and teaching. With the results of its interdisciplinary work the VDW not only addresses the general public, but also the decision-makers at all levels of politics and society.[148] Right up to his death, Otto Hahn never tired of warning urgently of the dangers of the yadroviy qurollanish poygasi between the great powers and of the radioaktiv ifloslanish sayyoramizning[149]The historian Lawrence Badash wrote:

The important thing is not that scientists may disagree on where their responsibility to society lies, but that they are conscious that a responsibility exists, are vocal about it, and when they speak out they expect to affect policy. Otto Hahn, it would seem, was even more than just an example of this twentieth-century conceptual evolution; he was a leader in the process.[150]

Faxriy va mukofotlar

During his lifetime Hahn was awarded orders, medals, scientific prizes, and fellowships of Academies, Societies, and Institutions from all over the world. At the end of 1999, the German news magazine Fokus published an inquiry of 500 leading natural scientists, engineers, and physicians about the most important scientists of the 20th century. In this poll Hahn was elected third (with 81 points), after the theoretical physicists Albert Eynshteyn and Max Planck, and thus the most significant chemist of his time.[151]

Shuningdek Kimyo bo'yicha Nobel mukofoti (1944 ), Hahn was awarded:

Bust by Knud Knudsen

Hahn became the honorary president of the Max Planck Society in 1962.[156]

He was an honorary fellow of University College London,[158]

Objects named after Hahn include:

Proposals were made at various times, first in 1971 by American chemists, that the newly synthesised element 105 should be named gahniy in Hahn's honour, but in 1997 the IUPAC named it dubniy, after the Russian research centre in Dubna. In 1992 element 108 was discovered by a German research team, and they proposed the name hassium (keyin Xesse ). In spite of the long-standing convention to give the discoverer the right to suggest a name, a 1994 IUPAC committee recommended that it be named gahniy.[167] After protests from the German discoverers, the name hassium (Hs) was adopted internationally in 1997.[168]

O'lim

Hahn's grave in Göttingen

Hahn was shot in the back by a disgruntled inventor in October 1951, injured in a motor vehicle accident in 1952, and had a minor yurak xuruji in 1953. In 1962, he published a book, Vom Radiothor zur Uranspaltung. It was released in English in 1966 with the title Otto Hahn: A Scientific Autobiography, with an introduction by Glenn Seaborg. The success of this book may have prompted him to write another, fuller autobiography, Otto Hahn. Mein Leben, but before it could be published, he fractured one of the vertebrae in his neck while getting out of a car. He gradually became weaker and died in Göttingen on 28 July 1968. His wife Edith only survived him by a fortnight.[169] U dafn qilindi Stadtfriedhof Göttingen shahrida.[170]The day after his death, the Max Planck Society published the following obituary notice in all the major newspapers in Germany, Austria, and Switzerland:

On 28 July, in his 90th year, our Honorary President Otto Hahn passed away. His name will be recorded in the history of humanity as the founder of the atomic age. In him Germany and the world have lost a scholar who was distinguished in equal measure by his integrity and personal humility. The Max Planck Society mourns its founder, who continued the tasks and traditions of the Kaiser Wilhelm Society after the war, and mourns also a good and much loved human being, who will live in the memories of all who had the chance to meet him. His work will continue. We remember him with deep gratitude and admiration.[171]

Fritz Strassmann wrote:

The number of those who had been able to be near Otto Hahn is small. His behaviour was completely natural for him, but for the next generations he will serve as a model, regardless of whether one admires in the attitude of Otto Hahn his humane and scientific sense of responsibility or his personal courage.[172]

Otto Robert Frisch recalled:

Hahn remained modest and informal all his life. His disarming frankness, unfailing kindness, good common sense, and impish humour will be remembered by his many friends all over the world.[173]

The Qirollik jamiyati in London wrote in an obituary:

It was remarkable, how, after the war, this rather unassuming scientist who had spent a lifetime in the laboratory, became an effective administrator and an important public figure in Germany. Hahn, famous as the discoverer of nuclear fission, was respected and trusted for his human qualities, simplicity of manner, transparent honesty, common sense and loyalty.[174]

Ingliz tilidagi nashrlar

  • Hahn, Otto (1936). Applied Radiochemistry. Ithaka, Nyu-York: Kornell universiteti matbuoti.
  • Hahn, Otto (1950). New Atoms: Progress and Some Memories. New York-Amsterdam-London-Brussels: Elsevier Inc.
  • Hahn, Otto (1966). Otto Hahn: A Scientific Autobiography. Translated by Ley, Willy. Nyu-York: Charlz Skribnerning o'g'illari.
  • Hahn, Otto (1970). Mening hayotim. Translated by Kaiser, Ernst; Wilkins, Eithne. Nyu-York: Herder va Herder.

Izohlar

  1. ^ Hahn 1966, 2-6 betlar.
  2. ^ a b Hahn 1966, 7-11 betlar.
  3. ^ Spence 1970, 281-282 betlar.
  4. ^ Hughes, Jeff (29 December 2008). "Making isotopes matter: Francis Aston and the mass-spectrograph". Dinamis. 29: 131–165. doi:10.4321/S0211-95362009000100007. ISSN  0211-9536.
  5. ^ Hoffmann 2001, p. 35.
  6. ^ Daily Telegraph, London, 18 March 1905.
  7. ^ Hahn, Otto (24 May 1905). "A new radio-active element, which evolves thorium emanation. Preliminary communication". London Qirollik jamiyati materiallari. Series A, Containing Papers of a Mathematical and Physical Character. 76 (508): 115–117. Bibcode:1905RSPSA..76..115H. doi:10.1098/rspa.1905.0009.
  8. ^ Spence 1970, pp. 303–313 for a full list
  9. ^ Hahn 1966, 15-18 betlar.
  10. ^ Spence 1970, 282-283 betlar.
  11. ^ Hahn 1966, 24-25 betlar.
  12. ^ Hahn 1988, p. 59.
  13. ^ Hahn 1966, p. 66.
  14. ^ a b Hahn 1966, 37-38 betlar.
  15. ^ a b Hahn 1966, p. 52.
  16. ^ Hahn 1966, 39-40 betlar.
  17. ^ Hahn 1966, 40-50 betlar.
  18. ^ "Nobel Prize for Chemistry for 1944: Prof. Otto Hahn". Tabiat. 156 (3970): 657. December 1945. Bibcode:1945Natur.156R.657.. doi:10.1038/156657b0. ISSN  0028-0836.
  19. ^ Stolz 1989, p. 20.
  20. ^ a b v Hahn 1966, p. 50.
  21. ^ a b Hahn 1966, p. 65.
  22. ^ Sime 1996, 28-29 betlar.
  23. ^ Sime 1996, p. 368.
  24. ^ "Ehrung der Physikerin Lise Meitner Aus dem Otto-Hahn-Bau wird der Hahn-Meitner-Bau" [Fizika mutaxassisi Lise Meitnerni Otto Xann binosi Xann-Meitner binosiga aylangani kabi sharaflash] (nemis tilida). Berlin bepul universiteti. 2010 yil 28 oktyabr. Olingan 10 iyun 2020.
  25. ^ a b Xahn 1966, 58-64 bet.
  26. ^ a b Gerlach va Xan 1984 yil, p. 39.
  27. ^ Sim 1996 yil, 44-47 betlar.
  28. ^ Xahn 1966, 70-72 betlar.
  29. ^ Sim 1996 yil, p. 48.
  30. ^ Spens 1970, p. 286.
  31. ^ "Hahn, Hanno". San'at tarixchilarining lug'ati. Olingan 18 iyun 2020.
  32. ^ "Hanno-und-Ilse-Hahn-Preis" (nemis tilida). Maks-Plank-Gesellschaft. Arxivlandi asl nusxasi 2011 yil 9 yanvarda.
  33. ^ Spens 1970, 286-287 betlar.
  34. ^ a b v Van der Kloot, V. (2004). "1918 yil aprel: beshta kelajakdagi Nobel mukofoti sovrindorlari ommaviy qirg'in qurollari va akademik-sanoat-harbiy kompleksni ochdilar". London Qirollik jamiyati yozuvlari va yozuvlari. 58 (2): 149–160. doi:10.1098 / rsnr.2004.0053. S2CID  145243958.
  35. ^ Sim 1996 yil, 57-61 bet.
  36. ^ Spens 1970, 287-288 betlar.
  37. ^ a b v Sim, Rut Leyn (1986 yil avgust). "Protaktiniyning kashf etilishi". Kimyoviy ta'lim jurnali. 63 (8): 653–657. Bibcode:1986JChEd..63..653S. doi:10.1021 / ed063p653. ISSN  0021-9584.
  38. ^ Meitner, Lise (1918 yil 1-iyun), Die Muttersubstanz des Actiniums, Ein Neues Radioaktives Element von Langer Lebensdauer, 24, 169–173-betlar, doi:10.1002 / bbpc.19180241107 (2020 yil 17-noyabrda faol bo'lmagan)CS1 maint: DOI 2020 yil noyabr holatiga ko'ra faol emas (havola)
  39. ^ a b v "Nomzodlar uchun ma'lumotlar bazasi: Otto Xan". Nobel Media AB. 9 iyun 2020 yil.
  40. ^ "Nomzodlar uchun ma'lumotlar bazasi: Lise Meitner". Nobel Media AB. 9 iyun 2020 yil.
  41. ^ "Protactinium | Pa (Element)". PubChem. Olingan 18 iyun 2020.
  42. ^ a b Xahn 1966, 95-103 betlar.
  43. ^ a b Berninger 1983 yil, 213–220-betlar.
  44. ^ Hahn, O. (1921). "Uber ein neues radioaktives Zerfallsprodukt im Uran". Naturwissenschaften vafot etdi. 9 (5): 84. Bibcode:1921NW ...... 9 ... 84H. doi:10.1007 / BF01491321. S2CID  28599831.
  45. ^ Xahn O. Xahn, Otto (1923). "Uber das Uran Z und seine Muttersubstanz". Zeitschrift für Physikalische Chemie. 103 (1): 461–480. doi:10.1515 / zpch-1922-10325. ISSN  0942-9352. S2CID  99021215.
  46. ^ Hoffmann 2001 yil, p. 93.
  47. ^ Tuk, Norman; Bretscher, E.; Appleton, Edvard Viktor (1938). "Uran Z va yadro izomeriyasi muammosi". Qirollik jamiyati materiallari: matematik, fizika va muhandislik fanlari. 165 (923): 530–551. Bibcode:1938RSPSA.165..530F. doi:10.1098 / rspa.1938.0075. ISSN  1364-5021.
  48. ^ Hoffmann 2001 yil, p. 94.
  49. ^ a b v d e "Otto Xen". Maks-Plank-Gesellschaft. Olingan 24 iyun 2020.
  50. ^ Hoffmann 2001 yil, p. 95.
  51. ^ a b Xahn 1966, ix – x bet.
  52. ^ Sim 1996 yil, 156-157, 169-betlar.
  53. ^ Walker 2006 yil, p. 122.
  54. ^ Xahn 1966, p. 283.
  55. ^ Sim 2006, p. 6.
  56. ^ Sim 1996 yil, 138-139-betlar.
  57. ^ Sim 1996 yil, 8-9 betlar.
  58. ^ Sim 2006, p. 7.
  59. ^ a b v d Sim 2006, p. 10.
  60. ^ "Maks Plank KWS prezidenti bo'ldi". Maks-Plank Gesellschaft. Olingan 23 iyun 2020.
  61. ^ Walker 2006 yil, 122–123 betlar.
  62. ^ "KWS" Fürerprinzip "ni taqdim etadi'". Maks-Plank Gesellschaft. Olingan 23 iyun 2020.
  63. ^ Sim 1996 yil, p. 143.
  64. ^ Xahn 1966, 85-88 betlar.
  65. ^ Xahn O .; Strassman, F .; Walling, E. (1937 yil 19 mart). "Herstellung wägbaren Mengen des Strontiumisotops 87 als Umwandlungsprodukt des Rubidiums aus einem kanadischen Glimmer". Naturwissenschaften (nemis tilida). 25 (12): 189. Bibcode:1937NW ..... 25..189H. doi:10.1007 / BF01492269. ISSN  0028-1042.
  66. ^ Xahn O .; Walling, E. (1938 yil 12-mart). "Über die Möglichkeit geologischer Alterbestimmung rubidiumhaltiger Mineralen und Gesteine". Zeitschrift für anorganische und allgemeine Chemie (nemis tilida). 236 (1): 78–82. doi:10.1002 / zaac.19382360109. ISSN  0044-2313.
  67. ^ Bowen 1994 yil, 162–163-betlar.
  68. ^ Sim, Rut Leyn (2010 yil 15-iyun). "Noqulay tarix: Deutsches muzeyidagi yadro-bo'linish namoyishi". Perspektivdagi fizika. 12 (2): 190–218. Bibcode:2010 yil PHP .... 12..190S. doi:10.1007 / s00016-009-0013-x. ISSN  1422-6944. S2CID  120584702.
  69. ^ Rodos 1986 yil, 39, 160-167, 793-betlar.
  70. ^ Rodos 1986 yil, 200–201 betlar.
  71. ^ Sim 1996 yil, 161–162-betlar.
  72. ^ Fergusson, Jek E. (2011 yil iyul). "Yadro bo'linishini kashf etish tarixi". Kimyo asoslari. 13 (2): 145–166. doi:10.1007 / s10698-011-9112-2. ISSN  1386-4238. S2CID  93361285.
  73. ^ Rodos 1986 yil, 210-211 betlar.
  74. ^ a b Segré, Emilio G. (1989 yil iyul). "Yadro bo'linishini kashf etish". Bugungi kunda fizika. 42 (7): 38–43. Bibcode:1989PhT .... 42g..38S. doi:10.1063/1.881174.
  75. ^ Sim 1996 yil, 164-165-betlar.
  76. ^ Xahn 1966, 140-141 betlar.
  77. ^ Hahn, O. (1958). "Bo'linish kashfiyoti". Ilmiy Amerika. 198 (2): 76–84. Bibcode:1958SciAm.198b..76H. doi:10.1038 / Scientificamerican0258-76.
  78. ^ a b v Sim 1996 yil, 170-172-betlar.
  79. ^ a b L., Meitner; O., Xahn; Strassmann, F. (1937 yil may). "Über die Umwandlungsreihen des Urans, die durch Neutronenbestrahlung erzeugt werden" [Neytron nurlanishi natijasida hosil bo'ladigan uranning bir qator transformatsiyalari to'g'risida]. Zeitschrift für Physik (nemis tilida). 106 (3–4): 249–270. Bibcode:1937ZPhy..106..249M. doi:10.1007 / BF01340321. ISSN  0939-7922. S2CID  122830315.
  80. ^ a b O., Xahn; L., Meitner; Strassmann, F. (1937 yil 9-iyun). "Über die Trans ‐ Urane und ihr chemisches Verhalten" [Transuranlar va ularning kimyoviy harakati to'g'risida]. Berichte der Deutschen Chemischen Gesellschaft. 70 (6): 1374–1392. doi:10.1002 / cber.19370700634. ISSN  0365-9496.
  81. ^ Sim 1996 yil, p. 177.
  82. ^ Sim 1996 yil, 184–185 betlar.
  83. ^ Sim 1996 yil, 200-207 betlar.
  84. ^ a b Sim 1996 yil, 227-230 betlar.
  85. ^ Sim 1996 yil, p. 233.
  86. ^ Hahn, O.; Strassmann, F. (1939). "Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle" [Uranni neytronlar bilan nurlantirish natijasida hosil bo'lgan ishqoriy er metallarini aniqlash va xususiyatlari to'g'risida]. Naturwissenschaften vafot etdi (nemis tilida). 27 (1): 11–15. Bibcode:1939NW ..... 27 ... 11H. doi:10.1007 / BF01488241. S2CID  5920336.
  87. ^ Sim 1996 yil, 248-249 betlar.
  88. ^ Frisch 1979 yil, 115-116-betlar.
  89. ^ Meitner, L.; Frisch, O. R. (1939 yil yanvar). "Uranning neytronlar tomonidan parchalanishi: Yadro reaktsiyasining yangi turi". Tabiat. 143 (3615): 239. Bibcode:1939 yil natur.143..239M. doi:10.1038 / 143239a0. S2CID  4113262.
  90. ^ Frisch, O. R. (1939 yil fevral). "Neytron bombardimoni ostida og'ir yadrolarning bo'linishiga oid jismoniy dalillar". Tabiat. 143 (3616): 276. Bibcode:1939 yil Nat.143..276F. doi:10.1038 / 143276a0. S2CID  4076376.
  91. ^ Xahn O .; Strassmann, F. (1939 yil fevral). "Nachweis der Entstehung aktiver Bariumisotope aus Uran und Thorium durch Neutronenbestrahlung; Nachweis weiterer aktiver Bruchstücke bei der Uranspaltung". Naturwissenschaften. 27 (6): 89–95. Bibcode:1939NW ..... 27 ... 89H. doi:10.1007 / BF01488988. S2CID  33512939.
  92. ^ Fon Halban, H.; Joliot, F.; Kovarski, L. (1939 yil 22-aprel). "Uranning yadro bo'linishida ozod qilingan neytronlar soni". Tabiat. 143 (3625): 680. Bibcode:1939 yil Nat.143..680V. doi:10.1038 / 143680a0. ISSN  0028-0836. S2CID  4089039.
  93. ^ a b Walker 1993 yil, 22-23 betlar.
  94. ^ Hoffmann 2001 yil, p. 150.
  95. ^ a b Xahn 1966, 175-177 betlar.
  96. ^ Hoffmann 2001 yil, 156–161-betlar.
  97. ^ a b Walker 2006 yil, p. 132.
  98. ^ a b Walker 2006 yil, p. 137.
  99. ^ a b Hoffmann 2001 yil, p. 188.
  100. ^ Norris 2002 yil, 294-295 betlar.
  101. ^ Walker 1993 yil, 132-133 betlar.
  102. ^ Sim 2006, 19-21 betlar.
  103. ^ Xahn 1966, p. 179.
  104. ^ Walker 1993 yil, 158-159 betlar.
  105. ^ Hoffmann 2001 yil, p. 195.
  106. ^ a b Sim 2006, 24-25 betlar.
  107. ^ Walker 1993 yil, 159-160-betlar.
  108. ^ Hoffmann 2001 yil, 196-199 betlar.
  109. ^ Walker 2006 yil, p. 139.
  110. ^ Sim 2006, 26-28 betlar.
  111. ^ Sim 1996 yil, p. 319.
  112. ^ Hoffmann 2001 yil, p. 201.
  113. ^ Hoffmann 2001 yil, 205–206 betlar.
  114. ^ "Kimyo bo'yicha Nobel mukofoti 1944". Nobel jamg'armasi. Olingan 17 dekabr 2007.
  115. ^ a b "Kimyo bo'yicha Nobel mukofoti 1944: taqdimot nutqi". Nobel jamg'armasi. Olingan 3 yanvar 2008.
  116. ^ Bernshteyn 2001 yil, 282-283 betlar.
  117. ^ Bernshteyn 2001 yil, 286-288, 323-324-betlar.
  118. ^ a b Crawford, Sime & Walker 1997 yil, 27-31 bet.
  119. ^ Krouford 2000, 38-40 betlar.
  120. ^ Krouford 2000, p. 49.
  121. ^ Bernshteyn 2001 yil, 311, 325-betlar.
  122. ^ "Nobel jamg'armasi to'g'risidagi nizom". NobelPrize.org. Olingan 25 iyun 2020.
  123. ^ a b v Krouford 2000, 49-50 betlar.
  124. ^ a b Hoffmann 2001 yil, p. 209.
  125. ^ Sim 1996 yil, p. 343.
  126. ^ Braun, Brendon R. (2015 yil 16-may). "Ikkinchi Jahon urushi oxirida Jerar Kuiperning Maks Plankni jasorat bilan qutqarishi". Scientific American Blog Network. Olingan 27 iyun 2020.
  127. ^ "Urushning tugashi va o'tish davri. Maks Plank KWSning muvaqqat prezidenti". Maks-Plank-Gesellschaft. Olingan 27 iyun 2020.
  128. ^ Hoffmann 2001 yil, p. 199.
  129. ^ Makrakis 1993 yil, 189-189 betlar.
  130. ^ Makrakis 1993 yil, 190-191 betlar.
  131. ^ a b "Maks Plank Jamiyatining tug'ilishi". Maks-Plank-Gesellschaft. Olingan 27 iyun 2020.
  132. ^ a b Walker 2006 yil, 145–147 betlar.
  133. ^ Walker 2006 yil, p. 152.
  134. ^ Walker 2006 yil, p. 147.
  135. ^ "Bugungi Maks Plank Jamiyatining asos solishi". Maks-Plank-Gesellschaft. Olingan 27 iyun 2020.
  136. ^ "Umumiy ma'lumot". Maks Plank nomidagi kimyo instituti. Olingan 27 iyun 2020.
  137. ^ Sim 2006, p. 12.
  138. ^ Walker 2006 yil, p. 124.
  139. ^ Sim 2004, p. 48.
  140. ^ Badash 1983 yil, p. 176.
  141. ^ Hoffmann 2001 yil, 218-221 betlar.
  142. ^ Hoffmann 2001 yil, 221–222 betlar.
  143. ^ Hoffmann 2001 yil, 231–232 betlar.
  144. ^ Hoffmann 2001 yil, 235-238 betlar.
  145. ^ Sprenger, Sebastyan (2020 yil 11-may). "NATO boshlig'i Germaniyaning urushga tayyor AQSh yadrolarini saqlab qolish va'dasini qo'llab-quvvatlaydi". Mudofaa yangiliklari. Olingan 28 iyun 2020.
  146. ^ Hahn 1988 yil, p. 288.
  147. ^ Hoffmann 2001 yil, p. 242.
  148. ^ "FGS risolasi" (PDF). Biologik xilma-xillik to'g'risidagi konventsiya. Germaniya olimlari federatsiyasi. Olingan 28 iyun 2020.
  149. ^ Hoffmann 2001 yil, p. 248.
  150. ^ Badash 1983 yil, p. 178.
  151. ^ Fischer, Ernst Piter (1999 yil 27-dekabr). "Die Allmacht Der Unschärfe". Fokus (nemis tilida). № 52. 103-108 betlar. Olingan 28 iyun 2020.
  152. ^ a b v d e f g h men j k l m n o p Spens 1970, p. 302.
  153. ^ "Alle Medaillenträger". Wilhelm Exner Medaillen Stiftung. Olingan 28 iyun 2020.
  154. ^ "Harnack Medal". Maks-Plank-Gesellschaft. Olingan 28 iyun 2020.
  155. ^ Hoffmann 2001 yil, 243–244 betlar.
  156. ^ Spens 1970, p. 300.
  157. ^ Spens 1970, p. 279.
  158. ^ a b v d Spens 1970, 302-303 betlar.
  159. ^ "Otto Xan, 1966 yilgi ma'lumotnoma". U. S. Energetika bo'limi. Olingan 14 dekabr 2019.
  160. ^ "NS Otto Xen". Germaniyaning yadroviy yuk tashuvchi kemasi. Olingan 28 iyun 2020.
  161. ^ "Sayyora nomlari: krater, kraterlar: Hahn on Moon". planetarynames.wr.usgs.gov. Olingan 28 iyun 2020.
  162. ^ "IAU Kichik sayyoralar markazi". minorplanetcenter.net. Olingan 28 iyun 2020.
  163. ^ "GDCh-Preise". Gesellschaft Deutscher Chemiker e.V. Olingan 28 iyun 2020.
  164. ^ "Otto Xen medali". Maks-Plank -Gesellschaft. Olingan 28 iyun 2020.
  165. ^ "Otto Xon mukofoti". Maks-Plank-Gesellschaft. Olingan 28 iyun 2020.
  166. ^ "Verleihung der Otto-Hahn-Friedensmedaille". Deutsche Gesellschaft für die Vereinten Nationen e.V. Olingan 28 iyun 2020.
  167. ^ "Transfermium elementlarining nomlari va ramzlari (IUPAC tavsiyalari 1994)" (PDF). IUPAC. Olingan 23 iyun 2020.
  168. ^ "Transfermium elementlarining nomlari va ramzlari (IUPAC tavsiyalari 1997)" (PDF). IUPAC. Olingan 23 iyun 2020.
  169. ^ Spens 1970, 2300–301 betlar.
  170. ^ "Grab von Otto Hahn aus Göttingen". www.friedhofguide.de. Olingan 28 iyun 2020.
  171. ^ Frankfurter Allgemeine Zeitung, Frankfurt, Die Welt, Gamburg, Süddeutsche Zeitung, Myunxen, Die Presse, Vena, Neue Zürcher Zeitung, Syurix, 1968 yil 29-iyul.
  172. ^ Strassmann, Fritz (1968 yil 29-iyul) "Zum Tode von Otto Xen". Die Welt.
  173. ^ Frisch, Otto R. (1968). "Otto Xen". Fizika byulleteni. 19 (10): 354. doi:10.1088/0031-9112/19/10/010.
  174. ^ Spens 1970, 301-302 betlar.

Adabiyotlar

Qo'shimcha o'qish

  • Berninger, Ernst H. (1970). Otto Xen 1879-1968. Bonn: Inter Nationes. OCLC  168069.
  • Beyerchen, Alan D. (1977). Gitler boshchiligidagi olimlar. Nyu-Xeyven va London: Yel universiteti matbuoti. OCLC  970896098.
  • Feldman, Entoni; Ford, Piter (1979). Otto Xan: Olimlar va ixtirochilar. London: Aldus kitoblari.
  • Graetzer, Xans D. Anderson, Devid L. (1971). Yadro bo'linishining kashf etilishi: Hujjatli tarix. Nyu-York: Van Nostran-Reyxold. OCLC  1130319295.
  • Hahn, Otto (1970). Mening hayotim. Kaiser, Ernst tomonidan tarjima qilingan; Wilkins, Eithne. Nyu-York: Herder va Herder. OCLC  317354004.
  • Kant, Xorst (2002). Verner Geyzenberg va Germaniyaning uran loyihasi. Otto Xan va Mainau va Göttingen deklaratsiyalari. Berlin: Maks-Plank-Insitut für Wissenschaftsgeschichte.
  • Rid, Robert Uilyam (1969). Vijdon tili: urush va olimning ikkilanishi. London: Constable & Co. OCLC  638683343.
  • Whiting, Jim (2004). Otto Xan va yadro bo'linishining kashf etilishi. Ilm-fan sirlarini ochish. Ayiq, Delaver: Mitchell Leyn. ISBN  978-1-58415-204-0. OCLC  52312062.

Tashqi havolalar