Videokamera trubkasi - Video camera tube

vidikon trubkasi (23 dyuym (17 mm) diametri)
1954 yildan boshlab turli xil eksperimental videokamera naychalarining namoyishi Vladimir K. Zvorikin ikonoskopni ixtiro qilgan

Videokamera naychalari ga asoslangan qurilmalar edi katod nurlari trubkasi ishlatilgan televizion kameralar qo'lga olish televizor kirishidan oldin tasvirlar zaryad bilan bog'langan qurilma (CCD) tasvir sensorlari 1980-yillarda.[1][2][3] 1930-yillarning boshlarida va 1990-yillarning oxirlarida bir nechta turli xil naychalar ishlatilgan.

Ushbu naychalarda katot nurlari efirga uzatiladigan sahna tasviri bo'ylab skanerdan o'tkazildi. Olingan oqim maqsaddagi tasvirning yorqinligiga bog'liq edi. Ajablanadigan nurning o'lchami nishon o'lchamiga nisbatan juda kichik bo'lib, 483 gorizontal holatga keltirildi skanerlash chiziqlari har bir rasm uchun NTSC format, 576 qator PAL,[4] va 1035 qatorda HiVision.

Katod nurlari trubkasi

Dastlab chaqirilgan elektronlarning yo'naltirilgan nurlari yordamida ishlaydigan har qanday vakuum trubkasi katod nurlari, katot nurli naycha (CRT) sifatida tanilgan. Ular odatda eskirgan (masalan,tekis panel ) televizion qabul qiluvchilar va kompyuter displeylari. Ushbu maqolada tasvirlangan kamerani yig'ish naychalari ham CRT-lardir, ammo ular hech qanday rasm ko'rsatmaydi.[5]

Dastlabki tadqiqotlar

1908 yil iyun oyida ilmiy jurnal Tabiat unda bir xat e'lon qildi Alan Archibald Kempbell-Svinton, hamkasbi Qirollik jamiyati (Buyuk Britaniya ), qanday qilib to'liq elektron televizion tizimni qo'llash orqali amalga oshirish mumkinligini muhokama qildi katod nurlari naychalari (yoki "Braun" naychalari, ixtirochisidan keyin, Karl Braun ) tasvirlash va namoyish qilish moslamalari sifatida.[6] U "haqiqiy qiyinchiliklar samarali transmitterni ishlab chiqarishda" ekanligini va "hozircha ma'lum bo'lgan biron bir fotoelektr hodisasi talab qilinadigan narsani ta'minlay olmasligi" mumkinligini ta'kidladi.[7] Katod nurlari trubkasi namoyish etuvchi qurilma sifatida muvaffaqiyatli namoyish etildi Nemis Professor Maks Diykmann 1906 yilda uning tajriba natijalari jurnal tomonidan nashr etilgan Ilmiy Amerika 1909 yilda.[8] Keyinchalik Kempbell-Svinton 1911 yil noyabr oyida Röntgen Jamiyatiga berilgan prezident nutqida o'z qarashlarini kengaytirdi. Taklif etilayotgan qurilmadagi fotoelektr ekrani izolyatsiya qilingan rubidiy kubiklaridan iborat mozaikadir.[9][10] To'liq elektron televizion tizim uchun uning kontseptsiyasi keyinchalik ommalashtirildi Ugo Gernsbek sifatida "Kempbell-Svinton elektron skanerlash tizimi" mashhur jurnalning 1915 yil avgust sonida Elektr eksperimentatori.[11][12][13]

Uchun maktubda Tabiat 1926 yil oktyabrda nashr etilgan Kempbell-Svinton shuningdek, G. M. Minchin va J. C. M. Stanton bilan o'tkazgan ba'zi "unchalik muvaffaqiyatli bo'lmagan tajribalar" natijalarini e'lon qildi. Ular bir vaqtning o'zida skanerlangan selen bilan qoplangan metall plastinaga tasvirni proektsiyalash orqali elektr signalini ishlab chiqarishga urinishgan. katot nurlari nur.[14][15] Ushbu tajribalar Minchin vafot etgan 1914 yil martidan oldin o'tkazilgan,[16] ammo keyinchalik ularni 1937 yilda H. Miller va J. V. Strange tomonidan ikki xil jamoalar takrorladilar EMI,[17] va X. Iams va A. Rose tomonidan RCA.[18] Ikkala jamoa ham Kempbell-Svintonning selen bilan qoplangan asl plitasi bilan "juda zaif" tasvirlarni uzatishga muvaffaq bo'lishdi, ammo metall plastinka sink sulfid yoki selenid bilan qoplanganda juda yaxshi tasvirlar olingan,[17] yoki sezyum bilan ishlangan alyuminiy yoki zirkonyum oksidi bilan.[18] Ushbu tajribalar kelajakning asosini tashkil etadi vidikon. CRT tasvirlash moslamasining tavsifi patent tomonidan berilgan talabnomada ham paydo bo'ldi Edvard-Gustav Shoults yilda Frantsiya 1921 yil avgustda va 1922 yilda nashr etilgan,[19] ishlayotgan qurilma bir necha yil o'tgach namoyish etilmagan bo'lsa-da.[18]

Tasvirni ajratuvchi

1931 yildan Farnsvortdagi tasvirni ajratuvchi naycha

Tasvirni ajratuvchi - bu sahnaning "elektron tasvirini" yaratadigan kamera naychasidir fotokatod skanerlash teshiklaridan an ga o'tadigan emissiyalar (elektronlar) anod, bu elektron detektori bo'lib xizmat qiladi.[20][21] Bunday qurilmani birinchilardan bo'lib ishlab chiquvchilar orasida Nemis ixtirochilar Maks Diekmann va Rudolf jahannam,[22][23] ularning 1925 yildagi patentga bo'lgan talabnomasini nomlagan Lichtelektrische Bildzerlegerröhre für Fernseher (Televizor uchun fotoelektrik tasvirni ajratuvchi naycha).[24] Ushbu atama magnit maydonlarni ushlab turadigan disektor naychasiga nisbatan qo'llanilishi mumkin elektron tasvir markazida,[21] Dieckmann va Jahannam dizaynida va amerikalik ixtirochi tomonidan qurilgan dastlabki dissektor naychalarida yo'q element Filo Farnsvort.[22][25]

Dieckmann va Jahannam o'z arizalarini 1925 yil aprelda Germaniya patent idorasiga topshirdilar va patent 1927 yil oktyabrda berildi.[24] Ularning tasvirni ajratuvchi bo'yicha tajribalari mashhur jurnalning 8-jildida (1927 yil sentyabr) e'lon qilindi Kashfiyot[26][27] va jurnalning 1928 yil may oyidagi sonida Ommabop radio.[28] Biroq, ular hech qachon bunday naycha bilan aniq va yaxshi yo'naltirilgan tasvirni uzatmaganlar.[iqtibos kerak ]

1927 yil yanvar oyida amerikalik ixtirochi va televizion kashshof Filo T. Farnsvort unga patent olish uchun murojaat qildi Televizion tizim "yorug'likni konversiyalash va parchalash" moslamasini o'z ichiga olgan.[25]Uning birinchi harakatlanuvchi tasviri 1927 yil 7 sentyabrda muvaffaqiyatli uzatildi,[29]va patent 1930 yilda berilgan.[25] Farnsvort tezda qurilmada yaxshilanishlarni amalga oshirdi, ular orasida an elektron multiplikatori nikeldan qilingan[30][31] va keskin ravishda "uzunlamasına magnit maydon" dan foydalanish elektron tasvirni fokuslash.[32]Yaxshilangan uskuna 1928 yil sentyabr oyining boshlarida matbuotga namoyish etildi.[22][33][34]A ning kiritilishi ko'p faktorli 1933 yil oktyabrda[35][36] va ko'pdinod 1937 yilda "elektron multiplikatori"[37][38] Farnsvortning tasvir dissektorini televizor uchun to'liq elektron tasvirlash moslamasining birinchi amaliy versiyasiga aylantirdi.[39] Afsuski, u juda kambag'al edi yorug'lik shuning uchun birinchi navbatda yorug'lik juda yuqori bo'lgan joyda (odatda 685 dan yuqori) foydalidir CD / m²).[40][41][42] Biroq, sanoat pechlari yorqin ichki qismini kuzatish kabi sanoat dasturlari uchun juda mos edi. Yorug'lik sezgirligi past bo'lganligi sababli, televizor eshittirishlarida tasvirni ajratuvchi vositalar kamdan kam ishlatilgan, faqat film va boshqa shaffoflarni skanerlashdan tashqari.[iqtibos kerak ]

1933 yil aprelda Farnsvort patent huquqiga ega bo'lgan talabnomani ham taqdim etdi Rasmni ajratuvchi, lekin aslida batafsil a CRT - turdagi kamera naychasi.[43] Bu "past tezlikda" skanerlash nuridan foydalanishni taklif qilgan birinchi patentlardan biridir va RCA tasvirli ortikon naychalarini keng ommaga sotish uchun uni sotib olishi kerak edi.[44] Biroq, Farnsvort hech qachon bunday naycha bilan aniq va yaxshi yo'naltirilgan tasvirni uzatmagan.[45][46]

Ishlash

The optik tasvirni ajratuvchi tizim tasvirni yuqori vakuum ichiga o'rnatilgan fotokatodga qaratadi. Fotokatodga yorug'lik tushganda, elektronlar yorug'lik intensivligiga mutanosib ravishda chiqadi (qarang fotoelektr effekti ). Elektron tasvirning hammasi burilib ketgan va skanerlash diafragmasi faqat fotokatodning juda kichik maydonidan chiqadigan elektronlarni istalgan vaqtda detektor tomonidan ushlanishiga imkon beradi. Dedektordan chiqadigan narsa elektr toki bo'lib, uning kattaligi tasvirning tegishli maydonining yorqinligini o'lchaydi. Elektron tasvir vaqti-vaqti bilan gorizontal va vertikal ravishda burilgan ("raster skanerlash ") shunday bo'ladiki, butun tasvir detektor tomonidan soniyada bir necha marta o'qilib, unga uzatilishi mumkin bo'lgan elektr signalini hosil qiladi. displey qurilmasi rasmni ko'paytirish uchun CRT monitor kabi.[20][21]

Rasmni dissektorida yo'q "zaryadlashni saqlash "xarakterli; fotokatod chiqaradigan elektronlarning katta qismi skanerlash diafragma bilan chiqarib tashlangan,[23] va shuning uchun fotosurat sezgir nishonda saqlanmasdan, balki ikonoskopda yoki tasvirning ortikonida bo'lgani kabi (pastroqqa qarang), bu asosan uning past nur sezuvchanligini hisobga oladi.

Ikonoskop

Zvorikon ikonoskop naychasini ushlab turibdi
Zvorikinning 1931 yildagi patentidan ikonoskopning diagrammasi

Ikonoskop - bu maxsus tasvirni aks ettiradigan kamera naychasi zaryadlashni saqlash umumiy plastinkadan ajratuvchi materialning ingichka qatlami bilan ajratilgan elektr izolyatsiyalangan nurga sezgir granulalar mozaikasini o'z ichiga olgan plastinka inson ko'zi "s retina va uning joylashuvi fotoreseptorlar. Har bir nurga sezgir bo'lgan granulalar elektr zaryadini nurga javoban to'playdigan va to'playdigan kichik kondansatkichni tashkil qiladi. An elektron nur vaqti-vaqti bilan plastinka bo'ylab siljiydi, saqlangan tasvirni samarali ravishda skanerlaydi va har bir kondansatkichni o'z navbatida bo'shatadi, shunday qilib har bir kondansatörden elektr quvvati har bir tushirish hodisasi o'rtasida uni uradigan yorug'likning o'rtacha intensivligiga mutanosib bo'ladi.[47][48]

Vengriyalik muhandis tomonidan quvvatni tejash texnologiyasini joriy qilish bilan nurga sezgirligi pastligi, natijada uzatuvchi yoki kamerali naychalardan elektr quvvati past bo'ladi. Kalman Tihanyi 1925 yil boshida.[49] Uning echimi elektr zaryadlarini to'playdigan va saqlaydigan kamera naychasi edi (fotoelektronlar ) har bir skanerlash davri davomida kolba ichida. Qurilma birinchi marta u taqdim etgan patent talabnomasida tasvirlangan Vengriya 1926 yil mart oyida televizion tizim uchun "Radioskop" deb nom oldi.[50] 1928 yildagi patent talabnomasiga kiritilgan qo'shimcha yaxshilanishlardan so'ng,[49] Tixanyining patenti Buyuk Britaniyada 1930 yilda bekor deb e'lon qilindi,[51] va shuning uchun u AQShda patent olish uchun murojaat qildi.

1923 yilda Westinghouse Electric Corporation Pensilvaniya shtatining Pitsburg shahrida, Rossiyada tug'ilgan amerikalik muhandis Vladimir Zvorikin kompaniyaning bosh menejeriga umuman elektron televizion tizim uchun loyihani taqdim etdi.[52][53] 1925 yil iyulda Zvorykin patentga talabnoma topshirdi Televizion tizim Bunga ekran (300 mash) va izolyatsiya qilingan globulalardan tashkil topgan fotoelektrik materialning (kaliy gidrid) kolloid qatlami o'rtasida joylashgan yupqa izolyatsiya materialidan (alyuminiy oksidi) qurilgan zaryadlovchi saqlash plitasi kiritilgan.[54] Quyidagi tavsifni 2-betdagi 1 va 9-satrlar orasida o'qish mumkin: "Fotoelektrik material, masalan, kaliy gidrid, alyuminiy oksidi yoki boshqa izolyatsion muhitda bug'lanadi va kaliy gidridning kolloid qatlamini hosil qilish uchun ishlov beriladi. Har bir globula fotoelektrik jihatdan juda faol va barcha maqsadlar uchun bir daqiqalik individual fotoelektr xujayrasini tashkil qiladi ". Uning birinchi tasviri 1925 yil yoz oxirida uzatilgan,[55] va patent 1928 yilda chiqarilgan.[54] Biroq, uzatilgan tasvirning sifati H.P. Devis, ning bosh menejeri Vestingxaus, va Zvorikindan "foydali narsalar ustida ishlashni" so'rashdi.[55] Televizion tizim uchun patent ham topshirilgan Zvorikin 1923 yilda, ammo bu hujjat aniq ma'lumot emas, chunki o'n besh yil o'tgach, patent berilishidan oldin keng ko'lamli reviziyalar qilingan[44] va faylning o'zi 1931 yilda ikkita patentga bo'lingan.[56][57]

Birinchi amaliy ikonoskop 1931 yilda Sanford Essig tomonidan qurilgan bo'lib, u tasodifan pechda kumushdan yasalgan slyuda varag'ini juda uzoq vaqt qoldirgan. Mikroskop bilan tekshirilgach, u kumush qatlam son-sanoqsiz izolyatsiya qilingan kumush globuslarga bo'linib ketganini payqadi.[58] Shuningdek, u "kumush tomchilarning kichkina kattaligi ikonoskopning tasvir o'lchamlarini kvant sakrashi bilan kuchaytirishi" ga e'tibor qaratdi.[59] Televizionni rivojlantirish rahbari sifatida Amerika radio korporatsiyasi (RCA), Zvorikin patent arizasini 1931 yil noyabrda topshirgan va u 1935 yilda chiqarilgan.[48] Shunga qaramay, Zvorikin jamoasi zaryadlovchi saqlash plitasidan foydalangan qurilmalarda ishlaydigan yagona muhandislik guruhi emas edi. 1932 yilda EMI nazorati ostida muhandislar Tedham va McGee Ishoq Shoenberg ular "Emitron" deb nomlagan yangi qurilmaga patent olish uchun ariza berishdi.[60] A 405 qatorli eshittirish Emitronni ishlatish xizmati studiyalarda boshlangan Aleksandra saroyi 1936 yilda patentlar Buyuk Britaniyada 1934 yilda va AQShda 1937 yilda chiqarilgan.[61]

Ikonoskop 1933 yil iyun oyida bo'lib o'tgan matbuot anjumanida keng jamoatchilikka taqdim etildi,[62] va ikkita batafsil texnik hujjatlar o'sha yilning sentyabr va oktyabr oylarida nashr etilgan.[63][64] Farnsworth tasvirni dissektoridan farqli o'laroq, Zvorikon ikonoskopi juda sezgir bo'lib, maqsadni yoritish bilan foydalandi.ft-v (43lx ) va 20ft-v (215lx ). Bundan tashqari, uni ishlab chiqarish osonroq edi va juda aniq tasvir paydo bo'ldi.[iqtibos kerak ] Ikonoskop 1936 yildan 1946 yilgacha RCA radioeshittirishida ishlatiladigan ortikon naychasi bilan almashtirilgan asosiy kamera naychasi bo'lgan.[65][66]

Super-Emitron va tasvir ikonoskopi

Asl ikonoskop shovqinli edi, shovqinning signalga nisbati yuqori edi va oxir-oqibat umidsizlikka olib keladigan natijalarni berdi, ayniqsa yuqori aniqlikdagi mexanik skanerlash tizimlari bilan taqqoslaganda.[67][68] The EMI nazorati ostida jamoa Ishoq Shoenberg Emitron (yoki ikonoskop) elektron signalni qanday ishlab chiqarishini tahlil qildi va uning haqiqiy samaradorligi nazariy maksimaldan atigi 5% ni tashkil etdi degan xulosaga keldi. Buning sababi ikkilamchi elektronlar skanerlash nuri bo'ylab siljiganida, zaryadni saqlash plitasining mozaikasidan bo'shatilib, musbat zaryadlangan mozaikaga tortilishi mumkin va shu bilan ko'plab saqlangan zaryadlarni neytrallashtiradi.[69] Lubsynski, Rodda va McGee eng yaxshi echim - foto emissiya funktsiyasini zaryadni saqlashdan ajratish ekanligini tushunib etishdi va shu bilan ularning natijalarini Zvorikinga etkazishdi.[68][69]

1934 yilda Lyubsinskiy, Rodda va Makgee tomonidan ishlab chiqarilgan yangi videokamera trubkasi "super-Emitron" deb nomlangan. Ushbu naycha tasvirni ajratuvchi va Emitronning birikmasidir. Bu samarali fotokatod sahna yorug'ligini elektron tasvirga aylantiradigan; ikkinchisi keyin emissiya uchun maxsus tayyorlangan nishon tomon tezlashadi ikkilamchi elektronlar. Elektron tasvirdagi har bir alohida elektron maqsadga yetgandan keyin bir nechta ikkilamchi elektronlarni hosil qiladi, shunda kuchaytiruvchi effekt hosil bo'ladi. Maqsad oddiy plastinkadan ajratuvchi materialning yupqa qatlami bilan ajratilgan elektr izolyatsiya qilingan metall granulalardan iborat mozaikadan qurilgan, natijada musbat zaryad ikkilamchi emissiya granulalarda saqlanadi. Va nihoyat, elektron nur vaqti-vaqti bilan nishon bo'ylab siljiydi, saqlangan tasvirni samarali skanerdan o'tkazadi, har bir donachani bo'shatadi va ikonoskopdagi kabi elektron signal hosil qiladi.[70][71][72]

Super-Emitron asl Emitron va ikonoskop naychalariga nisbatan o'ndan o'n besh baravar ko'proq sezgir edi va ba'zi hollarda bu nisbat ancha yuqori edi.[69] Bu uchun ishlatilgan tashqi eshittirish Bi-bi-si tomonidan birinchi marta 1937 yilgi Sulh kuni, keng televizorda Qirolning Senotafga qanday gulchambar qo'yganini keng jamoatchilik tomosha qilishi mumkin edi. Bu qo'shni binolarning tomiga o'rnatilgan kameralardan har kim birinchi marta jonli ko'cha sahnasini namoyish qilishi mumkin edi.[73]

Boshqa tomondan, 1934 yilda Zvorykin ba'zi patent huquqlarini Germaniyaning litsenziat Telefunken kompaniyasi bilan bo'lishdi.[74] Rasm ikonoskopi (Germaniyada Superikonoskop) hamkorlik natijasida ishlab chiqarilgan. Ushbu naycha mohiyati jihatidan super-Emitron bilan bir xil, ammo nishon o'tkazgich asosining ustiga qo'yilgan yupqa izolyatsion material qatlamidan qurilgan, metall granulalarning mozaikasi yo'q. Evropada super-Emitron va tasvir ikonoskopini ishlab chiqarish va tijoratlashtirishga ta'sir ko'rsatilmagan patent urushi Zvorik va Farnsvort o'rtasida, chunki Dieckmann va Jahannam Germaniyada imidj dissektorini ixtiro qilishda ustuvor mavqega ega edilar, chunki ular uchun patentga talabnoma topshirdilar Lichtelektrische Bildzerlegerröhre für Fernseher (Televizor uchun fotoelektrik tasvirni ajratuvchi naycha1925 yilda Germaniyada,[24] Farnsvort AQShda ham xuddi shunday qilganidan ikki yil oldin.[25]

Tasvir ikonoskopi (Superikonoskop) 1936 yildan 1960 yilgacha vidikon va plumbikon naychalari bilan almashtirilib, Evropada ommaviy eshittirish uchun sanoat standartiga aylandi. Darhaqiqat, bu elektron naychalarda Evropa an'analarining vakili orthicon tasviri bilan namoyish etilgan Amerika an'analariga qarshi raqobatlashayotgan edi.[75][76] Germaniyaning Heimann kompaniyasi 1936 yilgi Berlin Olimpiya o'yinlari uchun Superikonoskop ishlab chiqardi,[77][78] keyinchalik Heimann 1940 yildan 1955 yilgacha uni ishlab chiqardi va tijoratlashtirdi,[79] nihoyat Gollandiya kompaniyasi Flibs 1952 yildan 1958 yilgacha tasvir ikonoskopi va multikonni ishlab chiqardi va tijoratlashtirdi.[76][80]

Ishlash

Super-Emitron - bu tasvirni ajratuvchi va Emitronning birikmasi. Sahna tasviri samarali yarimo'tkazgichsiz filmda aks ettirilgan fotokatod bu sahna yorug'ligini yorug'lik chiqaradigan elektron tasvirga aylantiradi, ikkinchisi keyin tezlashadi (va yo'naltirilgan ) elektromagnit maydonlar orqali emissiya uchun maxsus tayyorlangan maqsadga qarab ikkilamchi elektronlar. Elektron tasvirdagi har bir alohida elektron maqsadga yetgandan keyin bir nechta ikkilamchi elektronlarni hosil qiladi, shunda kuchaytiruvchi effekt hosil bo'ladi va natijada olingan ijobiy zaryad sahna yorug'ligining integral intensivligiga mutanosib bo'ladi. Maqsad oddiy plastinkadan ajratuvchi materialning yupqa qatlami bilan ajratilgan elektr izolyatsiya qilingan metall granulalardan iborat mozaikadan qurilgan, natijada musbat zaryad ikkilamchi emissiya metall granulasi va umumiy plastinka tomonidan hosil qilingan kondansatkichda saqlanadi. Va nihoyat, elektron nur vaqti-vaqti bilan nishon bo'ylab siljiydi va saqlangan tasvirni samarali ravishda skanerlaydi va har bir kondansatkichni o'z navbatida bo'shatadi, shunda har bir kondansatörden elektr chiqishi har bir tushirish hodisasi orasidagi sahna yorug'ligining o'rtacha intensivligiga mutanosib bo'ladi (ikonoskopda bo'lgani kabi) .[70][71][72]

Tasvir ikonoskopi asosan super-Emitron bilan bir xil, ammo nishon o'tkazgich asosining ustiga qo'yilgan yupqa izolyatsion material qatlamidan qurilgan, metall granulalarning mozaikasi yo'q. Shuning uchun, elektron tasvir maqsadga yetganda, ajratuvchi material yuzasidan ikkilamchi elektronlar chiqadi va hosil bo'lgan musbat zaryadlar bevosita izolyatsiya qilingan material yuzasida saqlanadi.[75]

Orthicon va CPS Emitron

Asl ikonoskop juda shovqinli edi[67] skanerlash nuri bo'ylab siljiganida, zaryadni saqlash plitasining fotoelektrik mozaikasidan chiqarilgan ikkinchi darajali elektronlar tufayli.[69] Aniq echim mozaikani past tezlikli elektron nurlari bilan skanerlash edi, bu plastinka yaqinida kam energiya ishlab chiqarardi, shunda ikkilamchi elektronlar umuman chiqmaydi. Ya'ni, rasm zaryadlovchi plastinkaning fotoelektrik mozaikasida proektsiyalanadi, shuning uchun u erda ijobiy zaryadlar hosil bo'ladi va saqlanadi. foto-emissiya va sig'im navbati bilan. Ushbu saqlangan zaryadlar keyinchalik a tomonidan zaryadsizlanadi past tezlikda elektronni skanerlash nurlari, ikkilamchi elektronlarning chiqishini oldini olish.[81][82] Skanerlash nuridagi barcha elektronlar ham mozaikaga singib ketmasligi mumkin, chunki saqlangan musbat zaryadlar sahna yorug'ligining integral intensivligiga mutanosibdir. Qolgan elektronlar anodga qaytariladi,[43][47] maxsus tomonidan ushlangan panjara,[83][84][85] yoki orqaga burilib elektron multiplikatori.[86]

Kam tezlikda skanerlash nurlari quvurlar bir nechta afzalliklarga ega; soxta signallarning past darajasi va yorug'likni signalga aylantirishning yuqori samaradorligi mavjud, shuning uchun signal chiqishi maksimal bo'ladi. Shu bilan birga, jiddiy muammolar ham mavjud, chunki elektron nurlari tasvir chegaralari va burchaklarini skanerlaganda nishonga parallel yo'nalishda tarqaladi va tezlashadi, shunda u ikkilamchi elektronlarni hosil qiladi va markazga yaxshi joylashtirilgan tasvir olinadi. lekin chegaralarda loyqa.[46][87] Henroteau 1929 yilda foydalanishni taklif qilgan birinchi ixtirochilar qatoriga kirdi past tezlikli elektronlar zaryadni saqlash plitasining potentsialini barqarorlashtirish uchun,[88] lekin Lubszinskiy va EMI jamoasi aniq va yaxshi yo'naltirilgan tasvirni shunday naycha bilan uzatishda birinchi muhandislar edi.[45] Yana bir yaxshilanish - yarim shaffof zaryadni saqlash plitasidan foydalanish. Keyin sahna tasviri plastinkaning orqa tomoniga, past tezlikli elektron nuri esa old tomonidagi fotoelektrik mozaikani ko'zdan kechiradi. Ushbu konfiguratsiyalar to'g'ridan-to'g'ri kamera naychasidan foydalanishga imkon beradi, chunki translyatsiya qilinadigan sahna, zaryadni saqlash plitasi va elektron tabancani birin-ketin tekislash mumkin.[82]

Birinchi to'liq ishlaydigan past tezlikda skanerlash naychasi CPS Emitron ixtiro qilingan va namoyish etilgan EMI nazorati ostida jamoa Ishoq Shoenberg. 1934 yilda EMI muhandislari Blumlein va McGee patent olish uchun hujjat topshirdilar televizion uzatuvchi tizimlar bu erda zaryadni saqlash plitasi maxsus juftlik bilan himoyalangan panjara, manfiy (yoki ozgina ijobiy) panjara plastinkaga juda yaqin yotar edi va ijobiy yana uzoqroqqa joylashtirildi.[83][84][85] Skanerlash nuridagi elektronlarning tezligi va energiyasi ushbu juftlik panjaralari tomonidan hosil bo'lgan sekinlashuvchi elektr maydoni tomonidan nolga tushirildi va shuning uchun past tezlikda skanerlash nurlari trubkasi olindi.[81][89] The EMI guruh ushbu qurilmalarda ishlashni davom ettirdi va Lubszinskiy 1936 yilda past tezlikli skanerlash nurining trayektoriyasi uning mahallasidagi zaryadlarni saqlash plitasiga deyarli perpendikulyar (ortogonal) bo'lsa aniq tasvir hosil bo'lishi mumkinligini aniqladi.[45][90] Olingan qurilma katot potentsiali barqarorlashtirilgan Emitron yoki CPS Emitron deb nomlandi.[81][91] CPS Emitronning sanoat ishlab chiqarishi va tijoratlashtirilishi oxirigacha kutishga to'g'ri keldi ikkinchi jahon urushi.[89][92]

Ning boshqa tomonida Atlantika, RCA boshchiligidagi jamoa Albert Rouz 1937 yilda ular ortikon deb nomlagan past tezlikda skanerlash nurlari qurilmasida ishlay boshladilar.[93] Iams va Roza nurni boshqarish va uni diqqat markazida ushlab turish muammosini zaryadni saqlash plitasi yonida bir tekis eksenel magnit maydonini ta'minlash uchun maxsus mo'ljallangan burilish plitalari va burilish bobinlarini o'rnatish orqali hal qilishdi.[46][86][94] Orthicon RCA-ning televizion namoyishida ishlatilgan naycha edi 1939 yil Nyu-Yorkdagi Butunjahon ko'rgazmasi,[93] uning ishlashi tasvir ikonoskopiga o'xshash edi,[95] ammo u to'satdan yorqin nurlar ostida beqaror bo'lib, "sahnaning bir qismida asta-sekin bug'lanib ketayotgan katta tomchi suv ko'rinishini" keltirib chiqardi.[82]

Rasm orthicon

Ortikon naychasining tasviri sxemasi
1960-yillarda yaratilgan RCA Radiotron Image Orthicon TV Camera Tube
1960-yillarda yaratilgan RCA Radiotron Image Orthicon TV Camera Tube

1946 yildan 1968 yilgacha Amerika radioeshittirishida ortikon (ba'zan qisqartirilgan IO) tasviri keng tarqalgan.[96] Ning birikmasi rasm dissektori va orthicon texnologiyalari o'rnini egalladi ikonoskop Qo'shma Shtatlarda juda ko'p talab qilinadigan yorug'lik etarli darajada ishlash.[97]

Ortikon naychasi RCA-da Albert Rouz, Pol K. Vaymer va Garold B. Loun tomonidan ishlab chiqilgan. Bu televizion sohada sezilarli yutuqlarni namoyish etdi va keyingi rivojlanish ishlaridan so'ng RCA 1939-1940 yillarda asl modellarni yaratdi.[98] The Milliy mudofaa tadqiqotlari qo'mitasi RCA bilan shartnoma tuzdi, unda NDRC uni yanada rivojlantirish uchun pul to'ladi. 1943 yilda RCA ortikon naychasini yanada sezgir tasvirini ishlab chiqqandan so'ng, RCA kompaniyasi bilan ishlab chiqarish shartnomasi tuzildi. AQSh dengiz kuchlari, birinchi quvurlar 1944 yil yanvar oyida etkazib berildi.[99] RCA 1946 yilning ikkinchi choragida fuqarolik uchun tasviriy ortikonlarni ishlab chiqarishni boshladi.[66][100]

Da ikonoskop va oraliq ortikon ko'p sonli kichik, ammo alohida nurga sezgir kollektorlar va video ma'lumotni o'qish uchun ajratilgan signal plitasi orasidagi sig'imdan foydalangan, tasvirli ortikon uzluksiz elektron zaryadlangan kollektordan to'g'ridan-to'g'ri zaryad ko'rsatkichlarini ishlatgan. Natijada paydo bo'lgan signal ko'pgina begona signallarga qarshi edi o'zaro faoliyat maqsadning boshqa qismlaridan va juda batafsil tasvirlarni keltirishi mumkin. Masalan, tasvirli ortikon kameralari hali ham ishlatilgan NASA orbitaga yaqin bo'lgan Apollon / Saturn raketalarini olish uchun, garchi televizion tarmoqlar kameralarni o'chirib tashlagan bo'lsa ham. Faqat ular etarli tafsilotlarni taqdim etishlari mumkin edi.[101]

Tasvirli ortikon kamerasi sham yorug'ida televizor rasmlarini tortib olishi mumkin, chunki yorug'likni sezgirroq tartiblangan joy va naychaning tagida yuqori samarali kuchaytirgich sifatida ishlaydigan elektron ko'paytiruvchi mavjud. Bundan tashqari, a logaritmik ga o'xshash yorug'lik sezgirligi egri chizig'i inson ko'zi. Biroq, bu moyil alangalanish ob'ekt atrofida qorong'u halo ko'rinishini keltirib chiqaradigan yorqin nurda; bu anomaliya deb atalgan gullash tasvirli ortikon naychalari ishlayotgan paytda radioeshittirish sohasida.[102] Ilk rangli televizion kameralarda tasvirni ortikonlardan keng foydalanilgan, bu erda kameraning samarasiz optik tizimini engib o'tish uchun naychaning sezgirligi oshgan.[102][103]

Orthocon naychasi bir vaqtning o'zida og'zaki ravishda Immi deb nomlangan. Garri Lyubke, o'sha paytdagi Prezident Televizion san'at va fanlar akademiyasi, o'zlarining mukofotlarini ushbu taxallus bilan nomlashga qaror qildilar. Beri haykalcha ayol edi, shunday edi ayollashtirilgan ichiga Emmi.[104]

Ishlash

Ortikon tasviri uch qismdan iborat: a fotokatod rasm do'koni bilan (maqsad), ushbu rasmni o'qiydigan skaner (an.) elektron qurol ) va ko'p bosqichli elektron multiplikatori.[105]

Tasvirlar do'konida yorug'lik juda salbiy potentsialdagi (taxminan -600 V) fotosensitiv plastinka bo'lgan fotokatodga tushadi va elektron tasvirga aylanadi (bu printsip tasvir dissektoridan olingan). Keyinchalik, bu elektron yomg'ir er osti potentsialida (0 V) maqsadga (yarim izolyator vazifasini bajaradigan juda yupqa shisha plastinka) qarab tezlashadi va juda yupqa simli mash (sm ga 200 ga yaqin simlar) orqali o'tadi (a sm ning bir necha yuzdan bir qismi) va nishonga parallel, a vazifasini bajaradi ekran panjarasi biroz ijobiy voltajda (taxminan +2 V). Tasvir elektronlari maqsadga yetgandan so'ng, ular ta'sirida elektronlar chayqalishini keltirib chiqaradi ikkilamchi emissiya. O'rtacha har bir tasvir elektroni bir nechta chayqaladigan elektronlarni chiqarib tashlaydi (shu bilan ikkilamchi emissiya bilan kuchayishni qo'shadi) va bu ortiqcha elektronlar musbat mash bilan namlanadi, natijada elektronlarni maqsaddan samarali olib tashlaydi va tushayotgan nurga nisbatan unga ijobiy zaryad keltiradi. fotokatod. Natijada musbat zaryadga bo'yalgan rasm, eng yorqin qismlar esa eng katta ijobiy zaryadga ega.[106]

Elektronlar tomonidan keskin yo'naltirilgan nur (katod nurlari) hosil bo'ladi elektron qurol er potentsialida va anod tomonidan tezlashtirilgan (birinchi dinod ning elektron multiplikatori ) qurol atrofida yuqori ijobiy voltajda (taxminan +1500 V). Elektron quroldan chiqqandan so'ng, uning harakatsizligi nurni nishonning orqa tomoniga qarab dinoddan uzoqlashtirishga majbur qiladi. Shu nuqtada elektronlar tezlikni yo'qotadi va gorizontal va vertikal burilish bobinlari tomonidan burilib, maqsadni samarali ravishda skanerlashadi. Rahmat fokuslash rulosining eksenel magnit maydoni, bu og'ish to'g'ri chiziqda emas, shuning uchun elektronlar maqsadga etib borganlarida yonma-yon tarkibiy qismlardan qochib, buni amalga oshiradilar. Maqsad kichik musbat zaryad bilan deyarli er potentsialida, shuning uchun elektronlar past tezlikda maqsadga etib borgach, ko'proq elektron chiqarmasdan so'riladi. Bu skanerdan o'tkazilayotgan mintaqa biron bir chegara manfiy zaryadga yetguncha, bu ijobiy zaryadga salbiy zaryad qo'shadi, shu vaqtning o'zida skanerlash elektronlari so'rilish o'rniga salbiy salohiyat bilan aks etadi (bu jarayonda maqsad keyingi skanerlash uchun zarur bo'lgan elektronlarni tiklaydi). Ushbu aks ettirilgan elektronlar katod nurlari trubkasidan yuqori potentsialga ega bo'lgan elektron qurolni o'rab turgan elektron multiplikatorining birinchi dinodiga qarab qaytadi. Yansıtılmış elektronlar soni, maqsadning asl musbat zaryadining chiziqli o'lchovidir, bu esa, o'z navbatida, yorqinlik o'lchovidir.[107]

To'q halo

Televizorda porloq raketa olovi atrofida qorong'u halo Jon Glenn ko'tarilish Merkuriy-Atlas 6 1962 yilda

IO olingan tasvirdagi yorqin ob'ektlar atrofidagi sirli qorong'u "ortikon halo" si IO fotoelektronlarning emissiyasiga tayanishiga asoslanadi, ammo juda yorqin yoritish ularning ko'pchiligini mahalliy darajada qurilma muvaffaqiyatli hal qila olmaydigan darajada ishlab chiqarishi mumkin. Rasmga tushirilgan tasvirning juda yorqin nuqtasida, nurga sezgir plitadan elektronlarning katta ustunligi chiqadi. Shunday qilib ko'plarni chiqarib yuborish mumkinki, yig'ish to'ridagi mos keladigan nuqta ularni endi ho'llashi mumkin emas va shu bilan ular nishonga yaqin joylarga qaytib tushishadi, xuddi tosh otilganida halqaga suv sepiladi. Natijada paydo bo'lgan elektronlar o'zlari tushgan joyga qo'shimcha elektronlarni chiqarib yuborish uchun etarli energiya o'z ichiga olmaganligi sababli, ular ushbu mintaqada hosil bo'lgan har qanday ijobiy zaryadni zararsizlantirishadi. Qorong'i tasvirlar nishonga nisbatan kamroq ijobiy zaryad hosil qilganligi sababli, chayqalish natijasida hosil bo'lgan ortiqcha elektronlar skanerlash elektron nurlari bilan qorong'i mintaqa sifatida o'qiladi.[iqtibos kerak ]

Ushbu effekt naychani ishlab chiqaruvchilar tomonidan ma'lum darajada a qorong'u haloning kichik, ehtiyotkorlik bilan boshqariladigan miqdori tufayli vizual tasvirni keskinlashtirish effektiga ega kontrast effekti. (Ya'ni, mavjud bo'lganidan ko'ra ko'proq aniqroq yo'naltirilganlik xayolini berish). Keyinchalik vidikon naychasi va uning avlodlari (quyida ko'rib chiqing) bu ta'sirni ko'rsatmaydi va shuning uchun maxsus tafsilotlarni tuzatish sxemasi ishlab chiqilgunga qadar efirga uzatishda ishlatib bo'lmaydi.[108]

Vidikon

Vidikon trubkasi - bu maqsadli material fotokonduktor bo'lgan videokamera naychasining dizayni. Vidikon 1950-yillarda RCAda P. K. Vaymer, S. V. Forgue va R. R. Gudrich tomonidan tuzilgan va elektr jihatdan murakkab bo'lgan ortikon tasviriga oddiy alternativ sifatida ishlab chiqilgan.[iqtibos kerak ] Dastlab fotokonduktor selen bo'lgan bo'lsa, boshqa maqsadlar, shu jumladan kremniy diodli massivlar ishlatilgan.[iqtibos kerak ]

Vidikon naychasining sxemasi.

Vidikon - bu saqlash kamerasi naychasi bo'lib, unda zaryad zichligi naqshlari tasvirlangan sahna nurlanishida hosil bo'ladi elektr o'tkazuvchan keyinchalik past tezlikli nur bilan skanerlanadigan sirt elektronlar. O'zgaruvchan kuchlanish videoga qo'shildi kuchaytirgich tasvirlangan sahnani ko'paytirish uchun ishlatilishi mumkin. Tasvir tomonidan ishlab chiqarilgan elektr zaryadi skanerlangunga qadar yoki zaryad tarqalguncha yuz plitasida qoladi. A yordamida piroelektrik kabi materiallar triglitsin sulfat (TGS) maqsad sifatida, vidikonning keng qismiga nisbatan sezgir infraqizil spektr[109] mumkin. Ushbu texnologiya zamonaviy mikrobolometr texnologiyasining kashfiyotchisi bo'lgan.

Loyihalash va qurishdan oldin Galiley zond Yupiter 70-yillarning oxiri - 80-yillarning boshlarida, NASA masofadan turib zondlash qobiliyati bilan jihozlangan deyarli barcha uchuvchisiz chuqur kosmik zondlarda vidikon kameralardan foydalanilgan.[110] Vidikon naychalari dastlabki uchtasida ham ishlatilgan Landsat 1972 yilda har bir kosmik kemaning bir qismi sifatida Yerni ko'rish sun'iy yo'ldoshlari Vidicon Beam-ni qaytaring (RBV) ko'rish tizimi.[111][112][113] The Uvicon, UV-variantli Vidikon, shuningdek, NASA tomonidan UV vazifalari uchun ishlatilgan.[114]

Vidikon naychalari 1970 va 1980 yillarda mashhur bo'lgan, undan keyin ular eskirgan qattiq holat tasvir sensorlari, bilan zaryad bilan bog'langan qurilma (CCD) va keyin CMOS sensori.

Barcha vidikon va shunga o'xshash naychalar imgning kechikishiga moyil bo'lib, ular sharpa, qoralash, kuyish, kometalar dumlari, luma yo'llari va yorqinlik gullari deb nomlanadi. Tasvirning kechikishi, yorqin ob'ekt (masalan, yorug'lik yoki aks ettirish) harakatlangandan so'ng paydo bo'ladigan sezilarli (odatda oq yoki rangli) yo'llar sifatida ko'rinadi va natijada rasmda yo'qoladi. Yo'lning o'zi harakat qilmaydi, aksincha vaqt o'tishi bilan u asta-sekin pasayib boradi, shuning uchun birinchi bo'lib ta'sirlangan joylar keyinroq paydo bo'lgan joylar susayadi. Buning oldini olish yoki yo'q qilish mumkin emas, chunki bu texnologiyaga xosdir. Vidikon tomonidan yaratilgan tasvir vidikonda ishlatiladigan maqsadli materialning xususiyatlariga va maqsadli materialning sig'imiga (saqlash effekti deb nomlanadi), shuningdek, elektron nurlarining qarshiligiga bog'liq bo'ladi. nishonni skanerlang. Maqsadning sig'imi qanchalik baland bo'lsa, u zaryadni qanchalik yuqori ushlab turishi va iz yo'qolishi uchun qancha vaqt kerak bo'ladi. Maqsaddagi qolgan ayblovlar oxir-oqibat izni yo'q qilishga olib keladi.[115]

Elektron qurol RCA Vidikon kamerasi trubkasi.

Plumbikon (1963)

Plumbicon - ro'yxatdan o'tgan savdo belgisi Flibs 1963 yildan boshlab qo'rg'oshin (II) oksidi (PbO) maqsadli vidikonlar.[116] Eshittirish kamerasi dasturlarida tez-tez ishlatiladigan ushbu naychalar kam chiqishga ega, ammo yuqori signal-shovqin nisbati. Ular tasvirlar ortikonlari bilan taqqoslaganda juda yaxshi piksellar soniga ega, ammo IO naychalarining sun'iy ravishda keskin qirralari yo'q, bu esa tomoshabinlarning ayrimlarini ularni yumshoqroq qabul qilishlariga olib keladi. CBS laboratoriyalari Plumbikon tomonidan ishlab chiqarilgan tasvirlarning qirralarini keskinlashtirish uchun tashqi chetini yaxshilash uchun birinchi sxemalarni ixtiro qildi.[117][118][119]Flibs 1966 yilni oldi Technology and Engineering Emmy mukofoti Plumbikon uchun.[120]

Plumbikon naychasining sxemasi. (Ushbu rasm sxematik emas, balki masshtab uchun; Plumbikon vidikon bilan bir xil shaklga ega.)

Satikonlar bilan taqqoslaganda, Plumbikonlar kuyishda va kometada va o'qda yorqin chiroqlarning orqasida turgan artefaktlarga nisbatan ancha yuqori qarshilikka ega. Satikonlar, odatda, bir oz yuqori piksellar soniga ega. 1980 yildan keyin va Plumbikon diodli qurolining kiritilishi bilan har ikkala turdagi rezolyutsiyasi shu qadar baland edi, chunki eshittirish standartining maksimal chegaralari bilan taqqoslaganda Saticonning piksellar sonini ustunligi juda katta bo'ldi. Eshittirish kameralari qattiq holatdagi zaryad bilan bog'langan qurilmalarga ko'chirilgan bo'lsa-da, Plumbikon naychalari tibbiyot sohasida asosiy ko'rish vositasi bo'lib qoldi.[117][118][119] Uchun yuqori aniqlikdagi plumbikonlar ishlab chiqarilgan HD-MAC standart.[121]

2016 yilgacha Narragansett Imaging kompaniyasi Philips qurgan fabrikalardan foydalangan holda Plumbikonlarni ishlab chiqaradigan so'nggi kompaniya bo'lgan Roy-Aylend, AQSh. Hali ham Philips tarkibiga kirganida, kompaniya EEV (Ingliz elektr supapi ) lead oxide camera tube business, and gained a monopoly in lead-oxide tube production.[117][118][119]

Saticon (1973)

Saticon is a registered trademark of Xitachi from 1973, also produced by Tomson va Sony. It was developed in a joint effort by Hitachi and NHK Science & Technology tadqiqot laboratoriyalari (NHK is The Japan Broadcasting Corporation). Its surface consists of selenium with trace amounts of arsenic and tellurium added (SeAsTe) to make the signal more stable. SAT in the name is derived from (SeAsTe).[122] Saticon tubes have an average light sensitivity equivalent to that of 64 ASA film.[123] A high-gain avalanche rushing amorphous photoconductor (HARP) can be used to increase light sensitivity by up to 10 times that of conventional saticons.[124] Saticons were made for the Sony HDVS system, used to produce early analog high-definition television foydalanish Bir nechta sub-Nyquist namunalarini kodlash.[125]

Pasecon (1972)

Dastlab tomonidan ishlab chiqilgan Toshiba 1972 yilda chalnicon, Pasecon is a registered trademark of Heimann GmbH from 1977. Its surface consists of cadmium selenide trioxide (CdSeO3). Due to its wide spektral javob, it is labelled as panchromatic selenium vidicon, hence the acronym 'pasecon'.[122][126][127]

Newvicon (1973)

Newvicon is a registered trademark of Matsushita 1973 yildan.[128] The Newvicon tubes were characterized by high light sensitivity. Its surface consists of a combination of sink selenid (ZnSe) va zinc cadmium Telluride (ZnCdTe).[122]

Trinicon (1971)

Trinicon is a registered trademark of Sony 1971 yildan boshlab.[129] It uses a vertically striped RGB color filter over the faceplate of an otherwise standard vidicon imaging tube to segment the scan into corresponding red, green and blue segments. Only one tube was used in the camera, instead of a tube for each color, as was standard for color cameras used in television broadcasting. It is used mostly in low-end consumer cameras, such as the HVC-2200 and HVC-2400 models, though Sony also used it in some moderate cost professional cameras in the 1980s, such as the DXC-1800 and BVP-1 models.[130].

Although the idea of using color stripe filters over the target was not new, the Trinicon was the only tube to use the primary RGB colors. This necessitated an additional electrode buried in the target to detect where the scanning electron beam was relative to the stripe filter. Previous color stripe systems had used colors where the color circuitry was able to separate the colors purely from the relative amplitudes of the signals. As a result, the Trinicon featured a larger dynamic range of operation.

Sony later combined the Saticon tube with the Trinicon's RGB color filter, providing low-light sensitivity and superior color. This type of tube was known as the SMF Trinicon tube, or Saticon Mixed Field. SMF Trinicon tubes were used in the HVC-2800 and HVC-2500 consumer cameras, as well as the first Betamovie videokameralar.

Light biasing

All the vidicon type tubes except the vidicon itself were able to use a light biasing technique to improve the sensitivity and contrast. The photosensitive target in these tubes suffered from the limitation that the light level had to rise to a particular level before any video output resulted. Light biasing was a method whereby the photosensitive target was illuminated from a light source just enough that no appreciable output was obtained, but such that a slight increase in light level from the scene was enough to provide discernible output. The light came from either an illuminator mounted around the target, or in more professional cameras from a light source on the base of the tube and guided to the target by light piping. The technique would not work with the baseline vidicon tube because it suffered from the limitation that as the target was fundamentally an insulator, the constant low light level built up a charge which would manifest itself as a form of tumanlash. The other types had semiconducting targets which did not have this problem.

Rangli kameralar

Early color cameras used the obvious technique of using separate red, green and blue image tubes in conjunction with a color separator, a technique still in use with 3CCD solid state cameras today. It was also possible to construct a color camera that used a single image tube. One technique has already been described (Trinicon above). A more common technique and a simpler one from the tube construction standpoint was to overlay the photosensitive target with a color striped filter having a fine pattern of vertical stripes of green, cyan and clear filters (i.e. green; green and blue; and green, blue and red) repeating across the target. The advantage of this arrangement was that for virtually every color, the video level of the green component was always less than the cyan, and similarly the cyan was always less than the white. Thus the contributing images could be separated without any reference electrodes in the tube. If the three levels were the same, then that part of the scene was green. This method suffered from the disadvantage that the light levels under the three filters were almost certain to be different, with the green filter passing not more than one third of the available light.

Variations on this scheme exist, the principal one being to use two filters with color stripes overlaid such that the colors form vertically oriented lozenge shapes overlaying the target. The method of extracting the color is similar however.

Dala-ketma-ket rang tizimi

1930-1940 yillarda, field-sequential color systems were developed which used synchronized motor-driven color-filter disks at the camera's image tube and at the television receiver. Each disk consisted of red, blue, and green transparent color filters. In the camera, the disk was in the optical path, and in the receiver, it was in front of the CRT. Disk rotation was synchronized with vertical scanning so that each vertical scan in sequence was for a different primary color. This method allowed regular black-and-white image tubes and CRTs to generate and display color images. A field-sequential system developed by Piter Goldmark uchun CBS was demonstrated to the press on September 4, 1940,[131] and was first shown to the general public on January 12, 1950.[132] Gilyermo Gonsales Kamarena independently developed a field-sequential color disk system in Mexico in the early 1940s, for which he requested a patent in Mexico on August 19 of 1940 and in the US in 1941.[133] Gonzalez Camarena produced his color television system in his laboratory Gon-Cam for the Mexican market and exported it to the Columbia College of Chicago, who regarded it as the best system in the world.[134][135]

Magnetic focusing in typical camera tubes

The phenomenon known as magnetic focusing was discovered by A. A. Campbell-Swinton in 1896,he found that a longitudinal magnetic field generated by an axial coil can focus an electron beam.[136] This phenomenon was immediately corroborated by J. A. Fleming, and Hans Busch gave a complete mathematical interpretation in 1926.[137]

Diagrams in this article show that the focus coil surrounds the camera tube; it is much longer than the focus coils for earlier TV CRTs. Camera-tube focus coils, by themselves, have essentially parallel lines of force, very different from the localized semi-toroidal magnetic field geometry inside a TV receiver CRT focus coil. The latter is essentially a magnit ob'ektiv; it focuses the "crossover" (between the CRT's cathode and G1 electrode, where the electrons pinch together and diverge again) onto the screen.

The electron optics of camera tubes differ considerably. Electrons inside these long focus coils take spiral paths as they travel along the length of the tube. The center (think local axis) of one of those helices is like a line of force of the magnetic field. While the electrons are traveling, the helices essentially don't matter. Assuming that they start from a point, the electrons will focus to a point again at a distance determined by the strength of the field. Focusing a tube with this kind of coil is simply a matter of trimming the coil's current. In effect, the electrons travel along the lines of force, although helically, in detail.

These focus coils are essentially as long as the tubes themselves, and surround the deflection yoke (coils). Deflection fields bend the lines of force (with negligible defocusing), and the electrons follow the lines of force.

In a conventional magnetically deflected CRT, such as in a TV receiver or computer monitor, basically the vertical deflection coils are equivalent to coils wound around an horizontal axis. That axis is perpendicular to the neck of the tube; lines of force are basically horizontal. (In detail, coils in a deflection yoke extend some distance beyond the neck of the tube, and lie close to the flare of the bulb; they have a truly distinctive appearance.)

In a magnetically focused camera tube (there are electrostatically focused vidicons), the vertical deflection coils are above and below the tube, instead of being on both sides of it. One might say that this sort of deflection starts to create S-bends in the lines of force, but doesn't become anywhere near to that extreme.

Hajmi

The size of video camera tubes is simply the overall outside diameter of the glass envelope. This differs from the size of the sensitive area of the target which is typically two thirds of the size of the overall diameter. Tube sizes are always expressed in inches for historical reasons. A one-inch camera tube has a sensitive area of approximately two thirds of an inch on the diagonal or about 16 mm.

Although the video camera tube is now technologically obsolete, the size of qattiq holat tasvir sensorlari is still expressed as the equivalent size of a camera tube. For this purpose a new term was coined and it is known as the optik format. The optical format is approximately the true diagonal of the sensor multiplied by 3/2. The result is expressed in inches and is usually (though not always) rounded to a convenient fraction - hence the approximation. For instance, a 6.4 mm × 4.8 mm(0.25 in × 0.19 in) sensor has a diagonal of 8.0 mm (0.31 in) and therefore an optical format of 8.0*3/2=12 mm (0.47 in), which is rounded to the convenient imperial fraction of 12 inch (1.3 cm). The parameter is also the source of the "Four Thirds" in the Four Thirds tizimi va uning Micro Four Thirds extension—the imaging area of the sensor in these cameras is approximately that of a 43-inch (3.4 cm) video-camera tube at approximately 22 millimetres (0.87 in).[138]

Although the optical format size bears no relationship to any physical parameter of the sensor, its use means that a lens that would have been used with (say) a four thirds inch camera tube will give roughly the same angle of view when used with a solid-state sensor with an optical format of four thirds of an inch

Late use and decline

The lifespan of videotube technology reached as far as the 90s, when high definition, 1035-line videotubes were used in the early MUSE HD broadcasting system. While CCDs were tested for this application, as of 1993 broadcasters still found them inadequate due to issues achieving the necessary high resolution without compromising image quality with undesirable side-effects.[139]

Zamonaviy zaryad bilan bog'langan qurilma (CCD) and CMOS-based sensors offer many advantages over their tube counterparts. These include a lack of image lag, high overall picture quality, high light sensitivity and dynamic range, a better signal-shovqin nisbati and significantly higher reliability and ruggedness. Other advantages include the elimination of the respective high and low-voltage power supplies required for the electron beam and heater filament, elimination of the drive circuitry for the focusing coils, no warm-up time and a significantly lower overall power consumption. Despite these advantages, acceptance and incorporation of solid-state sensors into television and video cameras was not immediate. Early sensors were of lower resolution and performance than picture tubes, and were initially relegated to consumer-grade video recording equipment.[139]

Also, video tubes had progressed to a high standard of quality and were standard issue equipment to networks and production entities. Those entities had a substantial investment in not only tube cameras, but also in the ancillary equipment needed to correctly process tube-derived video. A switch-over to qattiq holat tasvir sensorlari rendered much of that equipment (and the investments behind it) obsolete and required new equipment optimized to work well with solid-state sensors, just as the old equipment was optimized for tube-sourced video.

Shuningdek qarang

Adabiyotlar

  1. ^ "1980-yillar". www.digicamhistory.com.
  2. ^ "1984_1985". www.digicamhistory.com.
  3. ^ "RCA TV Equipment Archive". www.oldradio.com.
  4. ^ NTSC#Lines and refresh rate
  5. ^ "Cathode-ray tube." McGraw-Hill Concise Encyclopedia of Science & Technology. Third Ed., Sybil P. Parker, ed., McGraw-Hill, Inc., 1992, pp. 332-333.
  6. ^ Campbell-Swinton, A. A. (1908-06-18). "Distant Electric Vision (first paragraph)". Tabiat. 78 (2016): 151. Bibcode:1908Natur..78..151S. doi:10.1038/078151a0. S2CID  3956737.
  7. ^ Campbell-Swinton, A. A. (1908-06-18). "Distant Electric Vision". Tabiat. 78 (2016): 151. Bibcode:1908Natur..78..151S. doi:10.1038/078151a0. S2CID  3956737.
  8. ^ Max Dieckmann (1909-07-24). "The problem of television, a partial solution". Ilmiy Amerika qo'shimchasi. 68: 61–62. doi:10.1038/scientificamerican07241909-61supp.
  9. ^ Albert Abramson (1955). Electronic Motion Pictures. Kaliforniya universiteti matbuoti. p. 31.
  10. ^ Alexander B. Magoun (2007). Television: the life story of a technology. Greenwood Publishing Group. p.12. ISBN  978-0-313-33128-2. rubidium cubes.
  11. ^ Jr. Raymond C. Watson (2009). Dunyo bo'ylab radar kelib chiqishi: Ikkinchi Jahon urushi orqali 13 millatda evolyutsiyasi tarixi. Trafford nashriyoti. p. 26. ISBN  978-1-4269-2110-0.
  12. ^ David Sarnoff Collection. "Television, David Sarnoff Library". Biografiya. Olingan 2011-07-20.
  13. ^ Bairdtelevision. "Alan Archivald Campbell-Swinton (1863–1930)". Biografiya. Olingan 2010-05-10.
  14. ^ Campbell-Swinton, A. A. (1926-10-23). "Electric Television (abstract)". Tabiat. 118 (2973): 590. Bibcode:1926Natur.118..590S. doi:10.1038/118590a0. S2CID  4081053.
  15. ^ Burns, R. W. (1998). Televizion: shakllanayotgan yillarning xalqaro tarixi. The Institute of Electrical Engineers in association with Ilmiy muzey. p. 123. ISBN  978-0-85296-914-4.
  16. ^ News (1914-04-02). "Prof. G. M. Minchin, F.R.S." Tabiat. 93 (2318): 115–116. Bibcode:1914Natur..93..115R. doi:10.1038/093115a0.
  17. ^ a b Miller, H. & Strange. J. W. (1938-05-02). "The electrical reproduction of images by the photoconductive effect". Jismoniy jamiyat ishlari. 50 (3): 374–384. Bibcode:1938PPS....50..374M. doi:10.1088/0959-5309/50/3/307.
  18. ^ a b v Iams, H. & Rose, A. (August 1937). "Television Pickup Tubes with Cathode-Ray Beam Scanning". Radio muhandislari instituti materiallari. 25 (8): 1048–1070. doi:10.1109/JRPROC.1937.228423. S2CID  51668505.
  19. ^ Schoultz, Edvard-Gustav; (filed 1921, patented 1922). "Procédé et appareillage pour la transmission des images mobiles à distance". Patent No. FR 539,613. Office National de la Propriété industrielle. Olingan 2009-07-28.
  20. ^ a b Horowitz, Paul and Winfield Hill, Elektron san'at, Ikkinchi nashr, Cambridge University Press, 1989, pp. 1000-1001. ISBN  0-521-37095-7.
  21. ^ a b v Jack, Keith & Vladimir Tsatsulin (2002). Video va televizion texnologiyalar lug'ati. Gulf Professional Publishing. p. 148. ISBN  978-1-878707-99-4.
  22. ^ a b v Burns, R. W. (1998). Televizion: shakllanayotgan yillarning xalqaro tarixi. The Institute of Electrical Engineers in association with Ilmiy muzey. pp. 358–361. ISBN  978-0-85296-914-4.
  23. ^ a b Webb, Richard C. (2005). Tele-visionaries: the People Behind the Invention of Television. John Wiley va Sons. p. 30. ISBN  978-0-471-71156-8.
  24. ^ a b v Dieckmann, Max & Rudolf Hell (filed 1925, patented 1927). "Lichtelektrische Bildzerlegerröehre für Fernseher". Patent No. DE 450,187. Deutsches Reich Reichspatentamt. Olingan 2009-07-28. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  25. ^ a b v d Farnsworth, Philo T. (filed 1927, patented 1930). "Television System". Patent No. 1,773,980. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2009-07-28. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  26. ^ Brittain, B. J. (September 1928). "Television on the Continent". Discovery: A Monthly Popular Journal of Knowledge. Jon Myurrey. 8 (September): 283–285.
  27. ^ Hartley, John (1999). Uses of television. Yo'nalish. p. 72. ISBN  978-0-415-08509-0.
  28. ^ Postman, Neil (1999-03-29). "Philo Farnsworth". The TIME 100: Scientists & Thinkers. TIME.com. Olingan 2009-07-28.
  29. ^ Farnsworth, Philo T. (filed 1928, patented 1934). "Photoelectric Apparatus". Patent No. 1,970,036. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-01-15. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  30. ^ Farnsworth, Philo T. (filed 1928, patented 1939). "Television Method". Patent No. 2,168,768. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-01-15. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  31. ^ Farnsworth, Philo T. (filed 1928, patented 1935). "Electrical Discharge Apparatus". Patent No. 1,986,330. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2009-07-29. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  32. ^ Farnsworth, Elma, Distant Vision: Romance and Discovery on an Invisible Frontier, Salt Lake City, PemberlyKent, 1989, pp. 108-109.
  33. ^ "Filo Teylor Farnsvort (1906–1971)". San-Frantsisko shahrining virtual muzeyi. Arxivlandi asl nusxasi 2011 yil 22 iyunda. Olingan 2009-07-15.
  34. ^ Farnsworth, Philo T.; (filed 1933, patented 1937). "Electron Multiplying Device". Patent No. 2,071,515. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-02-22.
  35. ^ Farnsworth, Philo T.; (filed 1935, patented 1937). "Multipactor Phase Control". Patent No. 2,071,517. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-02-22.
  36. ^ Farnsworth, Philo T.; (filed 1937, patented 1939). "Two-stage Electron Multiplier". Patent No. 2,161,620. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-02-22.
  37. ^ Gardner, Bernard C.; (filed 1937, patented 1940). "Image Analyzing and Dissecting Tube". Patent No. 2,200,166. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-02-22.
  38. ^ Abramson, Albert (1987), Televizor tarixi, 1880 yildan 1941 yilgacha. Jefferson, NC: Albert Abramson. p. 159. ISBN  0-89950-284-9.
  39. ^ ITT Industrial Laboratories. (1964 yil dekabr). "Vidissector - Image Dissector, page 1". Tentative Data-sheet. ITT. Arxivlandi asl nusxasi 2010-09-15. Olingan 2010-02-22.
  40. ^ ITT Industrial Laboratories. (1964 yil dekabr). "Vidissector - Image Dissector, page 2". Tentative Data-sheet. ITT. Arxivlandi asl nusxasi 2010-09-15. Olingan 2010-02-22.
  41. ^ ITT Industrial Laboratories. (1964 yil dekabr). "Vidissector - Image Dissector, page 3". Tentative Data-sheet. ITT. Arxivlandi asl nusxasi 2010-09-15. Olingan 2010-02-22.
  42. ^ a b Farnsworth, Philo T.; (filed 1933, patented 1937, reissued 1940). "Image Dissector". Patent No. 2,087,683. Amerika Qo'shma Shtatlari Patent idorasi. Arxivlandi asl nusxasi 2011-07-22. Olingan 2010-01-10.CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  43. ^ a b Schatzkin, Paul. "The Farnsworth Chronicles, Who Invented What -- and When??". Olingan 2010-01-10.
  44. ^ a b v Abramson, Albert (1995). Zvorykin, televizion kashshof. Illinoys universiteti matbuoti. p. 282. ISBN  978-0-252-02104-6. Olingan 2010-01-18.
  45. ^ a b v Rose, Albert & Iams, Harley A. (September 1939). "Television Pickup Tubes Using Low-Velocity Electron-Beam Scanning". IRE ishi. Proceedings of the IRE, volume 27, issue 9. 27 (9): 547–555. doi:10.1109/JRPROC.1939.228710. S2CID  51670303.
  46. ^ a b Tihanyi, Kalman; (filed in Germany 1928, filed in USA 1929, patented 1939). "Television Apparatus". Patent No. 2,158,259. Amerika Qo'shma Shtatlari Patent idorasi. Arxivlandi asl nusxasi 2011-07-22. Olingan 2010-01-10.CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  47. ^ a b Zworykin, V. K.; (filed 1931, patented 1935). "Method of and Apparatus for Producing Images of Objects". Patent No. 2,021,907. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-01-10.
  48. ^ a b "Kálmán Tihanyi (1897–1947)", IEC Techline[doimiy o'lik havola ], International Electrotechnical Commission (IEC), 2009-07-15.
  49. ^ "Kálmán Tihanyi's 1926 Patent Application 'Radioskop'", Dunyo xotirasi, United Nations Educational, Scientific and Cultural Organization (YuNESKO ), 2005, retrieved 2009-01-29.
  50. ^ Tihanyi, Koloman, Improvements in television apparatus. European Patent Office, Patent No. GB313456. Convention date UK application: 1928-06-11, declared void and published: 1930-11-11, retrieved: 2013-04-25.
  51. ^ Magoun, Alexander B.; Cody, George (2006). "Vladimir Kosma Zworykin". Milliy akademiyalar matbuoti. Olingan 25 yanvar, 2018.
  52. ^ Britannica ensiklopediyasi muharrirlari. "Vladimir Zworykin - American Engineer and Inventor". Olingan 25 yanvar, 2018.
  53. ^ a b Zworykin, V. K. (filed 1925, patented 1928). "Television System". Patent No. 1,691,324. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-01-10. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  54. ^ a b Burns, R. W. (1998). Televizion: shakllanayotgan yillarning xalqaro tarixi. The Institute of Electrical Engineers in association with Ilmiy muzey. p. 383. ISBN  978-0-85296-914-4. Olingan 2010-01-10.
  55. ^ Zworykin, Vladimir K. (filed 1923, issued 1935). "Television System". Patent No. 2,022,450. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-01-10. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  56. ^ Zworykin, Vladimir K. (filed 1923, issued 1938). "Television System". Patent No. 2,141,059. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-01-10. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  57. ^ Burns, R. W. (2004). Communications: an international history of the formative years. The Institute of Electrical Engineers. p. 534. ISBN  978-0-86341-327-8.
  58. ^ Webb, Richard C. (2005). Tele-visionaries: the People Behind the Invention of Television. John Wiley va Sons. p. 34. ISBN  978-0-471-71156-8.
  59. ^ EMI LTD; Tedham, William F. & McGee, James D. (filed May 1932, patented 1934). "Improvements in or relating to cathode ray tubes and the like". Patent No. GB 406,353. Buyuk Britaniyaning intellektual mulk idorasi. Olingan 2010-02-22. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  60. ^ Tedham, William F. & McGee, James D. (filed in Great Britain 1932, filed in USA 1933, patented 1937). "Cathode Ray Tube". Patent No. 2,077,422. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-01-10. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  61. ^ Lawrence, Williams L. (June 27, 1933). Human-like eye made by engineers to televise images. 'Iconoscope' converts scenes into electrical energy for radio transmission. Fast as a movie camera. Three million tiny photo cells 'memorize', then pass out pictures. Step to home television. Developed in ten years' work by Dr. V.K. Zworykin, who describes it at Chicago. Nyu-York Tayms maqolasi. Nyu-York Tayms. ISBN  978-0-8240-7782-2. Olingan 2010-01-10.
  62. ^ Zworykin, V. K. (September 1933). The Iconoscope, America's latest television favourite. Wireless World, number 33. p. 197. ISBN  978-0-8240-7782-2. Olingan 2010-01-12.
  63. ^ Zworykin, V. K. (October 1933). Television with cathode ray tubes. Journal of the IEE, number 73. pp. 437–451. ISBN  978-0-8240-7782-2.
  64. ^ "R.C.A. Officials Continue to Be Vague Concerning Future of Television". Washington Post. 1936-11-15. p. B2. Yo'qolgan yoki bo'sh | url = (Yordam bering)
  65. ^ a b Abramson, Albert (2003). The history of television, 1942 to 2000. McFarland. p. 18. ISBN  978-0-7864-1220-4. Olingan 2010-01-10.
  66. ^ a b Winston, Brian (1986). Misunderstanding media. Garvard universiteti matbuoti. 60-61 betlar. ISBN  978-0-674-57663-6. Olingan 2010-03-09.
  67. ^ a b Winston, Brian (1998). Media technology and society. A history: from the telegraph to the Internet. Yo'nalish. p. 105. ISBN  978-0-415-14230-4. Olingan 2013-02-09.
  68. ^ a b v d Alexander, Robert Charles (2000). The inventor of stereo: the life and works of Alan Dower Blumlein. Fokal press. 217–219 betlar. ISBN  978-0-240-51628-8. Olingan 2010-01-10.
  69. ^ a b Lubszynski, Hans Gerhard & Rodda, Sydney (filed May 1934, patented February 1936). "Improvements in or relating to television". Patent No. GB 442,666. Buyuk Britaniyaning intellektual mulk idorasi. Olingan 2010-01-15. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  70. ^ a b Lubszynski, Hans Gerhard & Rodda, Sydney (filed February 1935, patented October 1936). "Improvements in and relating to television". Patent No. GB 455,085. Buyuk Britaniyaning intellektual mulk idorasi. Olingan 2010-01-15. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  71. ^ a b EMI LTD and Lubszynski; Hans Gerhard (filed May 1936, patented November 1937). "Improvements in or relating to television". Patent No. GB 475,928. Buyuk Britaniyaning intellektual mulk idorasi. Olingan 2010-01-15. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  72. ^ Howett, Dicky (2006). Television Innovations: 50 Technological Developments. Kelly nashrlari. p. 114. ISBN  978-1-903-05322-5. Olingan 2013-10-10.
  73. ^ Inglis, Andrew F. (1990). Behind the tube: a history of broadcasting technology and business. Fokal press. p. 172. ISBN  978-0-240-80043-1. Olingan 2010-01-15.
  74. ^ a b de Vries, M. J.; de Vries, Marc; Cross, Nigel & Grant, Donald P. (1993). Design methodology and relationships with science, Número 71 de NATO ASI series. Springer. p. 222. ISBN  978-0-7923-2191-0. Olingan 2010-01-15.
  75. ^ a b Smith, Harry (July 1953). "Multicon - A new TV camera tube" (PDF). newspaper article. Early Television Foundation and Museum. Olingan 2013-03-12.
  76. ^ Gittel, Joachim (2008-10-11). "Spezialröhren". photographic album. Jogis Röhrenbude. Olingan 2010-01-15.
  77. ^ Early Television Museum. "Tv Camera Tubes, German "Super Iconoscope" (1936)". photographic album. Early Television Foundation and Museum. Arxivlandi asl nusxasi 2011-06-17. Olingan 2010-01-15.
  78. ^ Gittel, Joachim (2008-10-11). "FAR-Röhren der Firma Heimann". photographic album. Jogis Röhrenbude. Olingan 2010-01-15.
  79. ^ Philips (1952 to 1958). "5854, Image Iconoscope, Philips" (PDF). electronic tube handbook. Flibs. Olingan 2010-01-15. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  80. ^ a b v Berns, R. V. (2000). The life and times of A D Blumlein. IET. p. 181. ISBN  978-0-85296-773-7. Olingan 2010-03-05.
  81. ^ a b v Webb, Richard C. (2005). Tele-visionaries: the People Behind the Invention of Television. John Wiley va Sons. p. 65. ISBN  978-0-471-71156-8.
  82. ^ a b Blumlein, Alan Dower & McGee, James Dwyer (filed August 1934, patented May 1936). "Improvements in or relating to television transmitting systems". Patent No. GB 446,661. Buyuk Britaniyaning intellektual mulk idorasi. Olingan 2010-03-09. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  83. ^ a b McGee, James Dwyer (filed September 1934, patented May 1936). "Improvements in or relating to television transmitting systems". Patent No. GB 446,664. Buyuk Britaniyaning intellektual mulk idorasi. Olingan 2010-03-09. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  84. ^ a b Blumlein, Alan Dower & McGee, James Dwyer (filed in Great Britain August 1934, filed in USA August 1935, patented December 1939). "Television Transmitting System". Patent No. 2,182,578. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-03-09. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  85. ^ a b Iams, Harley A. (filed January 1941, patented June 1942). "Television Transmitting Tube". Patent No. 2,288,402. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-03-09. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  86. ^ McGee, J.D. (November 1950). "A review of some television pick-up tubes". Proceedings of the IEE - Part III: Radio and Communication Engineering. Proceedings of the IEE - Part III: Radio and Communication Engineering, volume 97, issue 50. 97 (50): 380–381. doi:10.1049/pi-3.1950.0073. Olingan 2013-02-21.
  87. ^ Henroteau, François Charles Pierre (filed 1929, patented 1933). "Televizion". Patent No. 1,903,112 A. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2013-01-15. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  88. ^ a b Edited by McGee; J. D. and Wilcock; W. L. (1960). Advances in Electronics and Electron Physics, Volume XII. Akademik matbuot. p. 204. ISBN  978-0-12-014512-6.CS1 maint: qo'shimcha matn: mualliflar ro'yxati (havola)
  89. ^ Lubszynski, Hans Gerhard (filed January 1936, patented July 1937). "Improvements in and relating to television and like systems". Patent No. GB 468,965. Buyuk Britaniyaning intellektual mulk idorasi. Olingan 2010-03-09. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  90. ^ McLean, T.P. & Schagen P. (1979). Electronic imaging. Akademik matbuot. p. 46 and 53. ISBN  978-0-12-485050-7. Olingan 2010-03-10.
  91. ^ "EMI 1947 CPS Emitron tube type 5954". Museum of the Broadcast Television Camera. Olingan 2013-03-27.
  92. ^ a b "Albert Rose: Biography". IEEE Global History Center.
  93. ^ Rose, Albert (filed 1942, patented 1946). "Television Transmitting Apparatus and Method of Operation". Patent No. 2,407,905. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2010-01-15. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  94. ^ Edited by Marton L. (1948). Advances in Electronics and Electron Physics, Volume 1. Akademik matbuot. p. 153. ISBN  978-0-12-014501-0.CS1 maint: qo'shimcha matn: mualliflar ro'yxati (havola)
  95. ^ Abramson, Albert, Televizion tarixi, 1942 yildan 2000 yilgacha, McFarland, 2003, p. 124. ISBN  0-7864-1220-8.
  96. ^ Staff (1997–2000). "Televizion". Microsoft® Encarta® Online Encyclopedia 2000. Microsoft korporatsiyasi. Arxivlandi asl nusxasi 2009 yil 4 oktyabrda. Olingan 29 iyun 2012.
  97. ^ Abramson, Albert, Televizion tarixi, 1942 yildan 2000 yilgacha, McFarland, 2003, pp. 7–8. ISBN  0-7864-1220-8.
  98. ^ Remington Rand Inc., v. U.S.,120 F. Supp. 912, 913 (1944).
  99. ^ aade.com Arxivlandi 2012 yil 29 yanvar, soat Orqaga qaytish mashinasi RCA 2P23, One of the earliest image orthicons
  100. ^ Alabama universiteti Telescopic Tracking of the Apollo Lunar Missions
  101. ^ a b dtic.mil Westinghouse Non-blooming Image Orthicon.
  102. ^ oai.dtic.mil Arxivlandi 2015-02-20 da Orqaga qaytish mashinasi Non-blooming Image Orthicon.
  103. ^ Parker, Sandra (August 12, 2013). "History of the Emmy Statuette". Emmi. Televizion san'at va fan akademiyasi. Olingan 14 mart, 2017.
  104. ^ roysvintagevideo.741.com 3" image orthicon camera project
  105. ^ acmi.net.au Arxivlandi 2004 yil 4 aprel, soat Orqaga qaytish mashinasi The Image Orthicon (Television Camera) Tube c. 1940 - 1960
  106. ^ fazano.pro.br The Image Converter
  107. ^ morpheustechnology.com Morpheus Technology 4.5.1 Camera Tubes
  108. ^ Goss, A. J.; Nixon, R. D.; Watton, R.; Wreathall, W. M. (September 2018). Mollicone, Richard A; Spiro, Irving J (eds.). "Progress In IR Television Using The Pyroelectric Vidicon". Proceedings of the Society of Photo-Optical Instrumentation Engineers. Infrared Technology X. 510, Infrared Technology X: 154. doi:10.1117/12.945018. S2CID  111164581.
  109. ^ "Spacecraft Imaging: III. First Voyage into the PDS". Sayyoralar jamiyati. Olingan 23 noyabr 2011.
  110. ^ "Landsat 3 Return Beam Vidicon (RBV)". NASA kosmik fanlari bo'yicha kelishilgan arxiv. Olingan 9-iyul, 2017.
  111. ^ Irons, James R.; Teylor, Maykl P.; Rocchio, Laura. "Landsat1". Landsat Science. NASA. Olingan 25 mart, 2016.
  112. ^ United States Geological Survey (August 9, 2006). "Landsat 2 History". Arxivlandi asl nusxasi 2016 yil 28 aprelda. Olingan 16 yanvar, 2007.
  113. ^ Milliy havo va kosmik muzeyi. "Detector, Uvicon, Celescope". Smitson instituti.
  114. ^ http://www.avartifactatlas.com/artifacts/image_lag.html
  115. ^ ""PLUMBICON Trademark - Registration Number 0770662 - Serial Number 72173123".
  116. ^ a b v "History of Narragansett Imaging". Narragansett Imaging. Narragansett Imaging. 2004. Arxivlangan asl nusxasi 2016 yil 17-avgustda. Olingan 29 iyun 2012.
  117. ^ a b v "Camera Tubes". Narragansett Imaging. 2004. Arxivlangan asl nusxasi 2016 yil 31 mayda. Olingan 29 iyun 2012.
  118. ^ a b v "Plumbicon Broadcast Tubes". Narragansett Imaging. 2004. Arxivlangan asl nusxasi 2016 yil 15-iyulda. Olingan 29 iyun 2012.
  119. ^ "Emmy, 1966 Technology & Engineering Emmy Award" (PDF).
  120. ^ https://tech.ebu.ch/docs/techreview/trev_254-tejerina.pdf
  121. ^ a b v Dhake, A. M. (1999-05-01). Televizion va videotexnika. Tata McGraw-Hill ta'limi. ISBN  9780074601051.
  122. ^ Cianci, Philip J. (January 10, 2014). Yuqori aniqlikdagi televizor: HDTV texnologiyasini yaratish, rivojlantirish va amalga oshirish. McFarland. ISBN  9780786487974 - Google Books orqali.
  123. ^ Cianci, Philip J. (10 January 2014). Yuqori aniqlikdagi televizor: HDTV texnologiyasini yaratish, rivojlantirish va amalga oshirish. ISBN  9780786487974.
  124. ^ Cianci, Philip J. (January 10, 2014). Yuqori aniqlikdagi televizor: HDTV texnologiyasini yaratish, rivojlantirish va amalga oshirish. McFarland. ISBN  9780786487974 - Google Books orqali.
  125. ^ Amerika Qo'shma Shtatlari Patent va savdo markalari bo'yicha rasmiy gazetasi: Patentlar. AQSh Savdo vazirligi, Patent va savdo markasi idorasi. 1977 yil.
  126. ^ Csorba, Illes P. (1985). Image tubes. H.V. Sams. ISBN  9780672220234.
  127. ^ "NEWVICON Trademark - Registration Number 1079721 - Serial Number 73005338".
  128. ^ "TRINICON Trademark - Registration Number 0940875 - Serial Number 72384234".
  129. ^ "Sony DXC-1600", LabGuysWorld.com.
  130. ^ "Color Television Achieves Realism". Nyu-York Tayms. September 5, 1940, p. 18. A color 16 mm film was shown; live pick-ups were first demonstrated to the press in 1941. "Columbia Broadcasting Exhibits Color Television". Wall Street Journal. January 10, 1941, p. 4. "CBS Makes Live Pick-up in Color Television Arxivlandi 2007 yil 14 oktyabr, soat Orqaga qaytish mashinasi ", Radio va televidenie, April 1941.
  131. ^ "Washington Chosen for First Color Showing; From Ages 4 to 90, Audience Amazed", Washington Post, January 13, 1950, p. B2.
  132. ^ Gonzalez Camarena, Guillermo (filed in Mexico August 19, 1940, filed in USA 1941, patented 1942). "Chromoscopic adapter for television equipment". Patent No. US 2,296,019. Amerika Qo'shma Shtatlari Patent idorasi. Olingan 2017-04-22. Sana qiymatlarini tekshiring: | sana = (Yordam bering)
  133. ^ Newcomb, Horace (2004). Encyclopedia of Television, second edition. 1 A-C. Fitzroy Dearborn. p. 1484. ISBN  1-57958-411-X.
  134. ^ "Historia de la televisión en México". Boletín de la Sociedad Mexicana de Geografía y Estadística. Sociedad Mexicana de Geografía y Estadística. 97-99: 287. 1964.
  135. ^ Campbell-Swinton, A. A. (1896-06-18). "The Effects of a Strong Magnetic Field upon Electric Discharges in Vacuo". London Qirollik jamiyati materiallari. 60 (359–367): 179–182. doi:10.1098/rspl.1896.0032. JSTOR  115833.
  136. ^ Hans Busch (1926-10-18). "Berechnung der Bahn von Kathodenstrahlen im axialsymmetrischen elektromagnetischen Felde (Calculation of the paths of cathode rays in axial symmetric electromagnetic fields)". Annalen der Physik. 386 (25): 974–993. Bibcode:1926AnP...386..974B. doi:10.1002/andp.19263862507. Arxivlandi asl nusxasi 2013-01-05 da.
  137. ^ Staff (7 October 2002). "Making (some) sense out of sensor sizes". Raqamli fotosuratlarni ko'rib chiqish. Raqamli fotosuratlarni ko'rib chiqish. Olingan 29 iyun 2012.
  138. ^ a b Nihon Hōsō Kyōkai. Hōsō Gijutsu Kenkyūjo. (1993). High Definition Television : Hi-Vision Technology. Boston, MA: Springer AQSh. 55-60 betlar. ISBN  978-1-4684-6538-9. OCLC  852789572.

Tashqi havolalar