Ortogonal chastota-bo'linish multipleksiyasi - Orthogonal frequency-division multiplexing

Yilda telekommunikatsiya, ortogonal chastota-bo'linish multipleksiyasi (OFDM) ning bir turi raqamli uzatish va raqamli ma'lumotlarni ko'p sonli kodlash usuli tashuvchi chastotalar. OFDM mashhur sxemaga aylandi keng polosali raqamli aloqa, raqamli televidenie va audio eshittirish kabi dasturlarda ishlatiladigan, DSL Internetga ulanish, simsiz tarmoqlar, elektr uzatish tarmoqlari va 4G /5G mobil aloqa[1].

OFDM - bu chastotani taqsimlash multipleksiyasi Robert V. Chang tomonidan kiritilgan (FDM) sxemasi Bell laboratoriyalari 1966 yilda.[2][3][4] OFDM-da bir nechta yaqin masofada joylashgan ortogonal spektrlari ustma-ust bo'lgan subcarrier signallari o'tkazish uchun uzatiladi ma'lumotlar parallel ravishda.[5] Demodulyatsiya asoslanadi tez Fourier konvertatsiyasi algoritmlar. OFDM Veynshteyn va Ebert tomonidan 1971 yilda a qo'riqlash oralig'i, ko'p yo'lli tarqalish ta'sir ko'rsatadigan uzatish kanallarida yaxshi ortogonallikni ta'minlash.[6] Har bir subcarrier (signal) an'anaviy modulyatsiya sxemasi bilan modulyatsiya qilinadi (masalan kvadrati amplituda modulyatsiyasi yoki fazani almashtirish klavishi ) pastda belgi darajasi. Bu xuddi shu tarmoqli kengligidagi an'anaviy yagona tashuvchili modulyatsiya sxemalariga o'xshash umumiy ma'lumotlar tezligini saqlaydi.[7]

OFDM-ning yagona tashuvchilik sxemalaridan asosiy ustunligi - bu og'irlikni engish qobiliyatidir kanal shartlar (masalan, susayish uzun mis simli, tor polosali yuqori chastotalarning aralashish va chastota-selektiv xira sababli ko'p yo'lli ) murakkab tenglashtirish filtrlarisiz. Kanal tenglashtirish soddalashtirilgan, chunki OFDM ko'pgina sekin modulyatsiya qilingan deb qaralishi mumkin tor tarmoqli tez modulyatsiya qilinganidan ko'ra signallari keng polosali signal. Belgilarning past ko'rsatkichi a dan foydalanishga imkon beradi qo'riqlash oralig'i mavjud bo'lgan belgilar o'rtasida, bu ularni yo'q qilishga imkon beradi ramzlararo shovqin (ISI) dan foydalaning va aks sadolardan foydalaning va vaqtni taqsimlang (in.) analog kabi ko'rinadigan televizor arvoh va mos ravishda loyqalanish) ga erishish uchun xilma-xillik yutug'i, ya'ni a signal-shovqin nisbati takomillashtirish. Ushbu mexanizm shuningdek dizaynini osonlashtiradi bitta chastotali tarmoqlar (SFN), bu erda bir nechta qo'shni transmitterlar bir xil signalni bir vaqtning o'zida bir xil chastotada yuborishadi, chunki bir nechta uzoq transmitterlarning signallari konstruktiv ravishda qayta birlashtirilishi mumkin, an'anaviy yagona tashuvchi tizimning aralashuvi.

Kodlangan ortogonal chastota-bo'linish multiplekslashda (COFDM), oldinga xatoni tuzatish (konvolyutsion kodlash) va vaqt / chastotalar orasidagi intervalli uzatilayotgan signalga qo'llaniladi. Bu ta'sirlangan mobil aloqa kanallaridagi xatolarni bartaraf etish uchun qilingan ko'p yo'lli tarqalish va Dopler effektlari. COFDM 1986 yilda Alard tomonidan taqdim etilgan[8][9][10] uchun Raqamli audio eshittirish uchun Evrika Loyiha 147. Amalda OFDM bunday kodlash va interleaving bilan birgalikda ishlatila boshlandi, shuning uchun COFDM va OFDM atamalari umumiy qo'llanmalarga mos keladi.[11][12]

Ilovalar namunasi

Quyidagi ro'yxat mavjud OFDM-ga asoslangan standartlar va mahsulotlarning xulosasi. Qo'shimcha ma'lumot uchun qarang Foydalanish maqola oxirida bo'lim.

Simli versiya, asosan, diskret ko'p tonna uzatish (DMT) deb nomlanadi.

Simsiz

OFDM asosidagi bir nechta kirish texnologiya OFDMA bir nechtasida ham ishlatiladi 4G va 4Ggacha uyali aloqa tarmoqlari, mobil keng polosali ulanish standartlari va keyingi avlod WLAN:

Asosiy xususiyatlar

Quyida keltirilgan afzalliklar va kamchiliklar kelgusida muhokama qilinadi Faoliyat xususiyatlari va printsiplari quyidagi bo'lim.

Afzalliklarning qisqacha mazmuni

  • Yuqori spektral samaradorlik boshqa dubl bilan taqqoslaganda yon tasma modulyatsiya sxemalari, tarqaladigan spektr va boshqalar.
  • Murakkab vaqt-domen tenglashuvisiz og'ir kanal sharoitlariga osongina moslasha oladi.
  • Dar tarmoqli qo'shma kanal aralashuviga qarshi mustahkam
  • Qarshi qarshi ramzlararo shovqin (ISI) va multipat tarqalishidan kelib chiqqan xiralashish
  • Foydalanishdan samarali foydalanish tez Fourier konvertatsiyasi
  • Vaqtni sinxronizatsiya qilish xatolariga nisbatan past sezgirlik
  • Sozlangan pastki kanalli qabul qilgich filtrlari talab qilinmaydi (odatdagidan farqli o'laroq) FDM )
  • Yengillashtiradi bitta chastotali tarmoqlar (SFNlar) (ya'ni transmitter makroxilma-xillik )

Kamchiliklarning qisqacha mazmuni

Faoliyat xususiyatlari va printsiplari

Ortogonallik

Kontseptual ravishda OFDM ixtisoslashgan chastotani taqsimlash multipleksiyasi (FDM) usuli, aloqa kanalidagi barcha subcarrier signallari bir-biriga ortogonal bo'lishini qo'shimcha cheklash bilan.

OFDM-da subcarrier chastotalari shunday qilib tanlanadi: ortogonal bir-biriga, demak o'zaro suhbat pastki kanallar o'rtasida yo'q qilinadi va tashuvchilararo qo'riqlash bantlari talab qilinmaydi. Bu ikkalasining dizaynini ancha soddalashtiradi uzatuvchi va qabul qiluvchi; an'anaviy FDM-dan farqli o'laroq, har bir pastki kanal uchun alohida filtr talab qilinmaydi.

Ortogonallik subcarrier oralig'i bo'lishini talab qiladi Xertz, qayerda TU soniya - bu foydali belgining davomiyligi (qabul qiluvchining oynasi kattaligi) va k musbat tamsayı, odatda 1 ga teng. Bunda har bir tashuvchining chastotasi o'tishi shart k oldingi operatorga qaraganda har bir davr uchun to'liq tsikl. Shuning uchun, bilan N subcarriers, umumiy o'tkazuvchanlik tarmoqli kengligi bo'ladi BN· Δf (Hz).

Ortogonallik ham yuqori darajaga imkon beradi spektral samaradorlik, yaqinidagi umumiy belgi darajasi bilan Nyquist stavkasi ekvivalent tayanch tasmasi signali uchun (ya'ni ikki tomonlama polosali jismoniy uzatuvchi signal uchun Nyquist tezligining yarmiga yaqin). Deyarli barcha mavjud chastota diapazonidan foydalanish mumkin. OFDM odatda deyarli "oq" spektrga ega bo'lib, unga boshqa qo'shma kanal foydalanuvchilariga nisbatan elektromagnit parazit xususiyatlarini beradi.

Oddiy misol: foydali belgining davomiyligi TU = 1 ms uchun subcarrier oralig'i kerak bo'ladi Ortogonallik uchun (yoki undan ko'p sonli ko'paytma). N = 1000 ta subcarrier umumiy o'tkazuvchanlik tarmoqli kengligiga olib keladi NPh = 1 MGts. Ushbu ramziy vaqt uchun Nyquistga ko'ra nazariyada kerakli tarmoqli kengligi (bizning sxemamiz tomonidan talab qilingan erishilgan o'tkazuvchanlikning yarmi), qaerda R bit tezligi va qaerda N = FFT tomonidan har bir belgiga 1000 ta namuna. Agar qo'riqlash oralig'i qo'llanilsa (quyida ko'rib chiqing), Nyquist o'tkazuvchanligi uchun talab yanada past bo'ladi. FFT natijaga olib keladi N = Har bir belgiga 1000 ta namuna. Agar hech qanday himoya oralig'i qo'llanilmasa, bu 1 MGts namuna tezligi bilan tayanch tarmoqli kompleksi qiymatli signalga olib keladi, bu Nyquistga ko'ra 0,5 MGts tayanch tarmoqli kengligi talab qiladi. Shu bilan birga, chastotali chastotali chastotali signal asosiy tarmoqli signalni tashuvchi to'lqin shakli bilan ko'paytirilishi bilan ishlab chiqariladi (ya'ni, ikki tomonlama tarmoqli to'rtburchak amplituda-modulyatsiya), natijada 1 MGts chastotali tarmoqli kengligi. Bir tomonlama lenta (SSB) yoki vestigial yon tasma (VSB) modulyatsiya sxemasi xuddi shu belgi tezligi uchun (ya'ni bir xil alfavit uzunligi uchun ikki baravar yuqori spektrli samaradorlik) ushbu tarmoqli kengligining deyarli yarmiga erishadi. Biroq, ko'p yo'lli shovqinlarga nisbatan sezgirroq.

OFDM qabul qiluvchi va uzatuvchi o'rtasida juda aniq chastotali sinxronlashni talab qiladi; chastotali og'ish bilan subkarrientlar endi ortogonal bo'lmaydi va bu sabab bo'ladi tashuvchilararo aralashuv (ICI) (ya'ni subcarrier o'rtasidagi o'zaro suhbat). Chastotani o'chirishga odatda mos kelmaydigan transmitter va qabul qilgich osilatorlari yoki sabab bo'ladi Dopler almashinuvi harakat tufayli. Dopler almashinuvining o'zi qabul qilgich tomonidan qoplanishi mumkin bo'lsa-da, vaziyat birlashtirilganda yomonlashadi ko'p yo'lli, chunki aks ettirishlar turli xil chastotali ofsetlarda paydo bo'ladi, bu ularni tuzatish ancha qiyin. Tezlik oshishi bilan bu ta'sir odatda yomonlashadi,[14] va yuqori tezlikli transport vositalarida OFDM dan foydalanishni cheklovchi muhim omil hisoblanadi. Bunday stsenariylarda ICI ni yumshatish uchun shovqinlarni minimallashtirish uchun har bir subcarrierni shakllantirish mumkin, natijada ortogonal bo'lmagan subcarrierlar bir-biriga to'g'ri keladi.[15] Masalan, WCP-OFDM deb nomlanadigan murakkabligi past sxema (Vaznli tsiklik prefiks ortogonal chastota-bo'linish multipleksiyasi) potentsial to'rtburchaklar bo'lmagan pulsni shakllantirishni amalga oshirish uchun transmitter chiqishida qisqa filtrlardan foydalanish va subcarrier tenglashtirish uchun bitta kran yordamida deyarli mukammal rekonstruksiya qilishdan iborat.[16] Boshqa ICIni bostirish texnikasi odatda qabul qiluvchining murakkabligini keskin oshiradi.[17]

FFT algoritmi yordamida amalga oshirish

Ortogonallik modulator va demodulatorni samarali amalga oshirishga imkon beradi FFT qabul qiluvchi tomonda algoritm, yuboruvchi tomonda teskari FFT. Garchi printsiplar va ba'zi bir afzalliklar 1960-yillardan beri ma'lum bo'lsa-da, OFDM bugungi kunda arzon narxlardagi keng polosali aloqa uchun mashhur raqamli signallarni qayta ishlash FFTni samarali hisoblashi mumkin bo'lgan komponentlar.

Teskari FFT yoki FFT konvertatsiyasini hisoblash vaqti har bir belgi uchun vaqtdan kam vaqt olishi kerak,[18]:84 masalan, uchun DVB-T (FFT 8k) hisoblash amalga oshirilishi kerakligini anglatadi 896 .s yoki kamroq.

Uchun 8192- nuqta FFT bu quyidagicha taxmin qilinishi mumkin:[18][tushuntirish kerak ]

[18]

Hisoblash talabi taxminan FFT kattaligi bilan chiziqli ravishda o'lchovlanadi, shuning uchun ikki baravar FFT vaqtning ikki baravariga va aksincha kerak bo'ladi.[18]:83Taqqoslash uchun Intel Pentium III 1.266 gigagertsli protsessor a ni hisoblash imkoniyatiga ega 8192 ball FFT 576 .s foydalanish FFTW.[19] Intel Pentium M 1,6 gigagertsli tezlikda ishlaydi 387 .s.[20] Intel Core Duo 3.0 gigagertsli tezlikda ishlaydi 96,8 .s.[21]

Simvollararo shovqinlarni bartaraf etish uchun himoya oralig'i

OFDMning asosiy printsiplaridan biri shundaki, past darajadagi simvol tezligini modulyatsiya qilish sxemalari (ya'ni kanal vaqtining xususiyatlariga nisbatan nisbiy uzunroq bo'lgan joylarda) ramzlararo shovqin sabab bo'lgan ko'p yo'lli tarqalish, bitta yuqori tezlikli oqim o'rniga bir qator past tezlikli oqimlarni parallel ravishda uzatish foydalidir. Har bir belgining davomiyligi uzoq bo'lganligi sababli, a belgisini qo'shish mumkin qo'riqlash oralig'i OFDM ramzlari o'rtasida, shu bilan ramzlararo shovqinlarni yo'q qiladi.

Qo'riqchi oralig'i, shuningdek, a zarurligini yo'q qiladi pulsni shakllantiruvchi filtr va vaqtni sinxronlash muammolariga sezgirlikni pasaytiradi.

Oddiy misol: Agar simsiz kanal orqali an'anaviy bitta tashuvchili modulyatsiya yordamida soniyada soniga millionta belgi yuborilsa, u holda har bir belgining davomiyligi bitta mikrosaniyani yoki undan kamni tashkil qiladi. Bu sinxronizatsiya bo'yicha jiddiy cheklovlarni keltirib chiqaradi va ko'p yo'lli shovqinlarni olib tashlashni talab qiladi. Agar sekundiga bir xil million belgi mingta subkanallar orasida tarqalsa, har bir belgining davomiyligi taxminan bir xil tarmoqli kengligi bilan ortogonallik uchun ming (ya'ni, bir millisekund) baravar ko'p bo'lishi mumkin. Har bir belgi orasiga simvol uzunligining 1/8 qismidagi himoya oralig'i kiritilgan deb taxmin qiling. Agar ko'p yo'lli vaqt tarqalishi (birinchi va oxirgi aks sadolarni qabul qilish o'rtasidagi vaqt) qo'riqlash oralig'idan (ya'ni 125 mikrosaniyadan) kamroq bo'lsa, ramzlararo interferentsiyani oldini olish mumkin. Bu yo'llarning uzunligi orasidagi maksimal farqga - 37,5 kilometrga to'g'ri keladi.

The tsiklik prefiks, qo'riqlash oralig'ida uzatiladigan, himoya oralig'iga ko'chirilgan OFDM belgisining oxiridan iborat va himoya oralig'i OFDM belgisi bilan uzatiladi. Himoya oralig'i OFDM belgisi oxiri nusxasidan iborat bo'lishining sababi shundaki, qabul qiluvchi FFT bilan OFDM demodulatsiyasini amalga oshirganda ko'p yo'llarning har biri uchun sinusoid tsikllarining butun soniga qo'shiladi.

OFDMCyclicPrefixInsertion.svg

Kabi ba'zi standartlarda Ultra keng tarmoqli, uzatilayotgan quvvat manfaati uchun tsiklik prefiks o'tkazib yuboriladi va qo'riqlash oralig'ida hech narsa yuborilmaydi. Keyin qabul qilgich OFDM belgisining so'nggi qismini nusxalash va boshlang'ich qismiga qo'shish orqali tsiklik prefiks funksiyasini taqlid qilishi kerak.

Soddalashtirilgan tenglashtirish

Chastotani tanlaydigan kanal sharoitlarining ta'siri, masalan, ko'p yo'lli tarqalish natijasida paydo bo'ladigan so'nish, agar pastki kanal etarlicha tor bantli bo'lsa (ya'ni, agar pastki kanal soni) bo'lsa, OFDM pastki kanalida doimiy (tekis) deb hisoblash mumkin. kanallari etarlicha katta). Bu chastota domenini tenglashtirishni qabul qiluvchi, bu odatiy bitta tashuvchili modulyatsiyada ishlatiladigan vaqt domenini tenglashtirishdan ancha sodda. OFDM-da ekvalayzer har bir OFDM belgisidagi har bir aniqlangan subcarrierni (har bir Furye koeffitsientini) doimiy kompleks songa yoki kamdan-kam o'zgaradigan qiymatga ko'paytirishi kerak. Asosiy darajada, oddiyroq raqamli ekvalayzerlar yaxshiroqdir, chunki ular kamroq operatsiyalarni talab qiladi, bu esa ekvalayzerda kamroq yumaloq xatolarga olib keladi. Ushbu yumaloq xatolar raqamli shovqin sifatida qaralishi mumkin va muqarrar.

Bizning misolimiz: Yuqoridagi raqamli misolda OFDMni tenglashtirish subcarrier va belgilar uchun bitta murakkab qiymatli ko'paytmani talab qiladi (ya'ni, OFDM belgisi bo'yicha murakkab ko'paytirish; ya'ni soniyada soniga million marta ko'paytirish, qabul qilgichda). FFT algoritmi talab qiladi [bu noaniq: bu ko'paytirishning yarmidan ko'pi ahamiyatsiz, ya'ni = dan 1 gacha va dasturiy ta'minotda yoki HWda amalga oshirilmaydi]. OFDM belgisi uchun kompleks qiymatli ko'paytmalar (ya'ni soniyada 10 million marta ko'paytirish), qabul qiluvchida ham, uzatuvchi tomonda ham. Buni misolda aytib o'tilgan mos keladigan bir million belgi / ikkinchi bitta tashuvchili modulyatsiya ishi bilan taqqoslash kerak, bu erda 125 mikrosaniyadagi vaqtni tarqalishini tenglashtirish FIR filtri sodda amalga oshirishda har bir belgiga 125 marta ko'paytirishni talab qiladi (ya'ni soniyada 125 million marta ko'paytirish). FFT usullaridan an uchun ko'paytmalar sonini kamaytirish uchun foydalanish mumkin FIR filtri - qabul qilish va dekodlash o'rtasidagi kechikish evaziga OFDM bilan taqqoslanadigan raqamga asoslangan vaqt-domen ekvalayzer, bu ham OFDM bilan taqqoslanadigan bo'ladi.

Kabi differentsial modulyatsiya bo'lsa DPSK yoki DQPSK har bir pastki tashuvchiga qo'llaniladi, tenglashtirishni butunlay chiqarib tashlash mumkin, chunki bu nomuvofiq sxemalar amplituda asta-sekin o'zgarib borishi uchun befarq o'zgarishlar buzilishi.

Bir ma'noda FFT yoki qisman FFT yordamida FIRni tenglashtirishni takomillashtirish matematik jihatdan OFDM ga yaqinlashadi,[iqtibos kerak ] ammo OFDM texnikasini tushunish va amalga oshirish osonroq, va pastki kanallarni mustaqil ravishda turli xil tenglashtirish koeffitsientlaridan farqli ravishda boshqa usullar bilan moslashtirish mumkin, masalan QAM alohida pastki kanal shovqinlari va shovqin xususiyatlariga mos keladigan burjlar naqshlari va xatolarni tuzatish sxemalari.[tushuntirish kerak ]

Ba'zi bir OFDM belgilaridagi ba'zi pastki tashuvchilarni olib yurishlari mumkin uchuvchi signallari kanal sharoitlarini o'lchash uchun[22][23] (ya'ni, har bir subcarrier uchun ekvalayzer daromad va o'zgarishlar siljishi). Uchuvchi signallar va o'quv ramzlari (preambulalar ) vaqt sinxronizatsiyasi (ramzlararo shovqinni oldini olish uchun, ISI) va chastota sinxronizatsiyasi (tashuvchilararo shovqinlarni oldini olish uchun, ICI, Doppler siljishi natijasida) uchun ham ishlatilishi mumkin.

Dastlab OFDM simli va statsionar simsiz aloqa uchun ishlatilgan. Shu bilan birga, juda mobil muhitda ishlaydigan dasturlar soni ko'payib borayotganligi sababli, ko'p yo'lli tarqalish va doppler smenasi yanada ahamiyatlidir. So'nggi o'n yil ichida OFDM uzatilishini ikki barobar tanlangan kanallar orqali qanday qilib tenglashtirish bo'yicha tadqiqotlar olib borildi.[24][25][26]

Kanallarni kodlash va interleaving

OFDM har doim bilan birgalikda ishlatiladi kanallarni kodlash (oldinga xatoni tuzatish ) va deyarli har doim chastota va / yoki vaqtdan foydalanadi interleaving.

Chastotani (subcarrier) interleaving kabi chastota-selektiv kanal sharoitlariga qarshilikni oshiradi xira. Masalan, kanal o'tkazuvchanligining bir qismi pasayib ketganda, chastotalar orasidagi intervalga o'tish tarmoqli kengligining xiralashgan qismidagi ushbu subcarrierlardan kelib chiqadigan bit xatolarining kontsentratsiyaga emas, balki bit oqimida tarqalishini ta'minlaydi. Xuddi shunday, vaqtni bir-biridan ajratish, avval bit-oqimda bir-biriga yaqin bo'lgan bitlarning vaqt o'tishi bilan bir-biridan uzoqlashishini ta'minlaydi va shu bilan yuqori tezlikda sayohat qilishda sodir bo'ladigan kuchli pasayishni kamaytiradi.

Shu bilan birga, vaqtni ajratish asta-sekin pasayib ketadigan kanallarda, masalan, statsionar qabul qilishda juda oz foyda keltiradi va chastotalar oralig'ida tekislashishda (butun kanal o'tkazuvchanligi bir vaqtning o'zida pasayib ketadigan) tor tarmoqli kanallar uchun hech qanday foyda keltirmaydi.

OFDM-da interleaving ishlatilishining sababi, xatolarni tuzatish dekoderiga taqdim etilgan bit-oqimdagi xatolarni yoyishga urinishdir, chunki bunday dekoderlar yuqori konsentratsiyali xatolar bilan ta'minlanganda dekoder barcha tuzatishni tuzatolmaydi. bitli xatolar va tuzatilmagan xatolar paydo bo'ladi. Ovoz ma'lumotlarini kodlashning o'xshash dizayni ixcham diskni (CD) qayta ishlashni mustahkam qiladi.

OFDM asosidagi tizimlarda ishlatiladigan xatolarni tuzatish kodlashning klassik turi konvolyutsion kodlash, ko'pincha birlashtirilgan bilan Qamish-Sulaymon kodlash. Odatda, kodlashning ikki qatlami o'rtasida qo'shimcha interleaving (yuqorida ko'rsatilgan vaqt va chastotali interleaving ustiga) amalga oshiriladi. Reed-Solomon kodlashni tashqi xatolarni tuzatish kodi sifatida tanlash ichki konvolyutsion dekodlashda ishlatiladigan Viterbi dekoderida xatolarning yuqori kontsentratsiyasi bo'lganida qisqa xato portlashlarini keltirib chiqarishi va Reed-Solomon kodlari o'z-o'ziga juda mos kelishi xatolar portlashlarini tuzatish.

Ammo, odatda, endi yangi tizimlar turbo dekodlash printsipidan foydalanadigan xatolarni tuzatish kodlarining eng maqbul turlarini qo'llaydilar, bu erda dekoder kerakli echimga qarab takrorlanadi. Bunday xatolarni tuzatish kodlash turlariga misollar kiradi turbo kodlari va LDPC ga yaqin bajaradigan kodlar Shannon chegarasi qo'shimcha Gauss shovqini uchun (AWGN ) kanal. Ushbu kodlarni amalga oshirgan ba'zi tizimlar ularni Rid-Sulaymon bilan birlashtirgan (masalan MediaFLO tizim) yoki BCH kodlari (ustida DVB-S2 tizim) ni takomillashtirish xato qavat yuqori darajadagi ushbu kodlarga xosdir shovqin-shovqin nisbati.[27]

Adaptiv uzatish

Qaytgan kanal orqali kanal haqida ma'lumot yuborilsa, kanalning og'ir sharoitlariga chidamliligini yanada oshirish mumkin. Ushbu teskari aloqa ma'lumotlariga asoslanib, moslashuvchan modulyatsiya, kanallarni kodlash va quvvatni taqsimlash barcha quyi tashuvchilar bo'ylab yoki har bir tashuvchi uchun alohida-alohida qo'llanilishi mumkin. Ikkinchi holatda, agar ma'lum bir chastota diapazoni shovqin yoki susayishdan azob chekayotgan bo'lsa, ushbu diapazondagi tashuvchilar o'chirilishi yoki yanada mustahkam modulyatsiyani qo'llash orqali sekinroq ishlashga majbur qilinishi mumkin. kodlashda xatolik o'sha tashuvchilarga.

Atama diskret multitone modulyatsiyasi (DMT) har bir subcarrier uchun kanal sharoitlariga uzatishni mos ravishda sozlaydigan OFDM asosidagi aloqa tizimlarini bildiradi. bit yuklash. Misollar ADSL va VDSL.

Yuqori va quyi oqim tezligini har bir maqsad uchun ko'proq yoki kamroq tashuvchilarni ajratish orqali o'zgartirish mumkin. Ning ba'zi shakllari tezlikka moslashuvchan DSL ushbu xususiyatdan real vaqtda foydalaning, shunda bitrate qo'shma kanal shovqinlariga moslashtiriladi va o'tkazuvchanlik kengligi qaysi abonentga ko'proq kerak bo'lsa, unga taqsimlanadi.

OFDM bir nechta kirish bilan kengaytirilgan

OFDM asosiy shaklda ko'p foydalanuvchiga emas, balki raqamli modulyatsiya texnikasi sifatida qaraladi kanalga kirish usuli, chunki u OFDM belgilarining bitta ketma-ketligi yordamida bitta aloqa oqimini bitta aloqa kanali orqali uzatish uchun ishlatiladi. Biroq, OFDM bilan birlashtirilishi mumkin bir nechta kirish foydalanuvchilarning vaqtini, chastotasini yoki kodlashni ajratishidan foydalanib.

Yilda ortogonal chastota-bo'linish ko'p kirish (OFDMA), chastota-bo'linish ko'p kirish turli xil OFDM subkanallarini turli foydalanuvchilarga berish orqali erishiladi. OFDMA tabaqalashtirilgan qo'llab-quvvatlaydi xizmat ko'rsatish sifati kabi turli xil foydalanuvchilarga turli xil subcarrierlarni tayinlash orqali CDMA va shu tariqa paketlarni kompleks rejalashtirish yoki Media kirish nazorati sxemalardan qochish mumkin. OFDMA quyidagilarda ishlatiladi:

  • ning harakatlanish tartibi IEEE 802.16 Simsiz MAN standarti, odatda WiMAX deb nomlanadi,
  • The IEEE 802.20 odatda MBWA deb nomlanadigan mobil Wireless MAN standarti,
  • The 3GPP uzoq muddatli evolyutsiyasi (LTE) to'rtinchi avlod mobil keng polosali standart pastga ulanish. Radio interfeysi ilgari "Yuqori tezlikli OFDM paketli kirish" (HSOPA) deb nomlangan, endi "Evolution UMTS Terrestrial Radio Access"Elektron UTRA ).
  • The 3GPP 5G NR (Yangi radio) mobil aloqa tarmog'ining beshinchi avlod standarti pastga va yuqoriga ulanish. 5G NR - LTE vorisi.
  • hozirda ishlamay qolgan Qualcomm /3GPP2 Ultra mobil keng polosali ulanish (UMB) loyihasi, vorisi sifatida mo'ljallangan CDMA2000, lekin LTE bilan almashtirildi.

OFDMA shuningdek, nomzodlarga kirish usulidir IEEE 802.22 Simsiz hududiy tarmoqlar (WRAN). Loyiha birinchisini loyihalashtirishga qaratilgan kognitiv radio - VHF-past UHF spektrida (televizor spektri) ishlaydigan standart standart.

  • eng so'nggi tuzatish 802.11 standart, ya'ni 802.11ax, yuqori samaradorlik va bir vaqtning o'zida aloqa qilish uchun OFDMA ni o'z ichiga oladi.

Yilda ko'p operatorli kod bo'linmasi bir nechta kirish (MC-CDMA), shuningdek OFDM-CDMA deb nomlanuvchi, OFDM foydalanuvchilarni ajratish uchun kodlash uchun CDMA tarqaladigan spektrli aloqa bilan birlashtirilgan. Birgalikda kanal aralashuvini yumshatish mumkin, ya'ni ushbu qo'llanma sobit kanal ajratish (FCA) chastotalarni rejalashtirish soddalashtirilgan yoki murakkab dinamik kanal ajratish (DCA) sxemalaridan qochish kerak.

Kosmik xilma-xillik

OFDM asosidagi keng maydonli eshittirishda qabul qiluvchilar bir vaqtning o'zida bir nechta fazoviy dispersli uzatgichlardan signallarni qabul qilishdan foydalanishlari mumkin, chunki transmitterlar cheklangan miqdordagi subcarrierlarda bir-biriga faqat buzg'unchilik bilan xalaqit beradi, umuman olganda ular haqiqatan ham keng doirani qamrab oladi. . Bu ko'plab mamlakatlarda juda foydalidir, chunki bu milliyning ishlashiga imkon beradi bitta chastotali tarmoqlar (SFN), bu erda ko'plab transmitterlar bir xil signalni bir vaqtning o'zida bitta kanal chastotasi orqali yuboradilar. SFNlar odatdagi ko'p chastotali eshittirish tarmoqlariga qaraganda mavjud spektrdan samarali foydalanadilar (MFN ), bu erda dastur tarkibi turli xil tashuvchi chastotalarda takrorlanadi. SFNlar ham natijaga olib keladi xilma-xillik yutug'i transmitterlar o'rtasida joylashgan qabul qilgichlarda. MFN bilan taqqoslaganda qamrov doirasi ko'paytirildi va uzilish ehtimoli pasayib ketdi, chunki barcha subcarrierlarda o'rtacha qabul qilingan signal kuchi ortdi.

Garchi qo'riqlash oralig'ida faqat ortiqcha ma'lumotlar mavjud bo'lsa, bu uning imkoniyatlarini pasaytiradi degani bo'lsa ham, ba'zi bir eshittirish tizimlari kabi ba'zi bir OFDM asosidagi tizimlar qasddan uzoq qo'riqchi oralig'idan foydalanib, transmitterlarni masofadan uzoqlashtirishga imkon beradi. SFN va uzoqroq himoya oralig'i SFN katakchalarini kattalashtirishga imkon beradi. SFN-da transmitterlar orasidagi maksimal masofa uchun qoida signalning qo'riqlash oralig'idagi masofasiga tengdir - masalan, 200 mikrosaniyadagi himoya oralig'i transmitterlarni 60 km masofada saqlashga imkon beradi.

A bitta chastotali tarmoq transmitterning bir shakli makroxilma-xillik. Ushbu kontseptsiyani yanada ko'proq ishlatish mumkin dinamik bir chastotali tarmoqlar (DSFN), bu erda SFN guruhlashi taymlotdan vaqt maydoniga o'zgartiriladi.

OFDM boshqa shakllari bilan birlashtirilishi mumkin kosmik xilma-xillik, masalan antenna massivlari va MIMO kanallar. Bu amalga oshiriladi IEEE 802.11 Simsiz LAN standartlar.

Lineer transmitter quvvat kuchaytirgichi

OFDM signali yuqori ko'rsatkichni namoyish etadi kuchning o'rtacha va o'rtacha nisbati (PAPR) chunki tashuvchilarning mustaqil fazalari ular ko'pincha konstruktiv tarzda birlashishini anglatadi. Ushbu yuqori PAPR bilan ishlash quyidagilarni talab qiladi.

Signal zanjiridagi har qanday noaniqlik sabab bo'ladi intermodulyatsiya buzilishi bu

  • Shovqin qavatini ko'taradi
  • Tashuvchi shovqinlarni keltirib chiqarishi mumkin
  • Tarmoqdan tashqarida soxta nurlanish hosil qiladi

Lineerlik talablari, ayniqsa, quvvat sarfini minimallashtirish uchun kuchaytirgichlar ko'pincha chiziqli bo'lmagan tarzda ishlab chiqilgan transmitterli chastotali chiqish sxemasi uchun talabchan. Amaliy OFDM tizimlarida PAPR-ni yuqoridagi oqibatlarga qarshi oqilona kelishuvda cheklash uchun ozgina miqdordagi tepalikka ruxsat beriladi. Biroq, transmitterning chiqish filtrini talab qilinadigan darajadagi qonuniy darajaga tushirish uchun talab qilinadi, bu kesilgan eng yuqori darajalarni tiklaydi, shuning uchun kesish PAPRni kamaytirishning samarali usuli emas.

OFDMning spektral samaradorligi ham quruqlik, ham kosmik aloqa uchun jozibador bo'lishiga qaramay, yuqori PAPR talablari hozirgacha er usti tizimlarida OFDM dasturlarini cheklab qo'ygan.

Bilan OFDM tizimi uchun eng yuqori omil CF (dB da) n o'zaro bog'liq bo'lmagan pastki tashuvchilar[28]

qaerda CFv har bir subcarrier uchun eng muhim omil (dB da). (CFv BPSK va QPSK modulyatsiyasi uchun ishlatiladigan sinus to'lqinlari uchun 3,01 dB ni tashkil qiladi).

Masalan, 2K rejimidagi DVB-T signali har biri QPSK-modulyatsiyalangan 1705 ta subkarnerdan iborat bo'lib, tepalik koeffitsienti 35,32 dB ni tashkil qiladi.[28]

Ko'pchilik tepalik omili kamaytirish texnikasi ishlab chiqilgan.

The dinamik diapazon FM qabul qiluvchisi uchun talab qilinadi 120 dB DAB esa faqat taxminan talab qiladi 90 dB.[29] Taqqoslash uchun har bir namuna uchun har bir qo'shimcha bit dinamik diapazonni oshiradi 6 dB.

Bitta tashuvchi va multikariyer o'rtasidagi samaradorlikni taqqoslash

Har qanday aloqa tizimining ishlashi uning energiya samaradorligi va tarmoqli kengligi samaradorligi bilan o'lchanishi mumkin. Energiya samaradorligi aloqa tizimining bit xato tezligini saqlab qolish qobiliyatini tavsiflaydi (BER ) past quvvat darajalarida uzatiladigan signalning. Tarmoqli kengligi samaradorligi ajratilgan tarmoqli kengligidan qanchalik samarali foydalanilishini aks ettiradi va ma'lum bir o'tkazuvchanlikdagi herts uchun ma'lumotlar tezligi sifatida aniqlanadi. Agar ko'p sonli tashuvchilar ishlatilsa, OFDM kabi ko'p tarmoqli tizimning o'tkazuvchanlik samaradorligi optik tolali kanal sifatida belgilanadi[30]

qayerda sekundiga giga-belgilaridagi (Gsps) belgi tezligi, OFDM signalining o'tkazuvchanligi va 2-omil ikkalasiga bog'liq qutblanish tolalardagi holatlar.

Ortogonal chastotali multiplekslash bilan multikariyerli modulyatsiya yordamida tarmoqli kengligi tejaladi. Shunday qilib, multicarrier tizimining o'tkazuvchanlik qobiliyati bitta tashuvchi tizimga nisbatan kamroq, shuning uchun multicarrier tizimining o'tkazuvchanlik samaradorligi bitta tashuvchilik tizimiga qaraganda katta.

S.no.Etkazish turiM-QAMda MSubcarrier soniBit tezligiElyaf uzunligiQabul qilgichdagi quvvat (10 dan BER da)−9)Tarmoqli kengligi samaradorligi
1.Yagona tashuvchi64110 Gbit / s20 km−37.3 dBm6.0000
2.Multicarrier6412810 Gbit / s20 km-36,3 dBm10.6022

Qabul qiluvchining quvvatida atigi 1 dBm o'sish bor, lekin biz multicarrier uzatish texnikasi yordamida o'tkazuvchanlik samaradorligini 76,7% ga yaxshilaymiz.

Idealizatsiya qilingan tizim modeli

Ushbu bo'limda vaqt o'zgarmasligiga mos keladigan sodda idealizatsiya qilingan OFDM tizim modeli tasvirlangan AWGN kanal.

Transmitter

OFDM transmitter ideal.png

OFDM tashuvchisi signali bir qator ortogonal subcarrierlarning yig'indisi, bilan tayanch tasma har qanday subcarrier haqidagi ma'lumotlar odatda ba'zi bir turlaridan foydalangan holda mustaqil ravishda modulyatsiya qilinadi kvadrati amplituda modulyatsiyasi (QAM) yoki fazani almashtirish klavishi (PSK). Ushbu kompozit tayanch tarmoqli signal odatda asosiy modulyatsiya qilish uchun ishlatiladi RF tashuvchi.

ikkilik raqamlarning ketma-ket oqimi. By teskari multiplekslash, ular avval demultiplexed qilinadi parallel oqimlar va ularning har biri (ehtimol murakkab) belgi oqimiga ba'zi bir modulyatsiya yulduz turkumidan foydalangan holda (QAM, PSK, va boshqalar.). E'tibor bering, yulduz turkumlari boshqacha bo'lishi mumkin, shuning uchun ba'zi oqimlar boshqalarga qaraganda yuqori bit tezligini ko'tarishi mumkin.

Teskari FFT har bir belgi to'plamida hisoblanib, vaqt-domenning murakkab namunalari to'plamini beradi. Ushbu namunalar keyin to'rtburchak - standart yo'l bilan o'tish polosasiga aralashtirilgan. Haqiqiy va xayoliy tarkibiy qismlar birinchi navbatda analog domenga aylantiriladi raqamli-analogli konvertorlar (DAC); analog signallar keyinchalik modulyatsiya qilish uchun ishlatiladi kosinus va sinus to'lqinlar tashuvchi chastota, navbati bilan. Keyin ushbu signallar uzatish signalini berish uchun yig'iladi, .

Qabul qiluvchi

OFDM qabul qiluvchisi ideal.png

Qabul qilgich signalni qabul qiladi , keyin kosinus va sinus to'lqinlari yordamida to'rtburchaklar bilan pastki tasmaga aralashtiriladi tashuvchining chastotasi. Bu shuningdek markazlashtirilgan signallarni yaratadi , shuning uchun ularni rad etish uchun past chastotali filtrlardan foydalaniladi. Keyin tayanch tarmoqli signallari namuna olinadi va raqamlashtiriladi analog-raqamli konvertorlar (ADC) va oldinga FFT chastota domeniga qaytish uchun ishlatiladi.

Bu qaytib keladi parallel oqimlar, ularning har biri tegishli belgi yordamida ikkilik oqimga aylantiriladi detektor. Keyin ushbu oqimlar ketma-ket oqimga qayta birlashtiriladi, , bu transmitterdagi asl ikkilik oqimning bahosi.

Matematik tavsif

Keyin OFDM signallarining subcarrier tizimi FFT

Agar subcarrierlardan foydalaniladi va har bir subcarrier yordamida modulyatsiya qilinadi muqobil belgilar, OFDM belgisi alifbosi quyidagilardan iborat birlashtirilgan belgilar.

The past o'tish ekvivalenti OFDM signali quyidagicha ifodalanadi:

qayerda ma'lumotlar belgilari, subcarrier soni va OFDM belgisi vaqti. Subcarrier oralig'i ularni har bir belgi davrida ortogonal qiladi; ushbu xususiyat quyidagicha ifodalanadi:

qayerda belgisini bildiradi murakkab konjugat operator va bo'ladi Kronekker deltasi.

Ko'p qirrali o'chadigan kanallarda ramzlararo shovqinni oldini olish uchun uzunlikning himoya oralig'i OFDM blokirovkasidan oldin kiritilgan. Ushbu oraliqda, a tsiklik prefiks intervaldagi signal shunday uzatiladi intervaldagi signalga teng keladi . Tsiklik prefiksli OFDM signali quyidagicha:

Yuqoridagi past chastotali signal haqiqiy yoki murakkab qiymatga ega bo'lishi mumkin. Haqiqiy qiymatga ega past chastotali ekvivalent signallar odatda tayanch tarmoqli orqali uzatiladi - DSL kabi simli dasturlar ushbu usuldan foydalanadi. Simsiz dasturlar uchun past chastotali signal odatda murakkab qiymatga ega; u holda uzatilgan signal yuk tashuvchisi chastotasiga aylantiriladi . Umuman olganda, uzatilgan signal quyidagicha ifodalanishi mumkin:

Foydalanish

OFDM quyidagilarda ishlatiladi:

OFDM tizimini taqqoslash jadvali

OFDM asosidagi ba'zi keng tarqalgan tizimlarning asosiy xususiyatlari quyidagi jadvalda keltirilgan.

Standart nomDAB Evrika 147DVB-TDVB-HDMB-T / HDVB-T2IEEE 802.11a
Tasdiqlangan yil199519972004200620071999
Chastotalar diapazoni
bugungi uskunalar
174-240 MGts 1.452-1.492 gigagertsli chastota470–862 MGts 174-230 MGts470–862 MGts470–862 MGts4,915-6,100 MGts
Kanal oralig'i, B
(MGts)
1.7126, 7, 85, 6, 7, 881.7, 5, 6, 7, 8, 1020
FFT hajmi, k = 1,024I tartibi: 2k
II rejim: 512
III rejim: 256
IV rejim: 1k
2k, 8k2k, 4k, 8k1 (bitta tashuvchi)
4k (ko'p yuk tashuvchi)
1k, 2k, 4k, 8k, 16k, 32k64
Tovushsiz tashuvchilar soni, NI tartibi: 1,536
II rejim: 384
III rejim: 192
IV rejim: 768
2K rejimi: 1,705
8K rejimi: 6,817
1,705, 3,409, 6,8171 (bitta tashuvchi)
3.780 (ko'p yuk tashuvchi)
853–27,841 (1K dan 32K gacha uzaytirilgan tashuvchi rejimi)52
Subcarrier modulyatsiyasi sxemasiπ4-DQPSKQPSK,[32] 16QAM yoki 64QAMQPSK,[32] 16QAM yoki 64QAM4QAM,[32] 4QAM-NR,[33] 16QAM, 32QAM va 64QAM.QPSK, 16QAM, 64QAM, 256QAMBPSK, QPSK,[32] 16QAM yoki 64QAM
Foydali belgining uzunligi, TU
(ms)
I tartibi: 1000
II rejim: 250
III rejim: 125
IV rejim: 500
2K rejimi: 224
8K rejimi: 896
224, 448, 896500 (ko'p yuk tashuvchi)112–3,584 (8 MGts kanaldagi 1K dan 32Kgacha rejim)3.2
Qo'shimcha qo'riqlash oralig'i, TG
(qismi TU)
24,6% (barcha rejimlar)14, ​18, ​116, ​13214, ​18, ​116, ​13214, ​16, ​191/128, 1/32, 1/16, 19/256, 1/8, 19/128, 1/4.
(32k rejim uchun maksimal 1/8)
14
Subcarrier oralig'i

(Hz)
I tartibi: 1000
II rejim: 4000
III rejim: 8000
Mode IV: 2,000
2K mode: 4,464
8K mode: 1,116
4,464, 2,232, 1,1168 M (single-carrier)
2,000 (multi-carrier)
279–8,929 (32K down to 1K mode)312.5 K
Net bit rate, R
(Mbit/s)
0.576–1.1524.98–31.67
(typically 24.13)
3.7–23.84.81–32.49Typically 35.46–54
Link spectral efficiency R/B
(bit/s·Hz)
0.34–0.670.62–4.0 (typ. 3.0)0.62–4.00.60–4.10.87–6.650.30–2.7
Ichki FECKonv. kodlash with equal error protection code rates:

14, ​38, ​49, ​12, ​47, ​23, ​34, ​45

Unequal error protection with av. code rates of:
~0.34, 0.41, 0.50, 0.60, and 0.75

Konv. kodlash with code rates:

12, ​23, ​34, ​56, yoki78

Konv. kodlash with code rates:

12, ​23, ​34, ​56, yoki78

LDPC with code rates:

0.4, 0.6, or 0.8

LDPC: ​12, ​35, ​23, ​34, ​45, ​56Konv. kodlash with code rates:

12, ​23, yoki34

Tashqi FEC (agar mavjud bo'lsa)Ixtiyoriy RS (120, 110, t = 5)RS (204, 188, t = 8)RS (204, 188, t = 8) + MPE-FECBCH kodi (762, 752)BCH kodi
Maximum travelling speed
(km / soat)
200–60053–185,
depending upon transmission frequency
Vaqt interleaving chuqurlik
(Xonim)
3840.6–3.50.6–3.5200–500Up to 250 (500 with extension frame)
Adaptive transmission,
agar mavjud bo'lsa
Yo'qYo'qYo'qYo'q
Ko'p kirish usuli
(agar mavjud bo'lsa)
Yo'qYo'qYo'qYo'q
Odatda manba kodlash192 kbit / s
MPEG2 Ovoz
qatlam 2
2–18 Mbit/s
Standard - HDTV
H.264 or MPEG2
H.264Belgilanmagan
(Video: MPEG-2, H.264 and/or AVS
Ovoz: MP2 yoki AC-3 )
H.264 or MPEG2
(Audio: AAC HE, Dolby Digital AC-3 (A52), MPEG-2 AL 2.)

ADSL

OFDM is used in ADSL connections that follow the ANSI T1.413 va G.dmt (ITU G.992.1) standards, where it is called discrete multitone modulation (DMT).[34] DSL achieves high-speed data connections on existing copper wires. OFDM is also used in the successor standards ADSL2, ADSL2 +, VDSL, VDSL2 va G.fast. ADSL2 uses variable subcarrier modulation, ranging from BPSK to 32768QAM (in ADSL terminology this is referred to as bit-loading, or bit per tone, 1 to 15 bits per subcarrier).

Long copper wires suffer from attenuation at high frequencies. The fact that OFDM can cope with this frequency selective attenuation and with narrow-band interference are the main reasons it is frequently used in applications such as ADSL modemlar.

Powerline Technology

OFDM is used by many elektr tarmog'i devices to extend digital connections through power wiring. Adaptive modulation is particularly important with such a noisy channel as electrical wiring. Some medium speed smart metering modemlar, "Prime" and "G3" use OFDM at modest frequencies (30–100 kHz) with modest numbers of channels (several hundred) in order to overcome the intersymbol interference in the power line environment.[35]The IEEE 1901 standards include two incompatible physical layers that both use OFDM.[36] The ITU-T G.hn standard, which provides high-speed local area networking over existing home wiring (power lines, phone lines and coaxial cables) is based on a PHY layer that specifies OFDM with adaptive modulation and a Low-Density Parity-Check (LDPC ) FEC code.[31]

Wireless local area networks (LAN) and metropolitan area networks (MAN)

OFDM is extensively used in wireless LAN and MAN applications, including IEEE 802.11a/g/n va WiMAX.

IEEE 802.11a/g/n, operating in the 2.4 and 5 GHz bands, specifies per-stream airside data rates ranging from 6 to 54 Mbit/s. If both devices can use "HT mode" (added with 802.11n ), the top 20 MHz per-stream rate is increased to 72.2 Mbit/s, with the option of data rates between 13.5 and 150 Mbit/s using a 40 MHz channel. Four different modulation schemes are used: BPSK, QPSK, 16-QAM, and 64-QAM, along with a set of error correcting rates (1/2–5/6). The multitude of choices allows the system to adapt the optimum data rate for the current signal conditions.

Wireless personal area networks (PAN)

OFDM is also now being used in the WiMedia/Ecma-368 standard for high-speed wireless shaxsiy tarmoq tarmoqlari in the 3.1–10.6 GHz ultrawideband spectrum (see MultiBand-OFDM).

Terrestrial digital radio and television broadcasting

Much of Europe and Asia has adopted OFDM for terrestrial broadcasting of digital television (DVB-T, DVB-H va T-DMB ) va radio (EUREKA 147 DAB, Raqamli radio Mondiale, HD radiosi va T-DMB ).

DVB-T

By Directive of the European Commission, all television services transmitted to viewers in the European Community must use a transmission system that has been standardized by a recognized European standardization body,[37] and such a standard has been developed and codified by the DVB Project, Raqamli video eshittirish (DVB); Framing structure, channel coding and modulation for digital terrestrial television.[38] Customarily referred to as DVB-T, the standard calls for the exclusive use of COFDM for modulation. DVB-T is now widely used in Europe and elsewhere for terrestrial digital TV.

SDARS

The ground segments of the Digital Audio Radio Service (SDARS) systems used by XM yo'ldosh radiosi va Sirius sun'iy yo'ldosh radiosi are transmitted using Coded OFDM (COFDM).[39] The word "coded" comes from the use of oldinga xatoni tuzatish (FEC).[5]

COFDM vs VSB

The question of the relative technical merits of COFDM versus 8VSB for terrestrial raqamli televidenie has been a subject of some controversy, especially between European and North American technologists and regulators. The Qo'shma Shtatlar has rejected several proposals to adopt the COFDM-based DVB-T system for its digital television services, and has instead opted for 8VSB (vestigial sideband modulation ) operatsiya.

One of the major benefits provided by COFDM is in rendering radio broadcasts relatively immune to multipath distortion and signal xira due to atmospheric conditions or passing aircraft. Proponents of COFDM argue it resists multipath far better than 8VSB. Early 8VSB DTV (digital television) receivers often had difficulty receiving a signal. Also, COFDM allows bitta chastotali tarmoqlar, which is not possible with 8VSB.

However, newer 8VSB receivers are far better at dealing with multipath, hence the difference in performance may diminish with advances in equalizer design.[iqtibos kerak ]

Raqamli radio

COFDM is also used for other radio standards, for Raqamli audio eshittirish (DAB), the standard for digital audio broadcasting at VHF frequencies, for Raqamli radio Mondiale (DRM), the standard for digital broadcasting at qisqa to'lqin va o'rta to'lqin frequencies (below 30 MHz) and for DRM+ a more recently introduced standard for digital audio broadcasting at VHF chastotalar. (30 to 174 MHz)

The USA again uses an alternate standard, a proprietary system developed by iBiquity dublyaj qilingan HD radiosi. However, it uses COFDM as the underlying broadcast technology to add digital audio to AM (medium wave) and FM broadcasts.

Both Digital Radio Mondiale and HD Radio are classified as kanal ichidagi systems, unlike Eureka 147 (DAB: Raqamli audio eshittirish ) which uses separate VHF or UHF frequency bands instead.

BST-OFDM used in ISDB

The band-segmented transmission orthogonal frequency division multiplexing (BST-OFDM) system proposed for Japan (in the ISDB-T, ISDB-TSB va ISDB-C broadcasting systems) improves upon COFDM by exploiting the fact that some OFDM carriers may be modulated differently from others within the same multiplex. Some forms of COFDM already offer this kind of ierarxik modulyatsiya, though BST-OFDM is intended to make it more flexible. The 6 MHz television channel may therefore be "segmented", with different segments being modulated differently and used for different services.

It is possible, for example, to send an audio service on a segment that includes a segment composed of a number of carriers, a data service on another segment and a television service on yet another segment—all within the same 6 MHz television channel. Furthermore, these may be modulated with different parameters so that, for example, the audio and data services could be optimized for mobile reception, while the television service is optimized for stationary reception in a high-multipath environment.

Ultra keng tarmoqli

Ultra keng tarmoqli (UWB) wireless personal area network technology may also use OFDM, such as in Multiband OFDM (MB-OFDM). This UWB specification is advocated by the WiMedia Alliance (formerly by both the Multiband OFDM Alliance [MBOA] and the WiMedia Alliance, but the two have now merged), and is one of the competing UWB radio interfaces.

FLASH-OFDM

Fast low-latency access with seamless handoff orthogonal frequency division multiplexing (Flash-OFDM), also referred to as F-OFDM, was based on OFDM and also specified higher protocol layers. It was developed by Flarion, and purchased by Qualcomm 2006 yil yanvar oyida.[40][41] Flash-OFDM was marketed as a packet-switched cellular bearer, to compete with GSM va 3G tarmoqlar. As an example, 450 MHz frequency bands previously used by NMT-450 va C-Net C450 (both 1G analogue networks, now mostly decommissioned) in Europe are being licensed to Flash-OFDM operators.[iqtibos kerak ]

Yilda Finlyandiya, the license holder Digita began deployment of a nationwide "@450" wireless network in parts of the country since April 2007. It was purchased by Datame in 2011.[42] In February 2012 Datame announced they would upgrade the 450 MHz network to competing CDMA2000 texnologiya.[43]

Slovakiya Telekom yilda Slovakiya offers Flash-OFDM connections[44] with a maximum downstream speed of 5.3 Mbit/s, and a maximum upstream speed of 1.8 Mbit/s, with a coverage of over 70 percent of Slovak population.[iqtibos kerak ] The Flash-OFDM network was switched off in the majority of Slovakia on 30 September 2015.[45]

T-Mobile Germany used Flash-OFDM to backhaul Wi-Fi HotSpots on the Deutsche Bahn's ICE high speed trains between 2005 and 2015, until switching over to UMTS and LTE.[46]

American wireless carrier Nextel Communications field tested wireless broadband network technologies including Flash-OFDM in 2005.[47] Sprint purchased the carrier in 2006 and decided to deploy the mobile version of WiMAX, unga asoslangan Scalable Orthogonal Frequency Division Multiple Access (SOFDMA) technology.[48]

Citizens Telephone Cooperative launched a mobile broadband service based on Flash-OFDM technology to subscribers in parts of Virjiniya in March 2006. The maximum speed available was 1.5 Mbit/s.[49] The service was discontinued on April 30, 2009.[50]

Wavelet-OFDM

OFDM has become an interesting technique for power line communications (PLC). In this area of research, a wavelet transform is introduced to replace the DFT as the method of creating orthogonal frequencies. This is due to the advantages wavelets offer, which are particularly useful on noisy power lines.[51]

Instead of using an IDFT to create the sender signal, the wavelet OFDM uses a synthesis bank consisting of a -band transmultiplexer followed by the transform function

On the receiver side, an analysis bank is used to demodulate the signal again. This bank contains an inverse transform

followed by another -band transmultiplexer. The relationship between both transform functions is

An example of W-OFDM uses the Perfect Reconstruction Cosine Modulated Filter Bank (PR-CMFB) and Extended Lapped Transform (ELT) is used for the wavelet TF. Shunday qilib, va sifatida berilgan

These two functions are their respective inverses, and can be used to modulate and demodulate a given input sequence. Just as in the case of DFT, the wavelet transform creates orthogonal waves with , , ..., . The orthogonality ensures that they do not interfere with each other and can be sent simultaneously. At the receiver, , , ..., are used to reconstruct the data sequence once more.

Advantages over standard OFDM

W-OFDM is an evolution of the standard OFDM, with certain advantages.

Mainly, the sidelobe levels of W-OFDM are lower. This results in less ICI, as well as greater robustness to narrowband interference. These two properties are especially useful in PLC, where most of the lines aren't shielded against EM-noise, which creates noisy channels and noise spikes.

A comparison between the two modulation techniques also reveals that the complexity of both algorithms remains approximately the same.[51]

Tarix

  • 1957: Kineplex, multi-carrier HF modem (R.R. Mosier & R.G. Clabaugh)
  • 1966: Chang, Bell Labs: OFDM paper[3] and patent[4]
  • 1971: Weinstein & Ebert proposed use of FFT va qo'riqlash oralig'i[6]
  • 1985: Cimini described use of OFDM for mobile communications
  • 1985: Telebit Trailblazer Modem introduced a 512 carrier Packet Ensemble Protocol (18 432 bit/s)
  • 1987: Alard & Lasalle: COFDM for digital broadcasting[9]
  • 1988: In September TH-CSF LER, first experimental Digital TV link in OFDM, Paris area
  • 1989: OFDM international patent application PCT/FR 89/00546, filed in the name of THOMSON-CSF, Fouche, de Couasnon, Travert, Monnier and all[52]
  • October 1990: TH-CSF LER, first OFDM equipment field test, 34 Mbit/s in an 8 MHz channel, experiments in Paris area
  • December 1990: TH-CSF LER, first OFDM test bed comparison with VSB in Princeton USA
  • September 1992: TH-CSF LER, second generation equipment field test, 70 Mbit/s in an 8 MHz channel, twin polarisations. Vuppertal, Germaniya
  • October 1992: TH-CSF LER, second generation field test and test bed with BBC, near London, UK
  • 1993: TH-CSF show in Montreux SW, 4 TV channel and one HDTV channel in a single 8 MHz channel
  • 1993: Morris: Experimental 150 Mbit/s OFDM wireless LAN
  • 1995: ETSI Raqamli audio eshittirish standard EUreka: first OFDM-based standard
  • 1997: ETSI DVB-T standart
  • 1998: Magic WAND project demonstrates OFDM modems for wireless LAN
  • 1999: IEEE 802.11a wireless LAN standard (Wi-Fi)
  • 2000: Proprietary fixed wireless access (V-OFDM, FLASH-OFDM, va boshqalar.)
  • May 2001: The FCC allows OFDM in the 2.4GHz license exempt band. [53]
  • 2002: IEEE 802.11g standard for wireless LAN
  • 2004: IEEE 802.16 standard for wireless MAN (WiMAX)
  • 2004: ETSI DVB-H standart
  • 2004: Candidate for IEEE 802.15.3a standard for wireless PAN (MB-OFDM)
  • 2004: Candidate for IEEE 802.11n standard for next generation wireless LAN
  • 2005: OFDMA is candidate for the 3GPP uzoq muddatli evolyutsiyasi (LTE) air interface E-UTRA downlink.
  • 2007: The first complete LTE air interface implementation was demonstrated, including OFDM-MIMO, SC-FDMA and multi-user MIMO uplink[54]

Shuningdek qarang

Adabiyotlar

  1. ^ Mustafa Ergen (2009). Mobile Broadband: including WiMAX and LTE. Springer Science + Business Media. doi:10.1007/978-0-387-68192-4. ISBN  978-0-387-68189-4.
  2. ^ Weinstein, S. B. (November 2009). "The history of orthogonal frequency-division multiplexing". IEEE Communications jurnali. IEEE Communications Magazine ( Volume: 47, Issue: 11, November 2009 ). 47 (11): 26–35. doi:10.1109/MCOM.2009.5307460.
  3. ^ a b Chang, R. W. (1966). "Synthesis of band-limited orthogonal signals for multi-channel data transmission". Bell tizimi texnik jurnali. 45 (10): 1775–1796. doi:10.1002/j.1538-7305.1966.tb02435.x.
  4. ^ a b US 3488445 
  5. ^ a b webe.org - 2GHz BAS Relocation Tech-Fair, COFDM Technology Basics. 2007-03-02
  6. ^ a b Weinstein, S.; Ebert, P. (October 1971). "Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform". Aloqa texnologiyasi bo'yicha IEEE operatsiyalari. 19 (5): 628–634. doi:10.1109/TCOM.1971.1090705.
  7. ^ Ahmad R. S. Bahai, Burton R. Saltzberg, Mustafa Ergen, Multi-carrier digital communications - Theory and applications of OFDM. Springer (November 2004 )
  8. ^ WO 8800417 
  9. ^ a b "Principles of modulation and channel coding for digital broadcasting for mobile receivers" (PDF). EBU Technical Review n°224, p.187. 1987 yil avgust.
  10. ^ Le Floch, B.; Alard, M.; Berrou, C. (1995). "Coded orthogonal frequency division multiplex [TV broadcasting]". IEEE ish yuritish. 83 (6): 982–996. doi:10.1109/5.387096. Arxivlandi asl nusxasi 2014-07-03 da.
  11. ^ Akansu, Ali; va boshq. (1998). "Orthogonal transmultiplexers in communication: a review" (PDF). Signalni qayta ishlash bo'yicha IEEE operatsiyalari. IEEE Trans. On Signal Processing, Vol. 46, No. 4, April 1998. 46 (4): 979–995. Bibcode:1998ITSP...46..979D. CiteSeerX  10.1.1.46.3342. doi:10.1109/78.668551.
  12. ^ Yang, James Ching-Nung (October 10, 2001). "What is OFDM and COFDM?". Shoufeng, Hualien 974, Taiwan: Department of Computer Science and Information Engineering National Dong Hwa University. Olingan 2017-04-16.CS1 tarmog'i: joylashuvi (havola)
  13. ^ Ben-Tovim, Erez (February 2014). "ITU G.hn - Broadband Home Networking". Bergerda Lars T.; Shvager, Andreas; Pagani, Paskal; Schneider, Daniel M. (eds.). MIMO Power Line Communications. Qurilmalar, sxemalar va tizimlar. CRC Press. 457-472 betlar. doi:10.1201/b16540-16. ISBN  9781466557529.
  14. ^ Robertson, P.; Kaiser, S. (1999). "The effects of Doppler spreads in OFDM(A) mobile radio systems". Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference. 1. 329–333 betlar. doi:10.1109/vetecf.1999.797150. ISBN  0-7803-5435-4.
  15. ^ Haas, R.; Belfiore, J.C. (1997). "A Time-Frequency Well-localized Pulse for Multiple Carrier Transmission". Simsiz shaxsiy aloqa. 5 (1): 1–18. doi:10.1023/A:1008859809455.
  16. ^ Roque, D.; Siclet, C. (2013). "Performances of Weighted Cyclic Prefix OFDM with Low-Complexity Equalization" (PDF). IEEE Communications Letters. 17 (3): 439–442. doi:10.1109/LCOMM.2013.011513.121997.
  17. ^ Jeon, W.G.; Chang, K.H.; Cho, Y.S. (1999). "An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels". Aloqa bo'yicha IEEE operatsiyalari. 47 (1): 27–32. CiteSeerX  10.1.1.460.4807. doi:10.1109/26.747810.
  18. ^ a b v d Eric Lawrey (October 1997). The suitability of OFDM as a modulation technique for wireless telecommunications, with a CDMA comparison (PDF) (B.E.).
  19. ^ "1.266 GHz Pentium 3". fftw.org. 2006-06-20.
  20. ^ "1.6 GHz Pentium M (Banias), GNU compilers". fftw.org. 2006-06-20.
  21. ^ "3.0 GHz Intel Core Duo, Intel compilers, 32-bit mode". fftw.org. 2006-10-09.
  22. ^ Coleri S, Ergen M, Puri A, Bahai A (Sep 2002). "Channel estimation techniques based on pilot arrangement in OFDM systems". Teleradioeshittirish bo'yicha IEEE operatsiyalari. 48 (3): 223–229. doi:10.1109/TBC.2002.804034.
  23. ^ Hoeher P, Kaiser S, Robertson P (1997). Two-dimensional pilot-symbol-aided channel estimation by Wiener filtering. IEEE Akustika, nutq va signallarni qayta ishlash bo'yicha xalqaro konferentsiya, ICASSP-97. doi:10.1109/ICASSP.1997.598897.
  24. ^ Zemen T, Mecklenbrauker CF (Sep 2005). "Time-Variant Channel Estimation Using Discrete Prolate Spheroidal Sequences". Signalni qayta ishlash bo'yicha IEEE operatsiyalari. 53 (9): 3597–3607. Bibcode:2005ITSP...53.3597Z. CiteSeerX  10.1.1.60.9526. doi:10.1109/TSP.2005.853104.
  25. ^ Tang Z, Cannizzaro RC, Leus G, Banelli P (May 2007). "Pilot-Assisted Time-Varying Channel Estimation for OFDM Systems". Signalni qayta ishlash bo'yicha IEEE operatsiyalari. 55 (5): 2226–2238. Bibcode:2007ITSP...55.2226T. CiteSeerX  10.1.1.418.2386. doi:10.1109/TSP.2007.893198.
  26. ^ Hrycak T, Das S, Matz G, Feichtinger HG (Aug 2010). "Low Complexity Equalization for Doubly Selective Channels Modeled by a Basis Expansion". Signalni qayta ishlash bo'yicha IEEE operatsiyalari. 58 (11): 5706–5719. Bibcode:2010ITSP...58.5706H. doi:10.1109/TSP.2010.2063426.
  27. ^ Berger, Lars T.; Shvager, Andreas; Pagani, Paskal; Schneider, Daniel M, eds. (2014 yil fevral). "Introduction to Power Line Communication Channel and Noise Characterisation". MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing. Qurilmalar, sxemalar va tizimlar. CRC Press. p. 25. doi:10.1201/b16540-1. ISBN  978-1-4665-5753-6.
  28. ^ a b Bernhard Kaehs (January 2007). "The Crest Factor in DVB-T (OFDM) Transmitter Systems and its Influence on the Dimensioning of Power Components" (PDF). Rohde & Schwarz. Arxivlandi asl nusxasi (PDF) 2014-07-05 da.
  29. ^ Xeg, Volfgang; Lauterbax, Tomas (2009). Digital Audio Broadcasting: Principles and Applications of DAB, DAB + and DMB (3-nashr). John Wiley & Sons. p. 333. ISBN  9780470746196. Olingan 2013-07-04.
  30. ^ William Shieh, Ivan Djordjevic. (2010). "OFDM for Optical Communications". 525 B Street, Suite 1900, San Diego, California 92101-4495, USA: Academic Press.CS1 tarmog'i: joylashuvi (havola)
  31. ^ a b Berger, Lars T.; Shvager, Andreas; Pagani, Paskal; Schneider, Daniel M., eds. (2014 yil fevral). "Introduction to Power Line Communication Channel and Noise Characterisation". MIMO Power Line Communications: Narrow and Broadband Standards, EMC, and Advanced Processing. Qurilmalar, sxemalar va tizimlar. CRC Press. pp. 3–37. doi:10.1201/b16540-1. ISBN  9781466557529.
  32. ^ a b v d 4QAM is equivalent to QPSK
  33. ^ NR refers to Nordstrom-Robinson code
  34. ^ "A Multicarrier Primer" (PDF). ANSI T1E1 4, pp. 91-157. 1991 yil.
  35. ^ Hoch, Martin. Comparison of PLC G3 and Prime (PDF). 2011 IEEE Symposium on Powerline Communication and its Applications. Arxivlandi asl nusxasi (PDF) on 2017-08-10.
  36. ^ Stefano Galli; Oleg Logvinov (July 2008). "IEEE doirasida elektr uzatish liniyalarini standartlashtirish bo'yicha so'nggi o'zgarishlar". IEEE Communications jurnali. 46 (7): 64–71. doi:10.1109 / MCOM.2008.4557044. ISSN  0163-6804. P1901 PHY / MAC taklifiga umumiy nuqtai.
  37. ^ "DIRECTIVE 95/47/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the use of standards for the transmission of television signals". ec.europa.eu.
  38. ^ ETSI Standard: EN 300 744 V1.5.1 (2004-11).
  39. ^ Junko Yoshida (June 28, 2001). "Agere gets Sirius about satellite radio design". EE Times.
  40. ^ "Qualcomm and Exoteq Sign OFDM/OFDMA License Agreement". Yangiliklar. Qualcomm. 2007 yil 1-avgust. Olingan 23 iyul, 2011.
  41. ^ "Qualcomm Completes Acquisition Of WiMAX Competitor". Tarmoqni hisoblash. 2006 yil 19-yanvar. Olingan 23 iyul, 2011.
  42. ^ "Briefly in English". @450-Network web site. Datame. Arxivlandi asl nusxasi 2012 yil 15 martda. Olingan 23 iyul, 2011.
  43. ^ Aleksi Kolehmainen (February 8, 2012). "@450 siirtyy cdma2000-tekniikkaan - jopa puhelut mahdollisia". Tietoviikko (fin tilida).
  44. ^ "Mapy pokrytia". Slovak Telekom web site (slovak tilida). Olingan 30 may, 2012.
  45. ^ "Slovak Telekom closed Flash-OFDM network". ceeitandtelecom. November 5, 2015.
  46. ^ "Ins Netz bei Tempo 300". heise onlayn. 2014 yil 23-dekabr. Olingan 20 dekabr, 2016.
  47. ^ "Nextel Flash-OFDM: The Best Network You May Never Use". Kompyuter jurnali. 2005 yil 2 mart. Olingan 23 iyul, 2011.
  48. ^ Sascha Segan (August 8, 2006). "Sprint Nextel Goes To The WiMax". Kompyuter jurnali. Arxivlandi asl nusxasi 2018-11-30 kunlari. Olingan 23 iyul, 2011.
  49. ^ "Citizens Offers First "Truly Mobile" Wireless Internet in Christiansburg and other parts of the New River Valley" (PDF). Yangiliklar. Citizens Wireless. 2006 yil 28 mart. Olingan 23 iyul, 2011.
  50. ^ "Thank you for supporting Citizens Mobile Broadband". Citizens Wireless. 2009. Arxivlangan asl nusxasi 2011 yil 18-iyulda. Olingan 23 iyul, 2011.
  51. ^ a b S. Galli; H. Koga; N. Nodokama (May 2008). Advanced Signal Processing for PLCs: Wavelet-OFDM. 2008 IEEE International Symposium on Power Line Communications and Its Applications. 187-192 betlar. doi:10.1109/ISPLC.2008.4510421. ISBN  978-1-4244-1975-3.
  52. ^ "Arxivlangan nusxa". Arxivlandi asl nusxasi 2007-12-15 kunlari. Olingan 2019-12-13.CS1 maint: nom sifatida arxivlangan nusxa (havola)
  53. ^ https://www.researchgate.net/publication/228163323_Spectrum_Rights_in_the_Telecosm_to_Come
  54. ^ "Nortel 3G World Congress Press Release". Arxivlandi asl nusxasi 2007-09-29 kunlari. Olingan 2008-01-29.

Qo'shimcha o'qish

  • Bank, M. (2007). "System free of channel problems inherent in changing mobile communication systems". Elektron xatlar. 43 (7): 401–402. doi:10.1049/el:20070014.
  • M. Bank, B. Hill, Miriam Bank. A wireless mobile communication system without pilot signals Patent PCT/Il N 2006000926, Patent PCT International Application N0 PCT/IL 2006000926. Patent No. 7,986,740, Issue date: 26 July 2011

Tashqi havolalar