Uglerodni saqlash va saqlash - Carbon capture and storage

Uglerodni saqlash va saqlash (CCS), yoki uglerodni tortib olish va sekvestratsiya va uglerodni boshqarish va sekvestratsiya,[1] chiqindilarni to'plash jarayoni karbonat angidrid (CO
2
), uni saqlash joyiga etkazish va atmosferaga kirmaydigan joyga saqlash. Odatda CO2 katta hajmdan tortib olinadi nuqta manbalari, masalan tsement zavod yoki biomassa elektr stantsiyasi, va odatda u er ostida saqlanadi geologik shakllanish. Maqsad - katta miqdordagi chiqindilarni oldini olish CO
2
dan atmosferaga og'ir sanoat. Bu potentsial vositadir yumshatuvchi hissasi Global isish va okeanning kislotaliligi[2] ning karbonat angidrid chiqindilari sanoat va issiqlik ta'minotidan.[3] Garchi CO
2
bir necha o'n yillar davomida turli maqsadlar uchun, shu jumladan geologik tuzilmalarga in'ektsiya qilingan yaxshilangan neftni qayta tiklash, uzoq muddatli saqlash CO
2
nisbatan yangi tushuncha.

Karbonat angidrid to'g'ridan-to'g'ri havodan yoki sanoat manbasidan (masalan, elektr stantsiyasidan) olinishi mumkin chiqindi gaz ) turli texnologiyalardan foydalangan holda, shu jumladan singdirish, adsorbsiya, kimyoviy ilmoq, membranani gaz bilan ajratish yoki gaz gidrat texnologiyalar.[4][5] Zamonaviy an'anaviy elektr stantsiyasida qo'llaniladigan CCS kamayishi mumkin CO
2
atmosferaga chiqadigan emissiya CCSsiz zavodga nisbatan taxminan 80-90% ga.[6] Agar tortib olish va siqish elektr stantsiyasida ishlatilsa CO
2
, tizimning boshqa xarajatlari qazilma yoqilg'i elektr stantsiyalari uchun ishlab chiqarilgan vatt-soat energiya narxini 21-91% ga oshirishi taxmin qilinmoqda;[6] va mavjud zavodlarga texnologiyani qo'llash yanada qimmatroq bo'ladi, ayniqsa, ular sekvestrlash joyidan uzoqda bo'lsa. 2019 yildan boshlab dunyoda 17 ta CCS loyihalari mavjud bo'lib, ularning 31,5 mln CO
2
yiliga, shundan 3.7 geologik saqlanadi.[7] Ularning aksariyati sanoat emas, balki elektr stantsiyalari:[8] tsement, po'lat ishlab chiqarish va o'g'it ishlab chiqarish kabi sohalarni karbonsizlashtirish qiyin.[9]

CCM biomassa bilan birlashganda aniq salbiy chiqindilarni keltirib chiqarishi mumkin.[10] Sud jarayoni uglerodni ushlab qolish va saqlash bilan bio-energiya (BECCS) da o'tin bilan ishlaydigan birlikda Drax elektr stantsiyasi Buyuk Britaniyada 2019 yilda boshlangan: agar bu muvaffaqiyatli bo'lsa, kuniga bir tonnani olib tashlash mumkin CO
2
atmosferadan.[11]

Saqlash CO
2
yoki chuqur geologik tuzilmalarda, yoki shaklida nazarda tutilgan mineral karbonatlar. Pirogen uglerodni tutib olish va saqlash (PyCCS) ham tadqiq qilinmoqda.[12]Chuqur okean omboridan foydalanilmaydi, chunki mumkin edi okeanni kislotalash.[13] Hozirgi vaqtda geologik hosilalar sekvestrning eng istiqbolli joylari hisoblanadi. AQSh Milliy energiya texnologiyalari laboratoriyasi (NETL) Shimoliy Amerikaning hozirgi ishlab chiqarish sur'atlari bo'yicha 900 yildan ziyod karbonat angidridni saqlash uchun etarli hajmga ega ekanligini xabar qildi.[14] Umumiy muammo shundaki, dengiz osti yoki er osti omborlari xavfsizligi to'g'risida uzoq muddatli bashoratlar juda qiyin va noaniq bo'lib, ba'zilar xavfi mavjud CO
2
atmosferaga oqishi mumkin.[15]

Qo'lga olish

Qo'lga olinmoqda CO
2
yirik qazilma yoqilg'i yoki biomassa energiya inshootlari, tabiiy gaz elektr energiyasini ishlab chiqarish zavodlari, yirik sanoat tarmoqlari kabi manbalarda eng samarali hisoblanadi. CO
2
emissiya, tabiiy gazni qayta ishlash, sintetik yoqilg'i zavodlari va qazilma yoqilg'iga asoslangan vodorod ishlab chiqarish o'simliklar. Chiqarish CO
2
havodan ham mumkin,[16] ning ancha past konsentratsiyasi bo'lsa ham CO
2
havoda yonish manbalari bilan taqqoslaganda muhim muhandislik muammolari mavjud.[17]

Ishlab chiqaradigan organizmlar etanol tomonidan fermentatsiya salqin, aslida toza hosil qiling CO
2
er osti nasoslari bilan to'ldirilishi mumkin.[18] Fermentatsiya biroz kamroq hosil qiladi CO
2
og'irligi bo'yicha etanoldan.

Aralashmalar CO
2
oltingugurt va suv singari oqimlar ularning fazaviy harakatiga sezilarli ta'sir ko'rsatishi va quvur liniyasi va quduq materiallarining korroziyasini kuchayishiga katta xavf tug'dirishi mumkin. Bunday holatlarda CO
2
iflosliklar mavjud, ayniqsa havoni ushlab turish bilan, dastlab chiqindi gazni tozalash uchun tozalashni ajratish jarayoni kerak bo'ladi.[19] Vashington shtatidagi Wallula Energiya Resurs Markazining ma'lumotlariga ko'ra, ko'mirni gazlashtirish orqali unga kiritilgan karbonat angidridning taxminan 65 foizini ushlab, qattiq shaklda ajratib olish mumkin.[20]

Umuman olganda, ta'qib qilish uchun uchta turli xil konfiguratsiyalar mavjud: yonishdan keyingi, oldindan yoqilgan va oksidli yoqilg'ining yonishi:

  • Yilda yonishdan keyin tortib olish, CO
    2
    qazilma yoqilg'ining yonishidan keyin olib tashlanadi - bu qazilma yoqilg'ini yoqadigan elektr stantsiyalarida qo'llaniladigan sxema. Bu erda karbonat angidrid olinadi tutun gazlari da elektr stantsiyalari yoki boshqa yirik nuqta manbalari. Texnologiya yaxshi tushunilgan va hozirgi vaqtda boshqa sanoat dasturlarida qo'llaniladi, garchi tijorat miqyosidagi elektr stantsiyasida talab qilinadigan darajada bo'lmasa. Yonishdan keyingi ta'qib qilish tadqiqotlarda eng mashhurdir, chunki mavjud qazilma yoqilg'i elektr stantsiyalari ushbu konfiguratsiyaga CCS texnologiyasini kiritish uchun qayta jihozlanishi mumkin.[21]
  • Uchun texnologiya oldindan yonish o'g'it, kimyoviy, gazli yoqilg'ida keng qo'llaniladi (H2, CH4) va energiya ishlab chiqarish.[22] Bunday hollarda, fotoalbom yoqilg'i qisman oksidlanadi, masalan gazlashtiruvchi. Natijada paydo bo'lgan CO syngalar (CO va H2) qo'shilgan bug 'bilan reaksiyaga kirishadi (H2O) va siljigan ichiga CO
    2
    va H2. Natijada CO
    2
    nisbatan toza egzoz oqimidan olinishi mumkin. H2 endi yoqilg'i sifatida ishlatilishi mumkin; karbonat angidrid yonish sodir bo'lishidan oldin chiqariladi. An'anaviy yonishdan keyingi karbonat angidridni tortib olish bilan taqqoslaganda bir nechta afzalliklar va kamchiliklar mavjud.[23][24] The CO
    2
    qazib olinadigan yoqilg'ining yonishidan so'ng, lekin chiqindi gaz atmosfera bosimiga qadar kengaytirilishidan oldin chiqariladi. Ushbu sxema yangi qazib olinadigan yoqilg'ini yoqadigan elektr stantsiyalariga yoki qayta quvvat berish imkoniyati mavjud bo'lgan mavjud zavodlarga nisbatan qo'llaniladi.[iqtibos kerak ] Kengayishdan oldin, ya'ni bosimli gazdan tortib olish deyarli barcha sanoat korxonalarida standart hisoblanadi CO
    2
    elektr stantsiyalari uchun talab qilinadigan hajmdagi jarayonlarni tortib olish.[25][26]
  • Yilda oksidli yoqilg'ining yonishi[27] yoqilg'i havo o'rniga kislorodda yoqiladi. Olingan olov haroratini an'anaviy yonish paytida keng tarqalgan darajaga etkazish uchun sovutilgan tutun gazi aylanib, yonish kamerasiga quyiladi. Baca gazi asosan karbonat angidrid va suv bug'idan iborat bo'lib, ikkinchisi sovutish orqali quyultiriladi. Natijada, deyarli sof karbonat angidrid oqimi hosil bo'lib, uni sekvestratsiya joyiga etkazish va saqlash mumkin. Kislorodli yoqilg'iga asoslangan elektr stantsiyalari jarayonlari ba'zan "nol emissiya" davrlari deb ataladi, chunki CO
    2
    saqlanadi, bu chiqindi gaz oqimidan chiqarilgan qism emas (yonishdan oldin va keyin tortib olinadigan holatlarda bo'lgani kabi), lekin chiqindi gaz oqimining o'zi. Ning ma'lum bir qismi CO
    2
    yonish paytida hosil bo'lgan suv muqarrar ravishda quyultirilgan suvga tushadi. "Nolinchi emissiya" yorlig'iga kafolat berish uchun suvni tegishli ravishda tozalash yoki yo'q qilish kerak bo'ladi.

CO2 ajratish texnologiyalari

Uglerodni tortib olish uchun quyidagi asosiy texnologiyalar taklif etiladi:[4][28][29]

Absorbsiya yoki uglerodni tozalash, bilan ominlar dominant ta'qib qilish texnologiyasi. Hozirgacha bu uglerodni tortib olishning yagona texnologiyasi bo'lib, u sanoatda ishlatilgan.[30]

Karbonat angidrid MOFga adsorbsiyalanadi (Metall-organik asos ) orqali fizizortsiya yoki xemosorbtsiya g'ovakliligiga asoslanib va selektivlik ortda qoldirgan MOFning a Issiqxona gazi ekologik jihatdan qulay bo'lgan kambag'al gaz oqimi. Keyin karbonat angidrid MOFdan tozalanadi, harorat tebranish adsorbsiyasi (TSA) yoki bosim tebranish adsorbsiyasi (PSA) yordamida MOF qayta ishlatilishi mumkin. Adsorbentlar va changni yutish moddalari regeneratsiya bosqichlarini talab qiladi, bu erda CO
2
sorbent yoki eritmani qayta ishlatish uchun uni chiqadigan gazdan yig'ilgan sorbent yoki eritmadan chiqarib tashlanadi. Monoetanolamin (MEA) eritmalari, ushlash uchun etakchi omin CO
2
, 3-4 J / g K gacha bo'lgan issiqlik quvvatiga ega, chunki ular asosan suvdir.[31][32] Yuqori issiqlik quvvati erituvchini qayta tiklash bosqichida energiya jarimasini qo'shadi. Shunday qilib, uglerod olish uchun MOFni optimallashtirish uchun past issiqlik quvvati va adsorbsiyaning issiqligi talab qilinadi. Bundan tashqari, ko'proq ishlash uchun yuqori ish qobiliyati va yuqori selektivlik kerak CO
2
iloji boricha tutun gazidan. Biroq, selektivlik va energiya sarfi bilan energiya almashinuvi mavjud.[33] Miqdori sifatida CO
2
ushlangan o'sish, qayta tiklanish uchun zarur bo'lgan energiya va shuning uchun xarajatlar oshadi. MOFni CCS uchun ishlatishda katta kamchilik ularning kimyoviy va issiqlik barqarorligi bilan bog'liq cheklovlardir.[21] Joriy[qachon? ] tadqiqotlar MOF xususiyatlarini CCS uchun optimallashtirishga qaratilgan, ammo barqarorlikni ta'minlashga olib keladigan ushbu optimallashtirishlarni topish qiyin bo'lgan. Metall suv omborlari, shuningdek, MOFlarning potentsial muvaffaqiyati uchun cheklovchi omil hisoblanadi.[34]

CCS umumiy narxining taxminan uchdan ikki qismi ta'qib qilinishiga bog'liq bo'lib, bu CCS texnologiyalarining keng tarqalishini cheklaydi. A optimallashtirish uchun CO
2
ta'qib qilish jarayoni CCSning maqsadga muvofiqligini sezilarli darajada oshiradi, chunki CCSni tashish va saqlash bosqichlari etuk texnologiyalardir.[35]

Ishlab chiqilayotgan muqobil usul kimyoviy halqa bilan yonish (CLC). Kimyoviy pastadir qattiq kislorod tashuvchisi sifatida metall oksiddan foydalanadi. Metall oksidi zarralari a tarkibidagi qattiq, suyuq yoki gazsimon yoqilg'i bilan reaksiyaga kirishadi suyuq yotoq qattiq metall zarralari va karbonat angidrid va suv bug'lari aralashmasini ishlab chiqaruvchi yonuvchi. Suv bug'lari quyultirilib, sof karbonat angidrid gazini qoldiradi va keyinchalik uni ajratib olish mumkin. Qattiq metall zarralari boshqa oqimli qatlamga tarqaladi, u erda ular havo bilan reaksiyaga kirishib, issiqlik hosil qiladi va metall oksidi zarralarini qayta tiklaydi, ular oqimli yotoq yondirgichiga aylanadi. Kimyoviy ilmoqning bir varianti kaltsiy pastadir, o'zgaruvchan karbonatlanish va undan keyin a ning kalsinlanishidan foydalaniladi kaltsiy oksidi qo'lga olish vositasi sifatida asoslangan tashuvchi CO
2
.[36]

CO2 transport

Qo'lga olingandan so'ng CO
2
tegishli saqlash joylariga etkazilishi kerak edi. Bu katta miqdordagi transportning eng arzon shakli bo'lgan quvur liniyasi orqali amalga oshiriladi CO
2
.

Quvur liniyalarini amalga oshirish mumkin bo'lmagan joylarda transport uchun ham kemalardan foydalanish mumkin CO
2
boshqa ilovalar uchun.

Masalan, taxminan 5800 km bo'lgan CO
2
2008 yilda Qo'shma Shtatlarda quvurlar va Norvegiyada 160 km quvur[37] tashish uchun ishlatiladi CO
2
keyinchalik neft qazib olish uchun eski konlarga quyiladigan neft qazib olish joylariga. Ushbu in'ektsiya CO
2
neft ishlab chiqarish deyiladi yaxshilangan neftni qayta tiklash. Shuningdek, uzoq muddatli saqlashni sinab ko'rish uchun rivojlanishning turli bosqichlarida bir nechta pilot dasturlar mavjud CO
2
neftdan tashqari geologik shakllanishlarda.Texnologiya rivojlanib borishi bilan xarajatlar, foyda va kamsitishlar o'zgarib bormoqda. Qo'shma Shtatlarning fikriga ko'ra Kongress tadqiqot xizmati, "Quvur tarmoqlari talablari, iqtisodiy tartibga solish, kommunal xizmatlarning narxini qoplash, me'yoriy tasniflash bo'yicha muhim javobsiz savollar mavjud CO
2
o'zi va quvur xavfsizligi. Bundan tashqari, chunki CO
2
neftni qayta tiklash uchun quvur liniyalari bugungi kunda foydalanilmoqda, bu siyosiy qarorlarga ta'sir qiladi CO
2
quvurlar ko'pchilik tomonidan tan olinmagan dolzarblikni qabul qiladi. Federal tasnifi CO
2
ikkala tovar sifatida (tomonidan Yerni boshqarish byurosi ) va ifloslantiruvchi sifatida (tomonidan Atrof muhitni muhofaza qilish agentligi ) potentsial ziddiyatni yuzaga keltirishi mumkin, bu nafaqat kelajakdagi CCSni amalga oshirish uchun, balki kelajakdagi CCSning izchilligini ta'minlash uchun ham hal qilinishi kerak. CO
2
bugungi kunda quvur liniyasi bilan ishlash. "[38][39] Buyuk Britaniyada Fan va texnologiyalar bo'yicha parlament idorasi, shuningdek, quvurlarni Buyuk Britaniya bo'ylab asosiy transport sifatida nazarda tutishini ma'lum qildi.[37]

Sekvestratsiya

Doimiy saqlash uchun har xil shakllar o'ylab topilgan CO
2
. Ushbu shakllarga turli xil chuqur geologik tuzilmalarda (sho'rlangan qatlamlar va tugagan gaz konlarini o'z ichiga olgan holda) gazsimon saqlash va reaksiya natijasida qattiq saqlash kiradi. CO
2
metall bilan oksidlar barqaror ishlab chiqarish karbonatlar. Ilgari shunday degan edi CO
2
okeanlarda saqlanishi mumkin edi, ammo bu yanada kuchayadi okeanning kislotaliligi va London va OSPAR konvensiyalari bo'yicha noqonuniy qilingan.[40] Okeanni saqlash endi mumkin emas deb hisoblanadi.[13]

Geologik saqlash

Shuningdek, nomi bilan tanilgan geoekvestratsiya, bu usul karbonat angidridni AOK qilishni o'z ichiga oladi, odatda superkritik to'g'ridan-to'g'ri er osti geologik tuzilmalariga. Neft konlari, gaz konlari, fiziologik tuzilmalar ko'mir qatlamlari va sho'r suv bilan to'ldirilgan bazalt hosilalari saqlash joylari sifatida taklif qilingan. Har xil jismoniy (masalan, juda o'tkazmaydigan) kaprok ) va geokimyoviy tuzoqqa tushirish mexanizmlari oldini oladi CO
2
qochib qutulishdan.[41]

Tozalanmaydigan ko'mir qatlamlaridan saqlash uchun foydalanish mumkin CO
2
chunki CO
2
molekulalar ko'mir yuzasiga yopishadi. Biroq, texnik imkoniyatlar ko'mir qatlamining o'tkazuvchanligiga bog'liq. Absorbsiya jarayonida ko'mir avval so'rilib chiqadi metan va metanni qayta tiklash mumkin (kengaytirilgan ko'mir qatlamini metanni qayta tiklash ). Metanni sotish narxining bir qismini qoplash uchun ishlatilishi mumkin CO
2
saqlash. Natijada paydo bo'lgan metanni yoqish, asl nusxani sekvestratsiya qilishning ba'zi foydalarini bekor qiladi CO
2
.

Tuzli tuzilmalar tarkibida yuqori darajada minerallashgan sho'rlar mavjud va shu paytgacha odamlar uchun hech qanday foyda keltirmaydi. Kimyoviy chiqindilarni saqlash uchun sho'r suvli qatlamlardan bir necha hollarda foydalanilgan. Sho'r suv qatlamlarining asosiy afzalligi ularning katta hajmdagi saqlash hajmi va ularning tez-tez uchrab turishi hisoblanadi. Sho'rlangan qatlamlarning katta kamchiligi shundaki, ular haqida, ayniqsa, neft konlari bilan taqqoslaganda nisbatan kam ma'lumotga ega. Saqlash narxini maqbul ushlab turish uchun geofizik tadqiqotlar cheklangan bo'lishi mumkin, natijada suv qatlami tuzilmasiga nisbatan katta noaniqlik yuzaga keladi. Neft konlari yoki ko'mir qatlamlarida saqlashdan farqli o'laroq, hech qanday yon mahsulot saqlash narxini qoplamaydi. Tuzoq mexanizmlari masalan, konstruktiv ushlash, qoldiq ushlash, eruvchanlik va minerallarni ushlab qolish kabi harakatsiz bo'lishi mumkin CO
2
er osti va oqish xavfini kamaytiradi.[41]

Neftni qayta tiklashni yaxshilandi

Karbonat angidrid tez-tez an neft koni sifatida yaxshilangan neftni qayta tiklash texnika,[42] ammo yog 'yoqilganda karbonat angidrid ajralib chiqishi sababli,[43] bu uglerod neytral jarayoni emas.[44]

Karbonat angidridni buzadigan suv o'tlari yoki bakteriyalar

Geokimyoviy in'ektsiya uchun alternativa karbonat angidridni karbonat angidridni buzishi mumkin bo'lgan suv o'tlari yoki bakteriyalar bo'lgan idishlarda jismoniy saqlashdir. Oxir oqibat metabolizmga uchraydigan bakteriyani karbonat angidriddan foydalanish ideal bo'ladi Clostridium thermocellum Bunday nazariy jihatdan CO
2
saqlash idishlari.[45] Ushbu bakteriyalardan foydalanish bunday nazariy karbonat angidrid saqlanadigan idishlarning ortiqcha bosimini oldini oladi.[46]

Minerallarni saqlash

Ushbu jarayonda, CO
2
ekzotermik mavjud bo'lgan metall oksidlari bilan reaksiyaga kirishadi, bu esa o'z navbatida barqaror karbonatlar hosil qiladi (masalan. kaltsit, magnezit ). Ushbu jarayon tabiiy ravishda ko'p yillar davomida sodir bo'ladi va ko'p miqdordagi sirt uchun javobgardir ohaktosh. Foydalanish g'oyasi olivin geokimyogar Olaf Schuiling tomonidan targ'ib qilingan.[47] Reaksiya tezligini tezroq qilish mumkin, masalan, a bilan katalizator[48] yoki yuqori haroratda va / yoki bosimda reaksiyaga kirishish yoki minerallarni oldindan qayta ishlash orqali, ammo bu usul qo'shimcha energiya talab qilishi mumkin. The IPCC minerallar omboridan foydalangan holda CCS bilan jihozlangan elektr stantsiyasining CCSsiz elektr stantsiyasiga qaraganda 60-180% ko'proq energiya talab etilishini taxmin qilmoqda.[6]

Avstraliyada Nyukaslda joylashgan dunyodagi birinchi tajriba zavodi loyihasida miqyosda mineral karbonatlanish iqtisodiyoti sinovdan o'tkazilmoqda. Minerallarni faollashtirish va reaksiya qilishning yangi usullari GreenMag Group va Nyukasl universiteti va tomonidan moliyalashtiriladi Yangi Janubiy Uels va Avstraliya hukumatlari 2013 yilgacha faoliyat yuritishi kerak.[49]

2009 yilda olimlar 6000 kvadrat mil (16000 km) xarita tuzganligi haqida xabar berilgan edi2) AQShdagi 500 yillik karbonat angidrid chiqindilarini saqlash uchun ishlatilishi mumkin bo'lgan Qo'shma Shtatlardagi tog 'jinslari.[50] AQShda minerallar sekvestratsiyasi bo'yicha tadqiqot:

Tabiiy tarkibida mavjud bo'lgan Mg va Ca tarkibidagi minerallar bilan reaksiyaga kirishib, uglerodni ajratib olish CO
2
karbonat hosil qilish juda ko'p noyob afzalliklarga ega. Notabl [e] ning aksariyati shundaki, karbonatlarning energiya darajasi pastroq CO
2
shuning uchun mineral karbonatlanish termodinamik jihatdan qulay va tabiiy ravishda sodir bo'ladi (masalan, geologik vaqt oralig'ida jinslarning ob-havosi). Ikkinchidan, magniy asosidagi minerallar kabi xom ashyo juda ko'p. Nihoyat, ishlab chiqarilgan karbonatlar shubhasiz barqaror va shu bilan qayta ajralib chiqadi CO
2
atmosferaga chiqish muammo emas. Biroq, odatdagi karbonatlanish yo'llari atrof-muhit harorati va bosimi ostida sekin bo'ladi. Ushbu sa'y-harakatlar bilan hal qilinadigan muhim muammo - foydali qazilmalarni ajratib olishni maqbul iqtisodiyot sharoitida amalga oshirishga imkon beradigan sanoat va ekologik jihatdan foydali karbonlashtirish yo'lini aniqlash.[51]

Quyidagi jadvalda asosiy metall oksidlari keltirilgan Yer qobig'i. Nazariy jihatdan ushbu mineral massaning 22% gacha hosil bo'lishi mumkin karbonatlar.

Tuproq oksidiYer po'stining ulushiKarbonatEntalpiya o'zgarishi (kJ / mol)
SiO259.71
Al2O315.41
CaO4.90CaCO3−179
MgO4.36MgCO3−118
Na2O3.55Na2CO3−322
FeO3.52FeCO3−85
K2O2.80K2CO3−393.5
Fe2O32.63FeCO3112
21.76Barcha karbonatlar

Ultramafik ma'dan qoldiqlari - bu tog'-kon sanoati sohasida zararli gaz gazlari chiqindilarini kamaytirish uchun sun'iy uglerodli chig'anoq vazifasini o'tashi mumkin bo'lgan mayda donali metall oksidlarining manbai.[52] Passivni tezlashtirish CO
2
mineral karbonatlash orqali sekvestrga minerallarning erishi va karbonat yog'inlarini kuchaytiradigan mikrob jarayonlari orqali erishish mumkin.[53][54][55]

Energiya talablari

Agar elektr energiyasini ishlab chiqarishda uglerod sekvestratsiyasi ishlatilsa, elektr energiyasining tannarxiga taxminan 0,18 dollar / kVt soat qo'shiladi va uni qayta tiklanadigan quvvatga nisbatan rentabellik va raqobatbardosh ustunlikka ega emas.[56]

CCS loyihalari namunasi

2017 yil sentyabr oyidan boshlab Global CCS Institute o'zining 2017 yilgi Global Status of CCS hisobotida 37 yirik CCS ob'ektlarini aniqladi, bu 2016 yilgi CCS Global Status hisobotidan buyon bitta loyihaning pasayishi. Ushbu loyihaning 21 tasi foydalanishda yoki qurilishda 30 million tonnadan ziyod CO hosil qiladi2 yiliga. Eng dolzarb ma'lumotni Global CCS Instituti veb-saytidagi Katta miqyosdagi CCS imkoniyatlarini ko'ring.[57] Evropa Ittifoqining loyihalari haqida ma'lumot olish uchun Zero Emission Platform veb-saytiga qarang.[58]

Mamlakatlar bo'yicha

Jazoir

Saloh CO-da2 in'ektsiya

Salohda CO bilan to'liq ishlaydigan quruqlikdagi gaz koni edi2 in'ektsiya. CO2 ishlab chiqarilgan gazdan ajratilib, 1,900 m chuqurlikda Krechba geologik qatlamiga qayta kiritildi.[59] 2004 yildan beri taxminan 3,8 Mt CO2 paytida qo'lga olingan tabiiy gaz qazib olish va saqlash. Inyeksiya 2011 yil iyun oyida plomba yaxlitligi, singan joylar va kaproka singib ketishi va CO ning harakatlanishi bilan bog'liq muammolar tufayli to'xtatilgan edi.2 Krechba uglevodorod ijarasi tashqarisida. Ushbu loyiha Monitoring, Modellashtirish va Tekshirish (MMV) yondashuvlaridan foydalanishda kashshofligi bilan ajralib turadi.

NET quvvat mexanizmi. La Porte, Tx

Avstraliya

Federal resurslar va energetika vaziri Martin Fergyuson 2008 yil aprel oyida janubiy yarim sharda birinchi geosekestratsiya loyihasini ochdi. Namoyish zavodi Janubiy G'arbiy Viktoriya shtatidagi Nirranda janubiga yaqin joylashgan. (35 ° 19′S 149 ° 08′E / 35.31 ° S 149.14 ° E / -35.31; 149.14) Zavod CO2CRC Limited kompaniyasiga tegishli. CO2CRC bu hukumat va sanoat tomonidan qo'llab-quvvatlanadigan notijorat tadqiqot hamkorligi. Loyiha natijasida tabiiy gaz omboridan quduq orqali chiqarilgan, siqilgan va yangi quduqqa 2,25 km masofada o'tkazilgan karbonat angidridga boy 80000 tonnadan ziyod gaz saqlanib, kuzatilgan. U erda gaz sathidan taxminan ikki kilometr pastdagi tabiiy gaz zaxirasiga quyilgan.[60][61] Loyiha ikkinchi bosqichga o'tdi va karbonat angidridning er sathidan 1500 metr pastdagi sho'rlangan qatlamda tutilishini o'rganmoqda. Otway loyihasi - bu har tomonlama monitoring va tekshirishga yo'naltirilgan tadqiqot va namoyish loyihasidir.[62]

Ushbu o'simlik qo'lga olishni taklif qilmaydi CO
2
ko'mir bilan ishlaydigan elektr energiyasini ishlab chiqarishdan, ammo Viktoriya elektr stantsiyasidagi ikkita CO2CRC namoyish loyihasi va tadqiqot gazlashtiruvchisi ko'mir yoqilishidan hal qiluvchi, membrana va adsorbent olish texnologiyasini namoyish etmoqda.[63] Hozirda faqat kichik hajmdagi loyihalar saqlanmoqda CO
2
ko'mir yoqilganda elektr energiyasini ishlab chiqarish uchun yoqilgan ko'mirni yoqish mahsulotlaridan tozalangan elektr stantsiyalari.[64] Hozirda GreenMag Group va Nyukasl universiteti va tomonidan moliyalashtiriladi Yangi Janubiy Uels va Avstraliya hukumatlari va sanoati 2013 yilgacha ishlaydigan mineral karbonatlash tajriba zavodiga ega bo'lishni niyat qilmoqda.[49]

Gorgon karbonat angidridni in'ektsiya qilish loyihasi

The Gorgon karbonat angidridni in'ektsiya qilish loyihasi dunyodagi eng yirik tabiiy gaz loyihasi bo'lgan Gorgon loyihasining bir qismidir. G'arbiy Avstraliyaning Barrou orolida joylashgan Gorgon loyihasi suyultirilgan tabiiy gaz (LNG) zavodi, maishiy gaz zavodi va karbonat angidridni quyish loyihasini o'z ichiga oladi.

Dastlabki karbonat angidrid in'ektsiyasini 2017 yil oxiriga qadar amalga oshirish rejalashtirilgan edi. Gorgon karbonat angidridni in'ektsiya qilish loyihasi dunyodagi eng yirik loyihaga aylanadi CO
2
4 million tonnagacha saqlash imkoniyatiga ega bo'lgan in'ektsiya zavodi CO
2
yiliga - loyiha davomida taxminan 120 million tonna va Gorgon loyihasi chiqindilarining 40 foizi.[iqtibos kerak ]

Loyiha 2017 yil fevral oyida gaz qazib olishni boshladi, ammo endi uglerodni tutib olish va saqlash 2019 yilning birinchi yarmiga qadar davom etishi kutilmoqda (2020 yil sentyabr oyiga qadar mustaqil ravishda tasdiqlanmagan), bu esa yana besh million tonna talab qiladi CO
2
ozod qilinishi kerak, chunki:

Kecha shtat hukumatiga yuborilgan "Chevron" hisobotida aytilishicha, bu yil boshlang'ich tekshiruvlarida vannalar, zanglashishi mumkin bo'lgan vanalar va LNG zavodidan in'ektsiya quduqlariga boradigan quvurda ortiqcha suv oqishi aniqlanib, ular quvurning korroziyasini keltirib chiqarishi mumkin.[65]

Kanada

Kanada hukumatlari so'nggi o'n yil ichida CCSning turli loyihalarini moliyalashtirish uchun 1,8 milliard dollar ajratdilar.[qachon? ] Moliyalashtirish uchun mas'ul bo'lgan asosiy hukumatlar va dasturlar federal hukumatning Toza energiya jamg'armasi, Alberta-ning uglerodni saqlash va saqlash fondi va Saskaçevan, Britaniya Kolumbiyasi va Yangi Shotlandiya hukumatlaridir. Kanada, shuningdek, Obama ma'muriyati tomonidan 2009 yilda boshlangan AQSh-Kanada toza energiya bo'yicha muloqot orqali AQSh bilan yaqin hamkorlik qiladi.[66][67]

Alberta

Alberta 2013/2014 yillarda 170 million dollar ajratdi va 15 yil davomida jami 1,3 milliard dollar - CO ning kamayishiga yordam beradigan ikkita yirik CCS loyihalarini moliyalashtirish uchun.2 neft qumlarini qayta ishlashdan chiqadigan chiqindilar.

The Alberta karbon magistral liniyasi Enhance Energy tomonidan kashf etilgan loyiha (ACTL) 240 kilometrlik quvur liniyasidan iborat bo'lib, u Alberta shahridagi turli manbalardan karbonat angidrid gazini yig'adi va uni ishlatish uchun Klayv neft konlariga etkazib beradi. EOR (yaxshilangan yog 'olish) va doimiy saqlash. 1,2 milliard CAN dollarlik ushbu loyiha dastlab Qizil suvli o'g'itlar zavodidan karbonat angidrid gazini yig'adi Sturgeon Qayta ishlash zavodi. ACTL bo'yicha prognozlar uni dunyodagi eng katta uglerodni tortib olish va sekvestratsiya qilish bo'yicha eng yirik loyihaga aylantiradi, uning taxminiy to'liq tutish qobiliyati 14,6 Mtpa ni tashkil qiladi. ACTL uchun qurilish rejalari so'nggi bosqichida va uni saqlash va saqlash 2019 yilda boshlanadi.[68][69][70]

Quest uglerodni saqlash va saqlash loyihasi Shell tomonidan foydalanish uchun ishlab chiqilgan Athabasca neft qumlari loyihasi. Bu dunyodagi birinchi tijorat miqyosidagi CCS loyihasi sifatida keltirilgan.[71] Quest loyihasi uchun qurilish 2012 yilda boshlangan va 2015 yilda tugagan. Qo'lga olish qurilmasi joylashgan Scotford Upgrader vodorod ishlab chiqariladigan Kanadaning Alberta shahrida yangilash bitum yog 'qumlari sintetik xom neftga aylanadi. Vodorodni ishlab chiqaradigan bug 'metan agregatlari ham CO chiqaradi2 yon mahsulot sifatida. Qo'lga olish birligi CO ni ushlaydi2 aminni yutish texnologiyasidan foydalangan holda bug 'metan birligidan va olingan CO2 keyinchalik Fort Saskaçevanga olib boriladi va u erda doimiy sekvestratsiya qilish uchun Bazal Kembriya Qumlari deb nomlangan g'ovakli tosh shakllanishiga quyiladi. 2015 yilda ish boshlaganidan beri Quest loyihasi 3 Mt CO saqlagan2 va ishlaydigan bo'lsa, 1 Mtpa-ni saqlashni davom ettiradi.[72][73]

Britaniya Kolumbiyasi

Britaniya Kolumbiyasi uglerod chiqindilarini kamaytirish borasida katta yutuqlarga erishmoqda. Viloyat Shimoliy Amerikadagi birinchi yirik ko'lamni amalga oshirdi uglerod solig'i 2008 yilda yangilangan uglerod solig'i bir tonna karbonat angidrid chiqindilari uchun narxni $ 35 qilib o'rnatdi. Ushbu soliq 2021 yilda 50 dollarga etguniga qadar har yili 5 dollarga ko'payadi. Uglerodga solinadigan soliq uglerodni tutib olish va sekvestratsiya qilish loyihalarini kelajak uchun moliyaviy jihatdan yanada qulayroq qiladi.[74]

Saskaçevan
Chegaraviy to'g'on elektr stantsiyasining 3-loyihasi

Chegaradagi to'g'on elektr stantsiyasi, SaskPower-ga tegishli bo'lib, dastlab 1959 yilda foydalanishga topshirilgan ko'mir yoqilg'i quyish stantsiyasidir. 2010 yilda SaskPower elektr jihozlarini qayta jihozlashni o'z zimmasiga oldi. linyit - COni kamaytirish uchun uglerodni tortib olish moslamasi bilan ishlaydigan 3-birlik2 emissiya. Loyiha 2014 yilda tugallandi. Qayta jihozlash CO ni olish uchun yonishdan keyin aminni yutish texnologiyasidan foydalangan.2. Qo'lga kiritilgan CO2 Veybern maydonida EOR uchun foydalanish uchun Cenovus-ga sotilishi rejalashtirilgan edi. Har qanday CO2 EOR uchun ishlatilmaydigan Aquistore loyihasi tomonidan foydalanilishi rejalashtirilgan va chuqur sho'rlangan qatlamlarda saqlanadi. Ko'pgina asoratlar 3-bo'linmani va ushbu loyihani kutilganidek onlayn bo'lishiga to'sqinlik qildi, ammo 2017 yil avgust - 2018 yil avgust kunlari 3-bo'lim o'rtacha har kuni 65% onlayn rejimida edi. Faoliyat boshlanganidan beri "Chegara to'g'oni" loyihasi 1 Mt dan ortiq COni egallab oldi2 va 1 Mtpa sig'dira oladigan yorliqli sig'imga ega.[75][76] SaskPower boshqa bloklarni kuchaytirishni niyat qilmaydi, chunki ular hukumat tomonidan 2024 yilga qadar bekor qilinishi kerak. Chegara to'g'oni elektr stantsiyasidagi bitta jihozlangan qurilmaning kelajagi noaniq.[77]

Buyuk tekislikdagi yoqilg'i quyish zavodi va Veybern-Midale loyihasi

Egalik qiladigan Buyuk tekisliklar yoqilg'i quyish zavodi Dakota gazi, a ko'mirni gazlashtirish sintetik tabiiy gaz va ko'mirdan turli xil neft-kimyo mahsulotlarini ishlab chiqaradigan operatsiya. Zavod 1984 yildan beri ishlab kelmoqda, ammo uglerodni tutib olish va saqlash 2000 yilgacha boshlangan emas. 2000 yilda Dakota Gaz COni sotish uchun zavodni uglerod tutish moslamasi bilan jihozladi.2 CO dan foydalanishni niyat qilgan Cenovus va Apache Energy kompaniyalariga2 uchun yaxshilangan neftni qayta tiklash (EOR) Kanadadagi Ueybern va Mideyl maydonlarida. Midale maydonlariga 0,4 Mtpa, Veybern maydonlariga 2,4 Mtpa AOK qilinadi, umumiy 2,8 Mtpa quyish quvvati uchun. The Veybern-Midale karbonat angidrid loyihasi (yoki IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project), 2000-2011 yillarda o'tkazilgan xalqaro hamkorlikdagi ilmiy tadqiqot ham bu erda bo'lib o'tdi, ammo tadqiqot yakunlangandan keyin ham in'ektsiya davom etdi. 2000 yildan beri 30 Mt dan ortiq CO2 AOK qilingan va zavod ham, EOR loyihalari ham hanuzgacha ishlaydi.[78][79][80]

Uchuvchi loyihalar

Alberta sho'r suv qatlami loyihasi (ASAP), Husky modernizatori va etanol zavodi uchuvchisi, Heartland Area Redwater Project (HARP), Wabamun Area Sequestration Project (WASP) and Aquistore.[81][tekshirib bo'lmadi ]

Kanadaliklarning yana bir tashabbusi - bu Integrated CO2 Tarmoq (ICO)2N), Kanadada uglerodni ushlab turish va saqlashni rivojlantirish uchun asos yaratuvchi sanoat ishtirokchilari guruhi.[82] CCS bilan bog'liq boshqa Kanada tashkilotlariga CCS 101, Carbon Management Canada, IPAC CO kiradi2va Kanadaning toza kuchlari koalitsiyasi.[81]

Xitoy

Shimoliy Xitoyda juda ko'pligi tufayli, ko'mir mamlakat energiya iste'molining taxminan 60% ni tashkil qiladi.[83] CO ning ko'p qismi2 Xitoydagi chiqindilar ko'mir bilan ishlaydigan elektr stantsiyalaridan yoki ko'mirdan kimyoviy jarayonlarga (masalan, sintetik ammiak, metanol, o'g'it ishlab chiqarish, tabiiy gaz va CTL ).[84] Ga ko'ra IEA, Xitoyning 900 gigavatt quvvatga ega ko'mir yoqilg'isidan 385tasi karbonat angidridni saqlash uchun qulay joylarga yaqin.[85] Ushbu mos saqlash joylaridan foydalanish uchun (ularning aksariyati qulaydir) yaxshilangan neftni qayta tiklash ) va karbonat angidrid chiqindilarini kamaytirish bilan Xitoy bir nechta CCS loyihalarini ishlab chiqishni boshladi. Bunday uchta ob'ekt allaqachon ishga tushirilgan yoki qurilishning so'nggi bosqichida, ammo ushbu loyihalar CO ni jalb qiladi2 tabiiy gazni qayta ishlash yoki neft-kimyo ishlab chiqarishidan. Yana kamida sakkizta ob'ekt erta rejalashtirish va ishlab chiqishda, ularning aksariyati elektr stantsiyalaridan chiqadigan chiqindilarni ushlab turishga imkon beradi. CO dan qat'i nazar, ushbu CCS loyihalarining deyarli barchasi2 manbai, EOR uchun karbonat angidridni AOK qiling.[86]

CNPC Jilin neft koni

Xitoyning uglerodni tortib olish bo'yicha birinchi loyihasi Jilin neft koni yilda Songyuan, Jilin viloyati. 2009 yilda sinovdan o'tgan EOR loyihasi sifatida boshlangan,[87] ammo keyinchalik tijorat operatsiyasiga aylandi Xitoy milliy neft korporatsiyasi (CNPC), rivojlanishning yakuniy bosqichi 2018 yilda yakunlandi.[86] Karbonat angidrid manbai yaqin atrofdagi o'zgaruvchan gaz koni bo'lib, undan tabiiy gaz taxminan 22,5% CO2 qazib olinadi. Tabiiy gazni qayta ishlash zavodida ajratilgandan so'ng, karbonat angidrid gaz o'tkazgich orqali Jilinga etkaziladi va quyi o'tkazuvchanlik darajasidagi neft konida neftni qazib olishda 37% kuchaytirish uchun AOK qilinadi.[88] Tijorat quvvati bilan ushbu zavod hozirda 0,6 MtCO gaz quyadi2 yiliga va u butun umri davomida jami 1,1 million tonnadan ziyodni kiritdi.[86]

Sinopec Qilu Petrokimyoviy CCS loyihasi

The Sinopek Qilu Petrokimyo korporatsiyasi - bu hozirgi vaqtda uglerodni tortib olish qurilmasini ishlab chiqaradigan yirik energiya va kimyo kompaniyasi bo'lib, uning birinchi bosqichi 2019 yilda ishga tushiriladi. Zibo Siti, Shandun viloyati, bu erda ko'mir / koks gazlashtirishdan ko'p miqdordagi karbonat angidridni ishlab chiqaradigan o'g'it zavodi mavjud.[89] CO2 kriyojenik distillash bilan tutilishi kerak va quvur orqali yaqin atrofga etkaziladi Shengli neft koni yaxshilangan neftni qayta tiklash uchun.[90] Birinchi bosqichning qurilishi allaqachon boshlangan va qurib bo'lingandan so'ng u 0,4 MtCO tutadi va quyadi2 yiliga. Shengli neft koni, shuningdek Sinopecning Shengli elektr stantsiyasidan olingan karbonat angidrid gazini olish joyi bo'lishi kutilmoqda, garchi ushbu inshoot 2020 yilgacha ishga tushirilishi kutilmagan bo'lsa.[90]

Yanchang Integral CCS loyihasi

Yanchang Petroleum ning ikkita ko'mirdan kimyoviy zavodlarga uglerodni tortib olish uskunalarini ishlab chiqarmoqda Yulin Siti, Shensi viloyati.[91] Birinchi tortishish zavodi 50 000 tonna CO olish imkoniyatiga ega2 yiliga va 2012 yilda qurib bitkazilgan. Ikkinchi zavod qurilishi 2014 yilda boshlangan va 2020 yilda qurilishi kutilmoqda, quvvati yiliga 360 ming tonna.[84] Ushbu karbonat angidrid Xitoyning ko'mir, neft va gaz qazib chiqaruvchi eng yirik mintaqalaridan biri bo'lgan Ordos havzasiga bir qator past va o'ta past darajalarga etkaziladi. o'tkazuvchanlik neft omborlari. Ushbu sohada suv etishmasligi EOR uchun suv toshqinidan foydalanishni chekladi, shuning uchun AOK qilingan CO2 havzadan neft qazib olishni ko'paytirishni qo'llab-quvvatlaydi.[92]

Germaniya

Germaniyaning Schwarze Pumpe sanoat zonasi, shahardan janubda 4 kilometr (2,5 milya) Spremberg, dunyodagi birinchi namoyish CCS ko'mir zavodi, Schwarze Pumpe elektr stantsiyasi.[93] Mini tajriba zavodi an tomonidan boshqariladi Alstom - qurilgan oksidli yoqilg'i qozon va shuningdek, uni olib tashlash uchun chiqindi gazlarni tozalash vositasi bilan jihozlangan uchib ketadigan kul va oltingugurt dioksidi. Shved kompaniyasi Vattenfall AB 2008 yil 9 sentyabrda ish boshlagan ikki yillik loyihaga 70 million evro miqdorida sarmoya kiritdi. 30 ga teng bo'lgan elektr stantsiyasi megavatt, bu kelajakdagi keng ko'lamli elektr stantsiyalarining prototipi bo'lib xizmat qiladigan pilot loyihadir.[94][95] Kuniga 240 tonna CO
2
350 kilometr (220 milya) yuk tashiydi va u bo'sh gaz koniga quyiladi. Germaniya BUND guruhi buni "anjir bargi "Har bir tonna ko'mir uchun 3,6 tonna karbonat angidrid ishlab chiqariladi.[96] Schwarze Pumpe-da CCS dasturi 2014 yilda tugatib bo'lmaydigan xarajatlar va energiyadan foydalanish sababli tugagan.[97]

Nemis yordam dasturi RWE uchuvchi miqyosda ishlaydi CO
2
ko'mirni yoqib yuboradigan skrab Niederaußem elektr stantsiyasi bilan hamkorlikda qurilgan BASF (detarjan yetkazib beruvchi) va Linde muhandislik.[98]

Germaniyaning Yanshvalde shahrida,[99] 650 termal MVt (250 elektr MVt atrofida) quvvatga ega bo'lgan Oxyfuel qozonxonasining rejasi ishlab chiqilgan, bu Vattenfallning qurilayotgan 30 MVt tajriba zavodidan qariyb 20 baravar ko'p va bugungi kunda eng katta 0,5 MVt bo'lgan Oxyfuel sinov uskunalari bilan taqqoslanadi. Yannshwalde-da yonishdan keyin tortib olish texnologiyasi namoyish etiladi.[100]

Gollandiya

Gollandiyada ishlab chiqarilgan mis kompleksi tomonidan elektrokataliz yordam beradi karbonat angidridni kamaytirish ga oksalat kislotasi.[101]

Norvegiya

Norvegiyada CO
2
Texnologiya markazi (TCM) at Mongstad 2009 yilda qurila boshlangan va 2012 yilda qurib bitkazilgan. Ikkala manbadan chiqadigan chiqindi suvlarini ushlab turuvchi ikkita texnologik zavodni (biri rivojlangan amin va biri sovutilgan ammiak) o'z ichiga oladi. Bunga gaz bilan ishlaydigan elektr stantsiyasi va qayta ishlash zavodining kraker fuegaslari kiradi (ko'mir yoqadigan elektr stantsiyasining fuegaslariga o'xshash).

Bunga qo'shimcha ravishda, Mongstad saytida keng ko'lamli CCS namoyish zavodi bo'lishi rejalashtirilgan edi. Loyiha 2014, 2018 yillarga, keyin esa noma'lum muddatga qoldirildi.[102] Loyihaning qiymati 985 million AQSh dollarigacha ko'tarildi.[103]Keyin 2011 yil oktyabr oyida Aker Solutions kompaniyasi Aker Clean Carbon-ga sarmoyasini bekor qildi va uglerodni ajratish bozorini "o'lik" deb e'lon qildi.[104]

2013 yil 1 oktyabrda Norvegiya so'radi Gassnova not to sign any contracts for Carbon capture and storage outside Mongstad.[105]

In 2015 Norway was reviewing feasibility studies and hoping to have a full-scale carbon capture demonstration project by 2020.[106]

In 2020, it then announced "Longship" ("Langskip" in Norwegian). This 2,7 billion CCS project will capture and store the carbon emissions of Norcem's cement factory in Brevik. Also, it plans to fund Fortum Oslo's Varme waste incineration facility. Finally, it will fund the transport and storage project "Northern Lights", a joint project between Equinor, Shell and Total. This latter project will transport liquid CO2 from capture facilities to a terminal at Øygarden in Vestland County. From there, CO2 will be pumped through pipelines to a reservoir beneath the seabed.[107][108][109][110]

Sleipner CO2 Qarshi

Sleipner is a fully operational offshore gas field with CO2 injection initiated in 1996. CO2 is separated from produced gas and reinjected in the Utsira saline aquifer (800–1000 m below ocean floor) above the hydrocarbon reservoir zones.[111] This aquifer extends much further north from the Sleipner facility at its southern extreme. The large size of the reservoir accounts for why 600 billion tonnes of CO2 are expected to be stored, long after the Sleipner natural gas project tugadi. The Sleipner facility is the first project to inject its captured CO2 into a geological feature for the purpose of storage rather than economically compromising EOR.

Birlashgan Arab Amirliklari

Abu-Dabi

After the success of their pilot plant operation in November 2011, the Abu-Dabi milliy neft kompaniyasi va Abu Dabi Future Energy Company moved to create the first commercial CCS facility in the iron and steel industry.[112] CO2, a byproduct of the iron making process, is transported via a 50 km pipeline to Abu-Dabi milliy neft kompaniyasi oil reserves for EOR. The total carbon capture capacity of the facility is 800,000 tonnes per year.

Birlashgan Qirollik

2020 yil byudjet allocated 800 million pounds to attempt to create CCS clusters by 2030, to capture carbon dioxide from heavy industry[113] and a gas-fired power station and store it under the Shimoliy dengiz.[114] The Crown mulk is responsible for storage rights on the UK continental shelf and it has facilitated work on offshore carbon dioxide storage technical and commercial issues.[115]

Qo'shma Shtatlar

2009 yil oktyabr oyida AQSh Energetika vazirligi awarded grants to twelve Industrial Carbon Capture and Storage (ICCS) projects to conduct a Phase 1 feasibility study.[116] The DOE plans to select 3 to 4 of those projects to proceed into Phase 2, design and construction, with operational startup to occur by 2015. Battelle Memorial instituti, Pacific Northwest Division, Boise, Inc., va Fluor korporatsiyasi are studying a CCS system for capture and storage of CO
2
emissions associated with the pulp and paper production industry. The site of the study is the Boise White Paper L.L.C. paper mill located near the township of Wallula in Southeastern Washington State. The plant generates approximately 1.2 MMT of CO
2
annually from a set of three recovery boilers that are mainly fired with qora likyor, a recycled byproduct formed during the pulping of wood for paper-making. Fluor Corporation will design a customized version of their Econamine Plus carbon capture technology. The Fluor system also will be designed to remove residual quantities of remnant air pollutants from stack gases as part of the CO
2
capture process. Battelle is leading preparation of an Environmental Information Volume (EIV) for the entire project, including geologic storage of the captured CO
2
in deep flood basalt formations that exist in the greater region. The EIV will describe the necessary site characterization work, sequestration system infrastructure, and monitoring program to support permanent sequestration of the CO
2
captured at the plant.[yangilanishga muhtoj ]

In addition to individual carbon capture and sequestration projects, there are a number of United States programs designed to research, develop, and deploy CCS technologies on a broad scale. Ular orasida Milliy energiya texnologiyalari laboratoriyasi 's (NETL) Carbon Sequestration Program, regional carbon sequestration partnerships and the Uglerod sekvestratsiyasi bo'yicha etakchilar forumi (CSLF).[117][118]

2020 yil sentyabr oyida U.S. Department Of Energy awarded $72 million in federal funding to support the development and advancement of carbon capture technologies under two funding opportunity announcements (FOAs).[119] Under this cost-shared research and development, DOE awarded $51 million to nine new projects for coal and natural gas power and industrial sources, labeled Carbon Capture Research and Development (R&D): Engineering Scale Testing from Coal - and Natural Gas-Based Flue Gas and Initial Engineering Design for Industrial Sources. A total of $21 million was also awarded to 18 projects for technologies that remove carbon dioxide from the atmosphere, labeled Novel Research and Development for the Direct Capture of Carbon Dioxide from the Atmosphere.

The nine projects selected for Carbon Capture Research and Development (R&D): Engineering Scale Testing from Coal - and Natural Gas-Based Flue Gas and Initial Engineering Design for Industrial Sources aim to design initial engineering studies to develop technologies to capture CO2 generated as a byproduct of manufacturing at industrial sites. The projects selected are as follows:

  1. Enabling Production of Low Carbon Emissions Steel Through CO2 Capture from Blast Furnace Gases — ArcelorMittal USA[120]
  2. LH CO2MENT Colorado Project — Electricore[121]
  3. Engineering Design of a Polaris Membrane CO2 Capture System at a Cement Plant — Membrane Technology and Research (MTR) Inc.[122]
  4. Engineering Design of a Linde-BASF Advanced Post-Combustion CO2 Capture Technology at a Linde Steam Methane Reforming H2 Plant — Taksim[123]
  5. Initial Engineering and Design for CO2 Capture from Ethanol Facilities — University of North Dakota Energy & Environmental Research Center[124]
  6. Chevron Natural Gas Carbon Capture Technology Testing Project — Chevron USA, Inc.[125]
  7. Engineering-scale Demonstration of Transformational Solvent on NGCC Flue Gas — ION Clean Energy Inc.[126]
  8. Engineering-Scale Test of a Water-Lean Solvent for Post-Combustion Capture — Electric Power Research Institute Inc.[127]
  9. Engineering Scale Design and Testing of Transformational Membrane Technology for CO2 Capture — Gas Technology Institute (GTI)[128]

The eighteen projects selected for Novel Research and Development for the Direct Capture of Carbon Dioxide from the Atmosphere will focus on the development of new materials for use in direct air capture and will also complete field testing. The projects selected are as follows:

  1. Direct Air Capture Using Novel Structured Adsorbents — Electricore[129]
  2. Advanced Integrated Reticular Sorbent-Coated System to Capture CO2 from the Atmosphere — GE tadqiqotlari[130]
  3. MIL-101(Cr)-Amine Sorbents Evaluation Under Realistic Direct Air Capture Conditions — Georgia Tech Research Corporation[131]
  4. Demonstration of a Continuous-Motion Direct Air Capture System — Global Thermostat Operations, LLC[132]
  5. Experimental Demonstration of Alkalinity Concentration Swing for Direct Air Capture of Carbon Dioxide — Harvard University[133]
  6. High-Performance, Hybrid Polymer Membrane for Carbon Dioxide Separation from Ambient Air — InnoSense, LLC[134]
  7. Transformational Sorbent Materials for a Substantial Reduction in the Energy Requirement for Direct Air Capture of CO2 — InnoSepra, LLC[135]
  8. A Combined Water and CO2 Direct Air Capture System — IWVC, LLC[136]
  9. TRAPS: Tunable, Rapid-uptake, AminoPolymer Aerogel Sorbent for Direct Air Capture of CO2 — Palo Alto tadqiqot markazi[137]
  10. Direct Air Capture Using Trapped Small Amines in Hierarchical Nanoporous Capsules on Porous Electrospun Hollow Fibers — Rensselaer politexnika instituti[138]
  11. Development of Advanced Solid Sorbents for Direct Air Capture — RTI International[139]
  12. Direct Air Capture Recovery of Energy for CCUS Partnership (DAC RECO2UP) — Southern States Energy Board[140]
  13. Membrane Adsorbents Comprising Self-Assembled Inorganic Nanocages (SINCs) for Super-fast Direct Air Capture Enabled by Passive Cooling — SUNY[141]
  14. Low Regeneration Temperature Sorbents for Direct Air Capture of CO2 — Susteon Inc.[142]
  15. Next Generation Fiber-Encapsulated Nanoscale Hybrid Materials for Direct Air Capture with Selective Water Rejection — The Trustees of Columbia University in the City of New York[143]
  16. Gradient Amine Sorbents for Low Vacuum Swing CO2 Capture at Ambient Temperature — Akron universiteti[144]
  17. Electrochemically-Driven Carbon Dioxide Separation — Delaver universiteti[145]
  18. Development of Novel Materials for Direct Air Capture of CO2 — University of Kentucky Research Foundation[146]
SECARB

In October 2007, the Bureau of Economic Geology at the Ostindagi Texas universiteti received a 10-year, $38 million subcontract to conduct the first intensively monitored long-term project in the United States studying the feasibility of injecting a large volume of CO
2
for underground storage.[147] The project is a research program of the Southeast Regional Carbon Sequestration Partnership (SECARB), funded by the Milliy energiya texnologiyalari laboratoriyasi ning AQSh Energetika vazirligi (DOE).

The SECARB partnership will demonstrate CO
2
injection rate and storage capacity in the Tuscaloosa-Woodbine geologic system that stretches from Texas to Florida. The region has the potential to store more than 200 billion tons[noaniq ] ning CO
2
from major point sources in the region, equal to about 33 years of overall United States emissions at present rates. Beginning in fall 2007, the project will inject CO
2
at the rate of one million tons[noaniq ] per year, for up to 1.5 years, into brine up to 10,000 feet (3,000 m) below the land surface near the Cranfield oil field, which lays about 15 miles (24 km) east of Natchez, Missisipi. Experimental equipment will measure the ability of the subsurface to accept and retain CO
2
.

The $1.4 billion FutureGen power generation and carbon sequestration demonstration project, announced in 2003 by President Jorj V.Bush, was cancelled in 2015, due to delays and inability to raise required private funding.

Kemper Project

The Kemper Project, is a natural gas-fired power plant under construction in Kemper okrugi (Missisipi), which was originally planned as a coal-fired plant. Missisipi kuchi, ning sho'ba korxonasi Janubiy kompaniya, began construction of the plant in 2010.[148] The project was considered central to President Obama's Climate Plan.[149] Had it become operational as a coal plant, the Kemper Project would have been a first-of-its-kind electricity plant to employ gasification and carbon capture technologies at this scale. The emission target was to reduce CO
2
to the same level an equivalent natural gas plant would produce.[150] However, in June 2017 the proponents – Southern Company and Mississippi Power – announced that they would only burn natural gas at the plant at this time.[151]

The plant experienced project management problems.[149] Construction was delayed and the scheduled opening was pushed back over two years, at a cost of $6.6 billion—three times original cost estimate.[152][153] A Syerra klubi analysis, Kemper is the most expensive power plant ever built for the watts of electricity it will generate.[154]

Terrell Natural Gas Processing Plant

Opening in 1972, the Terrell plant in Texas, United States is the oldest operating industrial CCS project as of 2017. CO2 is captured during gas processing and transported primarily via the Val Verde pipeline where it is eventually injected at Sharon Ridge oil field and other secondary sinks for use in yaxshilangan neftni qayta tiklash.[155] The facility captures an average of somewhere between 0.4 and 0.5 million tons of CO2 yiliga.[156]

Enid Fertilizer

Beginning its operation in 1982, the facility owned by the Koch Nitrogen company is the second oldest large scale CCS facility still in operation.[86] CO2 that is captured is a high purity byproduct of nitrogen fertilizer production. The process is made economical by transporting the CO2 to oil fields for EOR.

Shute Creek Gas Processing Facility

Around 7 million tonnes per annum of carbon dioxide are recovered from ExxonMobil 's Shute Creek gas processing plant in Vayoming, and transported by pipeline to various oil fields for enhanced oil recovery. This project has been operational since 1986 and has the second largest CO2 capture capacity of any CCS facility in the world.[86]

Petra Nova

The Petra Nova project is a billion dollar endeavor taken upon by NRG Energy va JX Nippon to partially retrofit their jointly owned W.A Parish coal-fired power plant with post-combustion carbon capture. The plant, which is located in Thompsons, Texas (just outside of Houston), entered commercial service in 1977, and carbon capture began operation on 10 January 2017. The WA Parish unit 8 generates 240 MW and 90% of the CO2 (or 1.4 million tonnes) is captured per year.[157] The carbon dioxide captured (99% purity) from the power plant is compressed and piped about 82 miles to West Ranch Oil Field, Texas, where it will be used for enhanced oil recovery. The field has a capacity of 60 million barrels of oil and has increased its production from 300 barrels per day to 4000 barrels daily.[158][157] This project is expected to run for at least another 20 years.[157]

Illinois Industrial

The Illinois Industrial Carbon Capture and Storage project is one of five currently operational facilities dedicated to geological CO2 saqlash. The project received a 171 million dollar investment from the QILING and over 66 million dollars from the private sector. CO2 is a byproduct of the fermentation process of corn ethanol production and is stored 7000 feet underground in the Mt. Simon Sandstone saline aquifer. The facility began its sequestration in April 2017 and has a carbon capture capacity of 1 Mt/a.[159][160][161]

NET Power Demonstration Facility

The NET Power Demonstration Facility bu oksidli yonish natural gas power plant that operates by the Allam power cycle. Due to its unique design, the plant is able to reduce its air emissions to zero by producing a near pure stream of CO2 as waste that can be shipped off for storage or utilization.[162] The plant first fired in May 2018.[163]

Century Plant

Occidental Petroleum, bilan birga Sandridge Energy, is operating a West Texas hydrocarbon gas processing plant and related pipeline infrastructure that provides CO2 foydalanish uchun EOR. With a total CO2 capture capacity of 8.4 Mt/a, the Century plant is the largest single industrial source CO2 capture facility in the world.[164]

Developing projects

ANICA - Advanced Indirectly Heated Carbonate Looping Process

The ANICA Project is focused on developing economically feasible carbon capture technology for lime and cement plants, which are responsible for 5% of the total anthropogenic carbon dioxide emissions.[165] Since the year 2019, a consortium of 12 partners from Germaniya, Birlashgan Qirollik va Gretsiya[166] has been working on the developing novel integration concepts of the state-of-the-art indirectly heated carbonate lopping (IHCaL) process in cement and lime production. The project aims at lowering the energy penalty and CO2 avoidance costs for CO2 qo'lga olish dan Laym va tsement o'simliklar. Within 36 months, the project will bring the IHCaL technology to a high level of technical maturity by carrying out long-term pilot tests in industry-relevant environments and deploying accurate 1D and 3D simulations.

Port of Rotterdam CCUS Backbone Initiative

Expected in 2021, the Port of Rotterdam CCUS Backbone Initiative aims to implement a "backbone" of shared CCS infrastructure for use by several businesses located around the Rotterdam porti yilda Rotterdam, Gollandiya. The project, overseen by the Port of Rotterdam, natural gas company Gasuni, and the EBN, looks to capture and sequester 2 million tons of carbon dioxide per year starting in 2020 and increase this number in future years.[167] Although dependent on the participation of companies, the goal of this project is to greatly reduce the carbon footprint of the industrial sector of the Port of Rotterdam and establish a successful CCS infrastructure in the Netherlands following the recently canceled ROAD project. Carbon dioxide captured from local chemical plants and refineries will both be sequestered in the North Sea seabed. The possibility of a CCU initiative has also been considered, in which the captured carbon dioxide will be sold to horticultural firms, who will use it to speed up plant growth, as well as other industrial users.[167]

Alternative carbon capture methods

Although the majority of industrial carbon capture is done using post-combustion capture, several notable projects exist that utilize a variety of alternative capture methods. Several smaller-scale pilot and demonstration plants have been constructed for research and testing using these methods, and a handful of proposed projects are in early development on an industrial scale. Some of the most notable alternative carbon capture projects include:

Climeworks Direct Air Capture Plant and CarbFix2 Project

Climeworks opened the first commercial direct air capture o'simlik Syurix, Shveytsariya. Their process involves capturing carbon dioxide directly from ambient air using a patented filter, isolating the captured carbon dioxide at high heat, and finally transporting it to a nearby issiqxona kabi o'g'it. The plant is built near a waste recovery facility that uses its excess heat to power the Climeworks plant.[168]

Climeworks is also working with Reykyavik energetikasi on the CarbFix2 project with funding from the European Union. This project, located in Hellisheidi, Iceland, uses direct air capture technology to geologically store carbon dioxide by operating in conjunction with a large geothermal power plant. Once carbon dioxide is captured using Climeworks' filters, it is heated using heat from the geothermal plant and bound to water. The geothermal plant then pumps the carbonated water into rock formations underground where the carbon dioxide reacts with basaltic bedrock va shakllari carbonite minerals.[169]

Duke Energy East Bend Station

Researchers at the Center for Applied Energy Research of the Kentukki universiteti hozirda[qachon? ] developing the algae-mediated conversion of coal-fired power plant flue gas to drop-in hydrocarbon fuels.[170] Through their work, these researchers have proven that the carbon dioxide within chiqindi gaz dan ko'mir bilan ishlaydigan elektr stantsiyalari can be captured using algae, which can be subsequently harvested and utilized, e.g. as a feedstock for the production of drop-in hydrocarbon fuels.[171]

OPEN100

The OPEN100 project, launched in 2020 by The Energy Impact Center (EIC), is the world’s first open-source blueprint for nuclear power plant deployment.[172] The Energy Impact Center and OPEN100 aim to reverse climate change by 2040 and believe that nuclear power is the only energy source adequate enough to power carbon capture and sequestration without the compromise of releasing any new CO2 into the atmosphere in the process, thus solving for global warming.[173]

This project intends to bring together researchers, designers, scientists, engineers, think tanks, etc. to help compile research and designs that will eventually evolve into a fully detailed blueprint that’s available to the public and can be utilized in the development of future nuclear plants.

Use for heavy industry

In some countries, such as the UK, although CCS will be trialled for gas-fired power stations it will also be considered to help with decarbonization of industry and heating.[3]

Narxi

Cost is a significant factor affecting whether or not CCS is implemented. The cost of CCS, minus any subsidies, must be less than the expected cost of emitting CO2 for a project to be considered economically favorable.

Several different metrics are used to quantify the cost of CCS, which can cause confusion because many have the same units of cost per mass of CO2.[174] For this reason it is important to understand which metric a given source uses so it can be correctly compared to other values. The most commonly used metric is the cost of CO2 avoided, which is calculated with the following equation.[174][6]

Ushbu tenglamada COE is the cost of electricity for the plant with CCS and the reference plant. The reference plant is usually the same plant, but without CCS. Ba'zi manbalarda elektr energiyasining arzon narxlari. Generally, the cost of transporting and storing the CO2 is also included in the cost of electricity since CO2 emissions are not truly avoided until it is stored, although not always.[174] In the denominator CO2 is the mass of CO2 emitted per unit of net electricity produced (e.g. USD/MWh). This is generally the metric used because most discussions revolve around reducing CO2 emissions and "mitigation cost is best represented as avoided cost".[6] Another common metric is the cost of CO2 captured, which is defined by the following equation.[6][174]

The numerator is similar to that used for the cost of CO2 avoided, except that only the cost of capture is included (transportation and storage costs are excluded). However, the denominator is the total amount of CO2 qo'lga olindi per unit of net electricity produced. Although at first this may appear to be the same as the amount of CO2 avoided, the amount of CO2 captured is actually more than the amount avoided.[6] The reason is that capturing CO2 requires energy, and if that energy comes from fossil fuels (which is usually the case because it comes from the same plant) then more fuel must be burned to produce the same amount of electricity. This means more CO2 is produced per MWh in the CCS plant than in the reference plant. In other words, the cost of CO2 captured does not fully take into account the reduced efficiency of the plant with CCS. For this reason the cost of CO2 captured is always lower than the cost of CO2 avoided and does not describe the full cost of CCS.[6][174] Some sources also report the increase in the cost of electricity as a way to evaluate the economic impact of CCS.[174]

The reasons that CCS is expected to cause price increases if used on gas-fired power plants are several. Firstly, the increased energy requirements of capturing and compressing CO
2
significantly raises the operating costs of CCS-equipped power plants. In addition, there are added investment and capital costs.

The increased energy required for the carbon capturing process is also called an energy penalty. It has been estimated that about 60% of the energy penalty originates from the capture process itself, 30% comes from compression of CO
2
, while the remaining 10% comes from electricity requirements for necessary pumps and fans.[175] CCS technology is expected to use between 10 and 40 percent of the energy produced by a power station.[176][177] CCS would increase the fuel requirement of a plant with CCS by about 15% for a gas-fired plant.[6] The cost of this extra fuel, as well as storage and other system costs, are estimated to increase the costs of energy from a power plant with CCS by 30–60%, depending on the specific circumstances.

And as with most chemical plants, constructing CCS units is capital intensive. Pre-commercial CCS demonstration projects are likely to be more expensive than mature CCS technology; the total additional costs of an early large-scale CCS demonstration project are estimated to be €0.5–1.1 billion per project over the project lifetime. Other applications are possible. CCS was trialled for coal-fired plants in the early 21st century but was found to be economically unviable in most countries[178] (as of 2019 trials are still ongoing in China but face transport and storage logistical challenges[179]) in part because revenue from using the CO2 for enhanced oil recovery collapsed with the 2020 oil price collapse.[180]

Cost of electricity generated by different sources including those incorporating CCS technologies can be found in manba bo'yicha elektr energiyasining narxi.

2018 yildan boshlab a uglerod narxi of at least 100 euros has been estimated to be needed for industrial CCS to be viable[181] bilan birga uglerod tariflari.[182]

According to UK government estimates made in the late 2010s, carbon capture (without storage) is estimated to add 7 GBP per Mwh by 2025 to the cost of electricity from a modern gaz bilan ishlaydigan elektr stantsiyasi: however most CO2 will need to be stored so in total the increase in cost for gas or biomass generated electricity is around 50%.[183]

Possible business models for industrial carbon capture include:[8]

Contract for Difference CfDC CO2 certificate strike price

Cost Plus open book

Regulated Asset Base (RAB)

Tradeable tax credits for CCS

Tradeable CCS certificates + obligation

Creation of low carbon market

Governments around the world have provided a range of different types of funding support to CCS demonstration projects, including tax credits, allocations and grants. The funding is associated with both a desire to accelerate innovation activities for CCS as a low-carbon technology and the need for economic stimulus activities.[184]

CCS faces competition from green hydrogen.[185]

Financing CCS via the Clean Development Mechanism

One way to finance future CCS projects could be through the Toza rivojlanish mexanizmi ning Kioto protokoli. Da COP16 in 2010, The Subsidiary Body for Scientific and Technological Advice, at its thirty-third session, issued a draft document recommending the inclusion of Carbon dioxide capture and storage in geological formations in Clean Development Mechanism project activities.[186] Da COP17 yilda Durban, a final agreement was reached enabling CCS projects to receive support through the Clean Development Mechanism.[187]

Atrof muhitga ta'siri

Gas-fired power plants

The theoretical merit of CCS systems is the reduction of CO
2
emissions by up to 90%, depending on plant type. Generally, environmental effects from use of CCS arise during power production, CO
2
capture, transport, and storage. Issues relating to storage are discussed in those sections. More recently is increasing interest in the use of metan pirolizasi to convert natural gas to hydrogen for gas-fired power plants preventing production of CO2 and eliminating the need for CCS.

Additional energy is required for CO
2
capture, and this means that substantially more fuel has to be used to produce the same amount of power, depending on the plant type. The extra energy requirements for natural gas combined cycle (NGCC) plants range from 11–22% [IPCC, 2005].[188] Obviously, fuel use and environmental problems arising from extraction of gas increase accordingly. Plants equipped with selektiv katalitik reduksiya uchun tizimlar nitrogen oxides produced during combustion[189] require proportionally greater amounts of ammiak.

In 2005 the IPCC provided estimates of air emissions from various CCS plant designs. Esa CO
2
is drastically reduced though never completely captured, emissions of air pollutants increase significantly, generally due to the energy penalty of capture. Hence, the use of CCS entails a reduction in air quality. Type and amount of air pollutants still depends on technology. CO
2
is captured with alkaline solvents catching the acidic CO
2
at low temperatures in the absorber and releasing CO
2
at higher temperatures in a desorber. Chilled Ammonia CCS Plants have inevitable ammonia emissions to air. "Functionalized Ammonia" emit less ammonia, but amines may form secondary amines and these will emit volatile nitrosamines[190] by a side reaction with nitrogendioxide, which is present in any flue gas even after DeNOx. Nevertheless, there are advanced amines in testing with little to no vapor pressure to avoid these amine- and consecutive nitrosamine emissions.

Ko'mir bilan ishlaydigan elektr stantsiyalari

According to one 2020 study half as much CCS might be installed in coal-fired plants compared to gas-fired: they would be mainly in China with some in India.[191] The theoretical merit of CCS systems is the reduction of CO
2
emissions by up to 90%, depending on plant type. Generally, environmental effects from use of CCS arise during power production, CO
2
capture, transport, and storage. Issues relating to storage are discussed in those sections.

Additional energy is required for CO
2
capture, and this means that substantially more fuel has to be used to produce the same amount of power, depending on the plant type. For new super-critical pulverized coal (PC) plants using current technology, the extra energy requirements range from 24 to 40%, while for coal-based gasification combined cycle (IGCC) systems it is 14–25% [IPCC, 2005].[192] Obviously, fuel use and environmental problems arising from mining and extraction of coal increase accordingly. Plants equipped with tutun gazini kükürtten tozalash (FGD) systems for oltingugurt dioksidi control require proportionally greater amounts of ohaktosh, and systems equipped with selektiv katalitik reduksiya uchun tizimlar nitrogen oxides produced during combustion require proportionally greater amounts of ammiak.

In 2005 the IPCC provided estimates of air emissions from various CCS plant designs. Esa CO
2
is drastically reduced though never completely captured, emissions of air pollutants increase significantly, generally due to the energy penalty of capture. Hence, the use of CCS entails a reduction in air quality. Type and amount of air pollutants still depends on technology. CO
2
is captured with alkaline solvents catching the acidic CO
2
at low temperatures in the absorber and releasing CO
2
at higher temperatures in a desorber. Chilled Ammonia CCS Plants have inevitable ammonia emissions to air. "Functionalized Ammonia" emit less ammonia, but amines may form secondary amines and these will emit volatile nitrosamines[190] by a side reaction with nitrogendioxide, which is present in any flue gas even after DeNOx. Nevertheless, there are advanced amines in testing with little to no vapor pressure to avoid these amine- and consecutive nitrosamine emissions. Nevertheless, all the capture plants amines have in common, that practically 100% of remaining sulfur dioxide from the plant is washed out of the flue gas, the same applies to dust/ash.

Oqish

Long term retainment of stored CO
2

For well-selected, designed and managed geological storage sites, IPCC estimates that leakage risks are comparable to those associated with current hydrocarbon activity.[193] However, this finding is contested due to a lack of experience in such long-term storage.[194][195] CO
2
could be trapped for millions of years, and although some leakage occurs upwards through the soil, well selected storage sites are likely to retain over 99% of the injected CO
2
over 1000 years.[196] Leakage through the injection pipe is a greater risk.[197]

Mineral storage is not regarded as having any risks of leakage. The IPCC recommends that limits be set to the amount of leakage that can take place.

To further investigate the safety of CO
2
sequestration, Norway's Sleipner gaz koni can be studied, as it is the oldest plant that stores CO
2
sanoat miqyosida. According to an environmental assessment of the gas field which was conducted after ten years of operation, the author affirmed that geosequestration of CO
2
was the most definite form of permanent geologik storage of CO
2
:

Available geological information shows absence of major tectonic events after the deposition of the Utsira formation [saline reservoir]. This implies that the geological environment is tectonically stable and a site suitable for carbon dioxide storage. The solubility trapping [is] the most permanent and secure form of geological storage.[198]

In March 2009 StatoilHydro issued a study showing the slow spread of CO
2
in the formation after more than 10 years operation.[199]

Phase I of the Weyburn-Midale Carbon Dioxide Project yilda Veybern, Saskaçevan, Canada has determined that the likelihood of stored CO
2
release is less than one percent in 5,000 years.[200] A January 2011 report, however, claimed evidence of leakage in land above that project.[201] This report was strongly refuted by the IEAGHG Weyburn-Midale CO
2
Monitoring and Storage Project, which issued an eight-page analysis of the study, claiming that it showed no evidence of leakage from the reservoir.[202]

To assess and reduce liability for potential leaks, the leakage of stored gasses, particularly karbonat angidrid, into the atmosphere may be detected via atmospheric gas monitoring, and can be quantified directly via the qudratli kovaryans flux measurements.[203][204][205]

Hazards from sudden accidental leakage of CO
2

CCS schemes will involve handling and transportation of CO
2
on a hitherto unprecedented scale. A CCS project for a single standard 1,000 MW coal-fired power plant will require capture and transportation of 30,000 tonnes CO
2
per day to the storage site. Transmission pipelines may leak or rupture. Pipelines can be fitted with remotely controlled block valves that upon closure will limit the release quantity to the inventory of an isolatable section. For example, a severed 19" pipeline section 8 km long may release 1,300 tonnes of carbon dioxide in about 3–4 min.[206] At the storage site, the injection pipe can be fitted with non-return valves to prevent an uncontrolled release from the reservoir in case of upstream pipeline damage.

Large-scale releases of CO
2
presents asphyxiation risk. In 1953, a release of several thousand tonnes of CO
2
- a quantity comparable to an accidental release from a CCS CO
2
transmission pipeline - from the Menzengraben salt mine killed a person at distance of 300 meters due to asphyxiation.[206] Malfunction of a carbon dioxide industrial fire suppression system in a large warehouse released 50 t CO
2
after which 14 citizens collapsed on the nearby public road.[206] The Berkel va Rodenrijs incident in December 2008 was another example, where a modest release of CO
2
from a pipeline under a bridge resulted in the deaths of some ducks sheltering there.[207] In order to measure accidental carbon releases more accurately and decrease the risk of fatalities through this type of leakage, the implementation of CO
2
alert meters around the project perimeter has been proposed[kim tomonidan? ]. The most extreme sudden CO
2
release on record took place in 1986 at Nyos ko'li.

Monitoring geological sequestration sites

In order to detect carbon dioxide leaks and the effectiveness of geological sequestration sites, different monitoring techniques can be employed to verify that the sequestered carbon stays trapped below the surface in the intended reservoir. Leakage due to injection at improper locations or conditions could result in carbon dioxide being released back into the atmosphere. It is important to be able to detect leaks with enough warning to put a stop to it, and to be able to quantify the amount of carbon that has leaked for purposes such as qopqoq va savdo policies, evaluation of environmental impact of leaked carbon, as well as accounting for the total loss and cost of the process. To quantify the amount of carbon dioxide released, should a leak occur, or to closely watch stored CO
2
, there are several monitoring methods that can be done at both the surface and subsurface levels.[208]

Subsurface monitoring

In subsurface monitoring, there are direct and indirect methods to determine the amount of CO
2
in the reservoir. A direct method would be drilling deep enough to collect a fluid sample. This drilling can be difficult and expensive due to the physical properties of the rock. It also only provides data at a specific location. Indirect methods would be to send sound or electromagnetic waves down to the reservoir where it is then reflected back up to be interpreted. This approach is also expensive but it provides data over a much larger region; it does however lack precision. Both direct and indirect monitoring can be done intermittently or continuously.[208]

Seysmik monitoring

Seysmik monitoring is a type of indirect subsurface monitoring. It is done by creating vibrational waves either at the surface using a vibroseis truck, or inside a well using spinning eccentric mass. These vibrational waves then propagate through the geological layers and reflect back creating patterns that are read and interpreted by seismometers.[209] It can identify migration pathways of the CO
2
shlyuz.[210] Seysmik kuzatuvdan foydalangan holda geologik sekvestr maydonlarini kuzatishning ikkita misoli Sleipner sekvestr loyihasi va Frio CO
2
Qarshi sinovi. Garchi bu usul mavjudligini tasdiqlashi mumkin CO
2
ma'lum bir mintaqada u atrof-muhitning o'ziga xos xususiyatlarini yoki kontsentratsiyasini aniqlay olmaydi CO
2
.

Yuzaki monitoring

Eddi kovaryansi ning oqimini o'lchaydigan sirtni kuzatish texnikasi CO
2
er yuzasidan. Bu o'lchovni o'z ichiga oladi CO
2
kontsentratsiyalar, shuningdek anemometr yordamida vertikal shamol tezligi.[211] Bu umumiy vertikal oqim o'lchovini ta'minlaydi CO
2
. Eddi kovaryans minoralari potentsial ravishda qochqinlarni aniqlay olishi mumkin edi, ammo fotosintez va o'simliklarning nafas olishi kabi tabiiy uglerod tsikli hisobga olinishi va asos bo'lishi kerak edi. CO
2
Monitoring o'tkaziladigan joy uchun tsikl ishlab chiqilishi kerak edi. Uglerodni ajratib olish joylarini kuzatish uchun ishlatiladigan Eddy kovaryans texnikasiga misol bo'lib, sayoz relez sinovidir.[212] Shunga o'xshash yana bir yondashuv - bu yig'ish kameralaridan foydalanish. Ushbu kameralar erga gaz analizatoriga ulangan kirish va chiqish oqimi oqimi bilan muhrlanadi.[208] Bu shuningdek vertikal oqimini o'lchaydi CO
2
. Yig'ish kameralarining kamchiliklari - bu aniqlash uchun zarur bo'lgan katta hududni nazorat qila olmaslikdir CO
2
butun sekvestr saytida oqadi.

InSAR monitoringi

InSAR monitoring - bu sirtqi kuzatuvning yana bir turi. Bunda sun'iy yo'ldosh signallarni Yer yuziga yuboradi va u erda sun'iy yo'ldosh qabul qiluvchisiga qaytariladi. Shundan kelib chiqib, sun'iy yo'ldosh o'sha nuqtagacha bo'lgan masofani o'lchashga qodir.[213] CCSda in'ektsiya qilish CO
2
geologik maydonlarning chuqur qatlamlarida yuqori bosim hosil qiladi. Suyuqlik bilan to'ldirilgan bu yuqori bosimli qatlamlar uning ustki va past qismlariga ta'sir qiladi, natijada sirt landshafti o'zgaradi. Saqlangan joylarda CO
2
, chuqur er osti qatlamlaridan kelib chiqadigan yuqori bosim tufayli er yuzasi ko'pincha ko'tariladi. Yer sathining ko'tarilishidagi bu o'zgarishlar inSAR sun'iy yo'ldoshidan masofaning o'zgarishiga mos keladi, keyin aniqlanadi va o'lchanadi.[213]

Uglerodni tortib olish va ulardan foydalanish (CCU)

Tutilgan karbonat angidrid gazini sekvestrlash va ulardan foydalanish o'rtasidagi taqqoslash

Uglerodni tortib olish va ulardan foydalanish (CCU) suratga olish jarayoni karbonat angidrid (CO2) keyingi foydalanish uchun qayta ishlanishi kerak.[214] Uglerodni tortib olish va ulardan foydalanish global miqyosdagi muammolarni sezilarli darajada kamaytirishga javob berishi mumkin issiqxona gazi asosiy statsionar (sanoat) emitentlarning chiqindilari.[215] CCU ning uglerodni tutib olish va saqlash (CCS) dan farqi shundaki, CCU maqsad qilmaydi va doimiy natijaga olib kelmaydi. geologik saqlash karbonat angidrid. Buning o'rniga, CCU qo'lga olingan karbonat angidrid gazini qimmatroq moddalar yoki mahsulotlarga aylantirishni maqsad qiladi; masalan, plastmassa, beton yoki bioyoqilg'i; saqlash paytida uglerod neytralligi ishlab chiqarish jarayonlari.

Qo'lga kiritilgan CO2 bir nechta mahsulotga aylantirilishi mumkin: bitta guruh bo'lish uglevodorodlar metanol kabi, bioyoqilg'i sifatida ishlatish uchun va boshqalar muqobil va qayta tiklanadigan energiya manbalari. Boshqa savdo mahsulotlarga plastik, beton va turli xil kimyoviy sintez uchun reaktiv moddalar kiradi.[216]

CCU atmosferaga ijobiy uglerodni olib kelmasa ham, bir nechta muhim fikrlarni hisobga olish kerak. Yangi mahsulotlarni qo'shimcha ravishda qayta ishlash uchun energiya talabi yonilg'i yoqilg'isidan chiqadigan energiya miqdoridan oshmasligi kerak, chunki jarayon ko'proq yoqilg'ini talab qiladi.[tushuntirish kerak ] Chunki CO2 ning termodinamik barqaror turidir uglerod undan mahsulot ishlab chiqarish energiya talab qiladi.[217] Bundan tashqari, CCU miqyosidagi xavotirlar CCUga sarmoya kiritishga qarshi asosiy dalildir.[tushuntirish kerak ] Mahsulot yaratish uchun boshqa xom ashyoning mavjudligi, shuningdek, CCUga sarmoya kiritmasdan oldin ko'rib chiqilishi kerak.

Qo'lga olish va ulardan foydalanish uchun turli xil potentsial variantlarni hisobga olgan holda, tadqiqotlar shuni ko'rsatadiki, kimyoviy moddalar, yoqilg'i va mikroalglar bilan bog'liq bo'lganlar cheklangan potentsialga ega CO
2
olib tashlash, qurilish materiallari va qishloq xo'jaligida foydalanish bilan bog'liq bo'lgan narsalar yanada samarali bo'lishi mumkin.[218]

CCU rentabelligi qisman bog'liq uglerod narxi CO2 atmosferaga chiqarilmoqda. Olingan CO dan foydalanish2 foydali tijorat mahsulotlarini yaratish uglerod tutilishini moliyaviy jihatdan foydali qilishi mumkin.[219]

Siyosiy bahs

CCS tanqidchilarning ba'zi siyosiy qarama-qarshiliklariga duch keldi, ular keng ko'lamli CCSni joylashtirish xavfli va qimmat va yaxshi variant qayta tiklanadigan energiya va jo'natiladigan metan pirolizasi turbinaviy quvvat. Ba'zi ekologik guruhlar saqlashni talab qiladigan uzoq vaqt davomida sizib chiqishi xavfi borligini aytishdi, shuning uchun CCS texnologiyasini xavfli saqlash bilan taqqosladilar radioaktiv chiqindilar dan atom elektr stantsiyalari.[220]

CCSdan foydalanish kamayishi mumkin CO
2
ko'mir elektr stantsiyalari yig'indisidan chiqadigan chiqindilar 85-90% va undan ko'proq, ammo bu hech qanday ta'sir ko'rsatmaydi CO
2
ko'mir qazib olish va tashish tufayli chiqindilar. Bu haqiqatan ham "etkazib beriladigan elektr energiyasi birligiga to'g'ri keladigan bunday chiqindilarni va havoni ifloslantiruvchi moddalarni ko'paytiradi va ko'mir qazib olish, tashish va qayta ishlashdan kelib chiqadigan barcha ekologik, erdan foydalanish, havoning ifloslanishi va suvning ifloslanishiga ta'sirini oshiradi. 25% ko'proq energiya, shu bilan ko'mirning yonishi, CCSsiz tizimga qaraganda 25% ko'proq ".[221]

Bundan tashqari, CCS qazilma yoqilg'i elektr stantsiyalari va qayta tiklanadigan elektr energiyasining aniq energiya samaradorligini taqqoslaganda, 2019 yilgi tadqiqotlar CCS zavodlarini unchalik samarasiz deb topdi. Elektr energiya sarflangan nisbatlar bo'yicha qaytib keladigan energiya Ikkala ishlab chiqarish usullarining (EROEI) taxminiy hisoblanib, ularning operatsion va infratuzilmaviy energiya xarajatlari hisobga olingan. Qayta tiklanadigan elektr energiyasini ishlab chiqarish quyosh energiyasini va shamolni o'z ichiga oladi, bu esa etarli energiya zaxirasi va dispetcherlik bilan elektr energiyasi ishlab chiqarish bilan ta'minlangan. Shunday qilib, iqlim inqirozini yumshatishda, qazib olinadigan yoqilg'i CCS-ga qaraganda kengaytiriladigan qayta tiklanadigan elektr energiyasi va zaxiralarini tezkor ravishda kengaytirish afzalroq bo'ladi.[222]

Bir tomondan, Greenpeace CCS ko'mir zavodi xarajatlarining ikki baravar ko'payishiga olib kelishi mumkin, deb da'vo qilmoqda.[176] Shuningdek, CCS muxoliflari tomonidan CCSga sarflangan mablag'lar investitsiyalarni iqlim o'zgarishiga qarshi boshqa echimlardan uzoqlashtiradi, deb da'vo qilishmoqda. Boshqa tarafdan, BECCS ba'zilarida ishlatiladi IPCC uchrashuvga yordam beradigan stsenariylar ta'sirni kamaytirish maqsadlari 1,5 daraja S kabi.[223]

Shuningdek qarang

Adabiyotlar

  1. ^ Fanchi, Jon R; Fanchi, Kristofer J (2016). XXI asrdagi energiya. World Scientific Publishing Co Inc p. 350. ISBN  978-981-314-480-4.
  2. ^ "Uglerodni tutish va saqlash bilan tanishish - uglerodni saqlash va okeanni kislotalash faoliyati". Hamdo'stlik ilmiy va sanoat tadqiqotlari tashkiloti (CSIRO) va Global CCS Institute. Arxivlandi asl nusxasi 2012 yil 8 dekabrda. Olingan 3 iyul 2013.
  3. ^ a b Buyuk Britaniyada uglerodni tortib olishdan foydalanish va saqlash uchun mo'ljallangan yo'l (PDF). BEIS. 2018.
  4. ^ a b Bui, May; Adjiman, Kler S.; Bardu, Andre; Entoni, Edvard J.; Boston, Endi; Jigarrang, Sulaymon; Fennell, Pol S.; Fuss, Sabine; Galindo, Amparo; Xakett, Ley A .; Xolett, Jeyson P.; Gertsog, Xovard J.; Jekson, Jorj; Kemper, Jasmin; Krevor, Shomuil; Meytlend, Jefri K.; Matusevskiy, Maykl; Metkalf, Yan S.; Petit, Kamil; Puxty, Graeme; Reymer, Jefri; Reyner, Devid M.; Rubin, Edvard S.; Skott, Styuart A.; Shoh, Nilay; Smit, Berend; Trusler, J. P. Martin; Vebli, Pol; Uilkoks, Jennifer; Mac Dowell, Niall (2018). "Uglerodni saqlash va saqlash (CCS): oldinga intilish yo'li". Energiya va atrof-muhit fanlari. 11 (5): 1062–1176. doi:10.1039 / C7EE02342A.
  5. ^ D'Alessandro, Deanna M.; Smit, Berend; Long, Jeffri R. (16 avgust 2010). "Karbonat angidridni ushlab qolish: yangi materiallar istiqbollari" (PDF). Angewandte Chemie International Edition. 49 (35): 6058–6082. doi:10.1002 / anie.201000431. PMID  20652916.
  6. ^ a b v d e f g h men [IPCC, 2005] IPCC-ning Karbonat angidridni saqlash va saqlash bo'yicha maxsus hisoboti. Iqlim o'zgarishi bo'yicha hukumatlararo panelning III ishchi guruhi tomonidan tayyorlangan. Metz, B., O. Devidson, X. C. de Koninck, M. Loos va L.A. Meyer (tahrir). Kembrij universiteti matbuoti, Kembrij, Buyuk Britaniya va Nyu-York, Nyu-York, AQSh, 442 bet. To'liq holda mavjud www.ipcc.ch Arxivlandi 2010-02-10 da Orqaga qaytish mashinasi (PDF - 22.8MB)
  7. ^ Grantem 2019, p. 9
  8. ^ a b "Uglerodni tortib olishning sanoat modellari" (PDF).
  9. ^ "Uglerodni tortib olish, undan foydalanish va saqlash nimadan iborat - va u chiqindilarni ushlab turishi mumkinmi?". Guardian. 24 sentyabr 2020 yil. Olingan 20 noyabr 2020.
  10. ^ Rods, Jeyms S.; Keyt, Devid V. (19 fevral, 2008 yil). "Qo'lga olinadigan biomassa: ijtimoiy va ekologik cheklovlar ichidagi salbiy chiqindilar: tahririyat sharhi". Iqlim o'zgarishi. 87 (3–4): 321–328. doi:10.1007 / s10584-007-9387-4.
  11. ^ "Iqlim o'zgarishi: Buyuk Britaniyada uglerod olish loyihasi boshlandi". BBC. 8 fevral 2019 yil.
  12. ^ Verner, C; Shmidt, H-P; Gerten, D; Lyucht, Vt; Kammann, C (2018 yil 1-aprel). "Global isishni 1,5 ° C gacha cheklash uchun biomassa piroliz tizimining biogeokimyoviy salohiyati". Atrof-muhitni o'rganish bo'yicha xatlar. 13 (4): 044036. doi:10.1088 / 1748-9326 / aabb0e.
  13. ^ a b Ilmiy ma'lumotlar CO
    2
    Qo'lga olish va saqlash
    , 2012
  14. ^ NETL 2007 uglerod sekvestratsiyasi atlasi, 2007
  15. ^ Felps, Jek JC.; Blekford, Jerri S.; Xolt, Jeyson T.; Polton, Jeff A. (iyul 2015). "Shimoliy dengizda katta miqdordagi CO 2 qochqinlarni modellashtirish". Issiqxona gazlarini boshqarish bo'yicha xalqaro jurnal. 38: 210–220. doi:10.1016 / j.ijggc.2014.10.013.
  16. ^ "Uglerod dioksidini havodan olish" (PDF). Olingan 29 mart 2011.
  17. ^ "To'g'ridan-to'g'ri havoni tortib olish texnologiyasi (Texnologik ma'lumotlar sahifasi), geoengineering Monitor". 2018 yil may. Olingan 1 iyul 2018.
  18. ^ "Energetika biznesi uchun yangiliklar". Energiya oqimi. Arxivlandi asl nusxasi 2008 yil 8-dekabrda. Olingan 2 aprel 2010.
  19. ^ "Qurg'oqdagi uglerodni tortib olish inshootlari va quruqlikdagi quvurlar uchun zavodning yaxshi dizayni va ishlashi - 5 karbonat angidrid zavodi dizayni". Energetika instituti. Arxivlandi asl nusxasi 2013 yil 15 oktyabrda. Olingan 13 mart 2012.
  20. ^ "Wallula Energiya Resurs Markazi". Wallulaenergy.com. 14 Iyun 2007. Arxivlangan asl nusxasi 2010 yil 15 iyulda. Olingan 2 aprel 2010.
  21. ^ a b Sumida, Kenji; Rogov, Devid L.; Meyson, Jarad A .; Makdonald, Tomas M.; Bloch, Erik D.; Herm, Zoey R.; Bae, Ta-Xyun; Long, Jeffri R. (28 dekabr 2011). "Karbonat angidrid oksidini metall-organik doirada olish". Kimyoviy sharhlar. 112 (2): 724–781. doi:10.1021 / cr2003272. PMID  22204561.
  22. ^ "Gazlashtirish tanasi" (PDF). Arxivlandi asl nusxasi (PDF) 2008 yil 27 mayda. Olingan 2 aprel 2010.
  23. ^ "(IGCC) uglerodni saqlash va saqlash uchun integral gazlashtirishning kombinatsiyalangan tsikli". Claverton Energy Group. (konferentsiya, 24 oktyabr, Vanna)
  24. ^ "Londonda Imperial kollejida uglerodni olish va saqlash". London Imperial kolleji.
  25. ^ Bryngelsson, Merten; Westermark, Mats (2005). Texnik-iqtisodiy asoslari CO
    2
    bosim ostida tutun gazidan to'liq yoqilgan kombinatsiyalangan tsiklda olib tashlash: Sargas loyihasi
    . Energiya tizimlarining samaradorligi, narxi, optimallashtirish, simulyatsiya va atrof-muhitga ta'siri bo'yicha 18-xalqaro konferentsiya materiallari. 703-10 betlar.
  26. ^ Bryngelsson, Merten; Westermark, Mats (2009). "CO
    2
    bosim ostida ko'mir yoqadigan CHP zavodida uchuvchi sinovni o'tkazish "
    . Energiya protseduralari. 1: 1403–10. doi:10.1016 / j.egypro.2009.01.184.
  27. ^ Shirin, Uilyam (2008). "G'olib: toza ko'mir - ko'mirning porlashini tiklash". IEEE Spektri. 45: 57–60. doi:10.1109 / MSPEC.2008.4428318. S2CID  27311899.
  28. ^ Jensen, Mark J.; Rassel, Kristofer S.; Bergeson, Devid; Xeger, Kristofer D.; Frankman, Devid J.; Bence, Kristofer S.; Baxter, Larri L. (2015 yil noyabr). "Ko'mir bilan ishlaydigan elektr stantsiyasini to'liq miqyosda qayta jihozlash uchun tashqi sovutish halqasini kriyogen uglerodni ushlab turishini (CCC-ECL) taxmin qilish va tasdiqlash". Issiqxona gazlarini boshqarish bo'yicha xalqaro jurnal. 42: 200–212. doi:10.1016 / j.ijggc.2015.04.009.
  29. ^ Baxter, Larri L. (ORCID: 0000000204532659); Baxter, Endryu; Bever, Etan; Burt, Stefani; Chemberlen, Skyler; Frankman, Devid; Xeger, Kristofer; Mensfild, Erik; Parkinson, Dallin; Sayre, Aaron; Stitt, Kyler (2019 yil 28 sentyabr). "Kriyogen uglerodni ushlashni rivojlantirish bo'yicha yakuniy / texnik hisobot". Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  30. ^ "Ob'ekt ma'lumotlari - Global CCS Institute". co2re.co. Olingan 17 noyabr 2020.
  31. ^ Herm, Zoey R.; Swisher, Jozef A.; Smit, Berend; Krishna, Rajamani; Long, Jeffri R. (2011 yil 20-aprel). "Vodorodni tozalash va yonishdan oldin uglerod dioksidini olish uchun adsorbent sifatida metall − organik ramkalar" (PDF). Amerika Kimyo Jamiyati jurnali. 133 (15): 5664–5667. doi:10.1021 / ja111411q. PMID  21438585.
  32. ^ Kulkarni, Ambarish R.; Sholl, Devid S. (18 iyun 2012). "CO2 ni havodan to'g'ridan-to'g'ri olish uchun muvozanatga asoslangan TSA jarayonlarini tahlil qilish". Sanoat va muhandislik kimyo tadqiqotlari. 51 (25): 8631–8645. doi:10.1021 / ya'ni300691c.
  33. ^ Millward, Endryu R.; Yagi, Omar M. (dekabr 2005). "Karbonat angidrid gazini xona haroratida saqlash uchun juda yuqori quvvatga ega bo'lgan metall − organik ramkalar". Amerika Kimyo Jamiyati jurnali. 127 (51): 17998–17999. doi:10.1021 / ja0570032. PMID  16366539.
  34. ^ Smit, Berend; Reymer, Jeffri R.; Oldenburg, Kertis M.; Bourg, Yan C. (2014). Uglerodni tutib olish va sekvestrlashga kirish. Imperial kolleji matbuoti. ISBN  978-1-78326-327-1.[sahifa kerak ]
  35. ^ Makdonald, Tomas M.; Meyson, Jarad A .; Kong, Xueqian; Bloch, Erik D.; Gigi, Devid; Dani, Alessandro; Krosela, Valentina; Jiordanino, Filippo; Odoh, Samuel O.; Drisdell, Valter S.; Vlaisavlevich, Bess; Dzubak, Ellison L.; Poloni, Roberta; Shnell, Sondre K.; Planas, Nora; Li, Kyuho; Paskal, Tod; Van, Liven F.; Prendergast, Devid; Neaton, Jeffri B.; Smit, Berend; Kortright, Jeffri B.; Gagliardi, Laura; Bordiga, Silviya; Reymer, Jeffri A.; Long, Jeffri R. (2015 yil 11 mart). "CO2 ni diamin qo'shilgan metall-organik ramkalarga kooperativ kiritish" (PDF). Tabiat. 519 (7543): 303–308. Bibcode:2015 Noyabr 519 ..303M. doi:10.1038 / nature14327. hdl:11250/2458220. PMID  25762144. S2CID  4447122.
  36. ^ "CCSning global holati: 2011 yil - qo'lga olish". Global CCS instituti. Arxivlandi asl nusxasi 2013 yil 6 fevralda. Olingan 26 mart 2012.
  37. ^ a b "CO2 ushlash, tashish va saqlash" (PDF). Postnota. Parlamentning Fan va texnologiyalar idorasi. 335. 2009 yil iyun. Olingan 10 avgust 2019. 2008 yildan beri Norvegiyaning Statoil kompaniyasi CO2 ni (tabiiy gaz qazib olishdan olingan) 160 km dengiz tubi quvuri orqali tashiydi.
  38. ^ Parfomak, Pol V.; Folger, Piter. "Kongress uchun CRS hisoboti: Karbonat angidrid (CO
    2
    ) Uglerod sekvestratsiyasi uchun quvur liniyalari: Rivojlanayotgan siyosat masalalari ", 2008 yil 17 yanvarda yangilangan (Buyurtma kodi RL33971)"
    (PDF). Assets.opencrs.com. Arxivlandi asl nusxasi (PDF) 2008 yil 11 sentyabrda.
  39. ^ Vann, Adam; Parfomak, Pol V. "Kongress uchun CRS hisoboti: Karbonat angidridni tartibga solish (CO
    2
    ) Sekvestratsiya quvurlari: yurisdiktsiya masalalari ", 2008 yil 15 aprelda yangilangan (Buyurtma kodi RL34307)"
    . Ncseonline.org. Arxivlandi asl nusxasi (PDF) 2010 yil 8 fevralda.
    (bilan bog'liq federal yurisdiktsiya masalalarini ko'rib chiqish CO
    2
    quvurlar va agentliklarning davlatlararo tijorat to'g'risidagi qonuni va tabiiy gaz to'g'risidagi qonuni bo'yicha yurisdiktsiya qarorlarini ko'rib chiqish)
  40. ^ Dikson, Tim; Greves, Andy; Kristofersen, Oyvind; Vivian, Kris; Tomson, Jolyon (2009 yil fevral). "CO2 geologik omborini xalqaro dengiz orqali tartibga solish. London va OSPARning rivojlanishi va ta'siri". Energiya protseduralari. 1 (1): 4503–4510. doi:10.1016 / j.egypro.2009.02.268.
  41. ^ a b "Qurg'oqdagi uglerod olish inshootlari va quruqlikdagi quvurlar uchun yaxshi zavod dizayni va ishlashi - Saqlash". Energetika instituti. Arxivlandi asl nusxasi 2012 yil 18 sentyabrda. Olingan 11 dekabr 2012.
  42. ^ "Noyabr: Qattiqlashtirilgan neftni qazib olish bilan nima sodir bo'ldi?". www.iea.org. Olingan 17 iyun 2019.
  43. ^ Porter, Ketrin (2018 yil 20-iyul). "Tutun va nometall: CCSning hayotiyligi to'g'risida yangi hisobot". Vatt-mantiq. Olingan 17 iyun 2019.
  44. ^ "Havodan CO2 ni chiqarib tashlash uchun tasodifiy narsa, uni Permiyadagi yog'ni qayta tiklashni kuchaytirish uchun foydalaning". OilPrice.com. Olingan 17 iyun 2019.
  45. ^ Xiong, Vey; Lin, Pol P.; Magnusson, Loren; Uorner, Liza; Liao, Jeyms S.; Maness, Pin-Ching; Chou, Ketrin J. (28 oktyabr 2016). "Tsellyulozani parchalaydigan bakteriya Clostridium thermocellum tarkibidagi CO2-biriktiruvchi bitta uglerodli metabolizm". Milliy fanlar akademiyasi materiallari. 113 (46): 13180–13185. doi:10.1073 / pnas.1605482113. PMC  5135332. PMID  27794122.
  46. ^ "CO2 mexanik sekvestratsiyasi suv o'tlari ishlab chiqarishni yaxshilaydi - Kimyo muhandisligi - Sahifa 1". Olingan 26 mart 2019.
  47. ^ Shiling, Olaf. "Olaf Schuiling olivin toshini maydalashni taklif qilmoqda". Arxivlandi asl nusxasi 2013 yil 11 aprelda. Olingan 23 dekabr 2011.[o'z-o'zini nashr etgan manba? ]
  48. ^ Bxaduri, Gaurav A.; Shiller, Lidiya (2013). "Nikel nanopartikullari karbonat angidridning minerallashuvi uchun uglerodni ushlab turish va saqlash uchun qaytariladigan gidratatsiyasini katalizlaydi". Kataliz fanlari va texnologiyalari. 3 (5): 1234. doi:10.1039 / C3CY20791A.
  49. ^ a b "GreenMag-Nyukasl mineral karbonatlash uchuvchi zavodi". www.dpi.nsw.gov.au. 6 iyun 2010 yil. Olingan 6 iyun 2010.
  50. ^ Issiqxona gazini saqlashi mumkin bo'lgan toshlar, Live Science, 2009 yil 9 mart
  51. ^ Goldberg, Chen, O'Konnor, Uolters va Ziok (1998). "CO
    2
    AQShda minerallarni sekvestrlash bo'yicha tadqiqotlar "
    (PDF). Milliy energiya texnologiyalari laboratoriyasi. Arxivlandi asl nusxasi (PDF) 2003 yil 7-dekabrda. Olingan 7 iyun, 2007.
    CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  52. ^ Uilson, Siobhan A .; Dipple, Gregori M.; Kuch, Yan M.; Toms, Jeyms M.; Anderson, Robert G.; Raudsepp, Mati; Gabits, Janet E .; Southam, Gordon (2009). "Ultramafik joylashtirilgan ma'dan konlari minalar chiqindilarida karbonat angidridni aniqlash: Klinton Kriki va Kassiyar Xrizotil konlaridan namunalar, Kanada". Iqtisodiy geologiya. 104: 95–112. doi:10.2113 / gsecongeo.104.1.95.
  53. ^ Kuch, Yan M.; Dipple, Gregori M.; Sautam, Gordon (2010). "Ultramafik qoldiqlarni biologik tozalash Acidithiobacillus spp. Uchun CO
    2
    Sekvestratsiya ". Atrof-muhit fanlari va texnologiyalari. 44 (1): 456–62. Bibcode:2010 ENST ... 44..456P. doi:10.1021 / es900986n. PMID  19950896.
  54. ^ Quvvat, Yan M; Uilson, Siobhan A; Toms, Jeyms M; Dipple, Gregori M; Southam, Gordon (2007). "Atlin yaqinidagi gidroksidi-botqoqli erdan siyanobakteriyalar tomonidan dipingitning biologik induktsiyalangan mineralizatsiyasi, Kanada". Geokimyoviy operatsiyalar. 8: 13. doi:10.1186/1467-4866-8-13. PMC  2213640. PMID  18053262.
  55. ^ Kuch, Yan M.; Uilson, Siobhan A .; Kichik, Darsi P.; Dipple, Gregori M.; Van, Vankey; Sautam, Gordon (2011). "Mikrobial vositachilikdagi mineral karbonatlanish: fototrofiya va geterotrofiyaning roli". Atrof-muhit fanlari va texnologiyalari. 45 (20): 9061–8. Bibcode:2011 ENST ... 45.9061P. doi:10.1021 / es201648g. PMID  21879741.
  56. ^ Barnard, Maykl (2016 yil 19-yanvar). "Uglerodni olish juda qimmat, chunki fizika". CleanTechnica. Olingan 9 fevral 2020.
  57. ^ "Global CCS Institute media-relizlari". Olingan 18 mart 2019.
  58. ^ "ZEP - bu Evropa Ittifoqining uglerodni saqlash va saqlashni joylashtirish bo'yicha texnik maslahatchisi". Olingan 7 fevral 2020.
  59. ^ Ringrose, P.S.; Mathieson, AS; Rayt, I.V .; Selama, F.; Xansen, O .; Bissell, R .; Saula, N .; Midgli, J. (2013). "Salohda CO2 saqlash loyihasi: o'rganilgan saboqlar va bilimlarni uzatish". Energiya protseduralari. 37: 6226–6236. doi:10.1016 / j.egypro.2013.06.551.
  60. ^ "Arxivlangan nusxa". Arxivlandi asl nusxasi 2008 yil 7-avgustda. Olingan 2 aprel 2008.CS1 maint: nom sifatida arxivlangan nusxa (havola)
  61. ^ "Toza ko'mir fanini izlash" yagona variant'". News.theage.com.au. 2 Aprel 2008. Arxivlangan asl nusxasi 2008 yil 6 mayda. Olingan 14 aprel 2010.
  62. ^ "CO2CRC Otway loyihasiga umumiy nuqtai". Co2crc.com.au. 2010 yil 18 fevral. Olingan 14 aprel 2010.
  63. ^ "CCSni namoyish etish". Co2crc.com.au. 6 May 2010. Arxivlangan asl nusxasi 2010 yil 24 mayda. Olingan 31 may 2010.
  64. ^ "Avstraliyada uglerodni tortib olish bo'yicha eng yirik loyiha boshlandi". energyefficiencynews.com. 2009 yil 27 oktyabr. Olingan 31 may 2010.
  65. ^ Mil, Piter (2017 yil 19-dekabr). "Gorgon LNG zavodida 5 million tonna issiqxona gazi muammosi bo'lgan" Chevron "uchun uglerodli hiqichoq". G'arbiy Avstraliya. Olingan 17 aprel 2018.
  66. ^ "AQSh-Kanada toza energiya bo'yicha dialog (CED) | Energetika vazirligi". www.energy.gov. Olingan 6 dekabr 2018.
  67. ^ Kanada, tabiiy resurslar (2014 yil 5-iyun). "Uglerodni tortib olish va saqlash: Kanadadagi texnologiyalarni namoyish etishda etakchilik". www.nrcan.gc.ca. Olingan 6 dekabr 2018.
  68. ^ "Axborot risolasi, taklif qilingan EORni rivojlantirish loyihasi" (PDF). www.enhanceenergy.com. Arxivlandi asl nusxasi (PDF) 2018 yil 27 avgustda. Olingan 6 dekabr 2018.
  69. ^ Jaremko, Debora (2018 yil 3-avgust). "Qurilish Alberta Karbon magistral magistral liniyasida bo'ri kelishuvga kirishishi bilan boshlanadi | Quvurlar va transport". JWN Energy. Olingan 6 dekabr 2018.
  70. ^ "Alberta karbon magistral liniyasi, Alberta". Uglevodorodlar texnologiyasi. Olingan 6 dekabr 2018.
  71. ^ Kanada, tabiiy resurslar (2016 yil 23-fevral). "Shell Canada Energy Quest loyihasi". www.nrcan.gc.ca. Olingan 25 aprel 2019.
  72. ^ "Quest Quest Carbon Capture and Storage Project, Alberta - uglevodorodlar texnologiyasi". Uglevodorodlar texnologiyasi. Olingan 29 noyabr 2018.
  73. ^ "Uglerodni tortib olish va sekvestratsiya texnologiyalari @ MIT". sekvestratsiya.mit.edu. Olingan 29 noyabr 2018.
  74. ^ Atrof-muhit vazirligi. "Britaniya Kolumbiyasining uglerod solig'i - Britaniya Kolumbiyasi viloyati". www2.gov.bc.ca. Olingan 6 dekabr 2018.
  75. ^ "BD3 holatini yangilash: 2018 yil avgust". www.saskpower.com. Olingan 29 noyabr 2018.
  76. ^ "Uglerodni tortib olish va sekvestratsiya texnologiyalari @ MIT". sekvestratsiya.mit.edu. Olingan 29 noyabr 2018.
  77. ^ Biznes, P. M. N. (9 iyul 2018). "Chegaradagi to'g'onda uglerodni ushlab qolish va saqlash uchun qo'shimcha jihozlar yo'q: SaskPower | Financial Post". Olingan 6 dekabr 2018.
  78. ^ "Buyuk tekisliklar yoqilg'isi zavodi - zeroco2". www.zeroco2.no. Olingan 29 noyabr 2018.
  79. ^ "Weyburn-Midale loyihasi (WMP) nima? | Global CCS Institute". hub.globalccsinstitute.com. Arxivlandi asl nusxasi 2018 yil 7-dekabr kuni. Olingan 29 noyabr 2018.
  80. ^ "Uglerodni tortib olish va sekvestratsiya texnologiyalari @ MIT". sekvestratsiya.mit.edu. Olingan 29 noyabr 2018.
  81. ^ a b Kanada, tabiiy resurslar (2014 yil 5-iyun). "Uglerodni tortib olish va saqlash: Kanadadagi texnologiyalarni namoyish etishda etakchilik". www.nrcan.gc.ca. Olingan 7 dekabr 2018.
  82. ^ "ICO2N". 5 Fevral 2011. Arxivlangan asl nusxasi 2011 yil 5 fevralda. Olingan 7 dekabr 2018.
  83. ^ "Xitoyning umumiy energiya balansi". Jami. Olingan 10 fevral 2019.
  84. ^ a b "Yanchang Petroleum hisoboti 1: CO2 ni ko'mirdan kimyoviy jarayonga o'tkazish | Decarboni.se". www.decarboni.se. Olingan 24-noyabr 2018.
  85. ^ "Xitoyda uglerodni saqlash va saqlash salohiyati". www.iea.org. Olingan 24-noyabr 2018.
  86. ^ a b v d e "Keng ko'lamli CCS inshootlari | Global Carbon Capture and Storage Institute". www.globalccsinstitute.com. Arxivlandi asl nusxasi 2017 yil 3 oktyabrda. Olingan 22 noyabr 2018.
  87. ^ "Uglerodni tortib olish va sekvestratsiya texnologiyalari @ MIT". sekvestratsiya.mit.edu. Olingan 24-noyabr 2018.
  88. ^ "Jilindagi neft konidagi CCUS-EOR amaliyoti" (PDF). Xitoy milliy neft korporatsiyasi. Olingan 24-noyabr 2018.
  89. ^ "Sinopec Qilu Petrokimyoviy CCS | Uglerodni tutish va saqlash bo'yicha global institut". www.globalccsinstitute.com. Arxivlandi asl nusxasi 2017 yil 28-noyabrda. Olingan 24-noyabr 2018.
  90. ^ a b "H Liu Sinopec CCS". www.slideshare.net. Olingan 24-noyabr 2018.
  91. ^ "Yanchang Integral uglerodni saqlash va saqlash namoyishi | Global uglerodni saqlash va saqlash instituti". www.globalccsinstitute.com. Arxivlandi asl nusxasi 2018 yil 8 sentyabrda. Olingan 24-noyabr 2018.
  92. ^ "Yanchang Petroleum hisoboti 2: Yanchan Formatsiyasida o'ta past o'tkazuvchanlik omborida CO2 saqlash va EOR | Decarboni.se". www.decarboni.se. Olingan 24-noyabr 2018.
  93. ^ "CCS loyihasi haqida umumiy ma'lumot". Zeroemissionplatform.eu. Olingan 6 oktyabr 2013.
  94. ^ "Germaniya" toza ko'mir "uchuvchisiga rahbarlik qilmoqda". BBC yangiliklari. 3 sentyabr 2008 yil.
  95. ^ "Barcha hududlarga kirish: Schwarze Pumpe". BBC yangiliklari. 3 sentyabr 2008 yil.
  96. ^ Germaniyada "chiqindilarsiz" elektr stantsiyasining uchuvchisi yonmoqda[o'lik havola ]
  97. ^ "Vattenfall CO2 saqlash bo'yicha tadqiqotlardan voz kechdi". 2014 yil 7-may.
  98. ^ "BASF, RWE Power va Linde yangi jarayonlarni ishlab chiqmoqdalar CO
    2
    ko'mir bilan ishlaydigan elektr stantsiyalarida qo'lga olish "
    . Matbuot xabari. Basf.com. 2007 yil 28 sentyabr. Olingan 14 aprel 2010.
    [doimiy o'lik havola ]
  99. ^ "CCS loyihasi Evropani qayta tiklash bo'yicha energiya dasturi (EEPR) bo'yicha mablag 'ajratdi". Ccsnetwork.eu/. 28 Aprel 2010. Arxivlangan asl nusxasi 2010 yil 14 sentyabrda. Olingan 13 iyul 2010.
  100. ^ "Asosiy faktlar: Yanshvalde". Microsites.ccsnetwork.eu. Arxivlandi asl nusxasi 2012 yil 14 noyabrda. Olingan 6 oktyabr 2013.
  101. ^ Angamutu, R .; Byers, P .; Luts, M.; Spek, A. L .; Bouman, E. (2010 yil 14-yanvar). "Elektrokatalitik CO2 mis kompleksi tomonidan oksalatga aylanishi". Ilm-fan. 327 (5963): 313–315. Bibcode:2010Sci ... 327..313A. CiteSeerX  10.1.1.1009.2076. doi:10.1126 / science.1177981. PMID  20075248. S2CID  24938351.
  102. ^ Veb-boshqaruvchi Gassnova. "TCM bosh sahifasi". Tcmda.com. Olingan 14 aprel 2010.
  103. ^ Marianne Stigset (2011 yil 6-noyabr). "Norvegiya Mongstad uglerod zaxirasini saqlash joyini 985 million dollarga ko'taradi". Bloomberg.
  104. ^ "Aker uglerodni tortib olish loyihasiga ulanishi mumkin". Reuters UK. 2011 yil 4-noyabr.
  105. ^ Ukeblad, Øyvind Yolg'on - Teknisk. "Tord Lien skrinlegger CO2-utredningene".
  106. ^ Energetika, Neft vazirligi va (2015 yil 7-may). "CCS: Norvegiyadagi potentsial keng ko'lamli loyihalar bo'yicha texnik-iqtisodiy asoslar taqdim etildi". Hukumat.no. Olingan 26 mart 2019.
  107. ^ Norvegiyada karbonat angidridni ushlab qolish uchun 3 milliard dollarlik "Longship" loyihasi quriladi
  108. ^ Longship loyihasi veb-sayti
  109. ^ Norvegiyada uglerodni saqlash va saqlash uchun hukumat "Longship" ni ishga tushiradi
  110. ^ Norvegiyada 2,7 milliard dollarlik uglerodni saqlash va saqlash bo'yicha "Longship" loyihasi boshlanadi
  111. ^ "Loyiha tafsilotlari". 21 Iyul 2011. Arxivlangan asl nusxasi 2011 yil 21-iyulda. Olingan 22 noyabr 2018.
  112. ^ "Uglerodni tortib olish va sekvestratsiya texnologiyalari @ MIT". sekvestratsiya.mit.edu. Olingan 25 noyabr 2018.
  113. ^ Ross, Kelvin (2020 yil 18-noyabr). "Uglerodni tortib olish sohasi Buyuk Britaniyaning yashil sanoat strategiyasini ma'qullaydi". Xalqaro energetika. Olingan 20 noyabr 2020.
  114. ^ IChemE. "Buyuk Britaniya uglerod tutish klasterlari uchun 800 million funt sterlingni tasdiqlaydi". www.thechemicalengineer.com. Olingan 3 oktyabr 2020.
  115. ^ "Uglerodni saqlash va saqlash". thecrownestate.co.uk. Arxivlandi asl nusxasi 2016 yil 6 martda. Olingan 4 mart 2016.
  116. ^ "DOE - Fossil Energy: Recovery Act-dan sanoat CCS loyihalari". Fossil.energy.gov. Olingan 2 aprel 2010.
  117. ^ NETL uglerodni ajratish NETL veb-sayti. 2008-21-11 da qabul qilingan.
  118. ^ "Uglerod sekvestratsiyasi bo'yicha etakchilar forumi". Cslforum.org. Olingan 2 aprel 2010.
  119. ^ "Energetika vazirligi uglerodni tortib olish texnologiyalariga 72 million dollar sarmoya kiritdi". Energy.gov. Olingan 19 noyabr 2020.
  120. ^ "Yuqori o'choqli gazdan CO2 olish natijasida kam karbonli emissiya po'latini ishlab chiqarishni yoqish". netl.doe.gov. Olingan 19 noyabr 2020.
  121. ^ "LH CO2MENT Kolorado loyihasi". netl.doe.gov. Olingan 19 noyabr 2020.
  122. ^ "Tsement zavodida qutbli membranani CO2 ushlash tizimining muhandislik dizayni". netl.doe.gov. Olingan 19 noyabr 2020.
  123. ^ "Linde-BASF metanni isloh qiladigan H2 zavodida Linde-BASF yonishdan keyingi ilg'or CO2 olish texnologiyasining muhandislik dizayni". netl.doe.gov. Olingan 19 noyabr 2020.
  124. ^ "Etanol inshootlaridan CO2 olish uchun dastlabki muhandislik va loyihalash". netl.doe.gov. Olingan 19 noyabr 2020.
  125. ^ "Chevron tabiiy gazida uglerodni olish texnologiyasini sinovdan o'tkazish loyihasi". netl.doe.gov. Olingan 19 noyabr 2020.
  126. ^ "FOA 2187 va FOA 2188 loyihalari tanlovi". Energy.gov. Olingan 19 noyabr 2020.
  127. ^ "Yonishdan keyin tortib olish uchun suvsiz erituvchini muhandislik-o'lchovli sinovi". netl.doe.gov. Olingan 19 noyabr 2020.
  128. ^ "FOA 2187 va FOA 2188 loyihalari tanlovi". Energy.gov. Olingan 19 noyabr 2020.
  129. ^ "Yangi tuzilgan adsorbanlardan foydalangan holda to'g'ridan-to'g'ri havo olish". netl.doe.gov. Olingan 19 noyabr 2020.
  130. ^ "Atmosferadan CO2 olish uchun kengaytirilgan retikulyar sorbent bilan qoplangan tizim (AIR2CO2)". netl.doe.gov. Olingan 19 noyabr 2020.
  131. ^ "MIL-101 (Cr) -Mine sorbentlarini havoni to'g'ridan-to'g'ri tutib olishning haqiqiy sharoitida baholash". netl.doe.gov. Olingan 19 noyabr 2020.
  132. ^ "Harakatsiz to'g'ridan-to'g'ri havo tortib olish (DAC) tizimini namoyish etish". netl.doe.gov. Olingan 19 noyabr 2020.
  133. ^ "FOA 2187 va FOA 2188 loyihalari tanlovi". Energy.gov. Olingan 19 noyabr 2020.
  134. ^ "Karbonat angidridni atrof-muhit havosidan ajratish uchun yuqori samarali, gibrid polimer membrana". netl.doe.gov. Olingan 19 noyabr 2020.
  135. ^ "CO2 ushlash uchun transformatsion sorbentga asoslangan jarayon". netl.doe.gov. Olingan 19 noyabr 2020.
  136. ^ "Birgalikda suv va CO2 to'g'ridan-to'g'ri havoni ushlab turish tizimi". netl.doe.gov. Olingan 19 noyabr 2020.
  137. ^ "CO2 ni to'g'ridan-to'g'ri havo bilan ushlab turish uchun sozlanishi, tezkor qabul qilish, AminoPolimer Airgel Sorbent". netl.doe.gov. Olingan 19 noyabr 2020.
  138. ^ "FOA 2187 va FOA 2188 loyihalari tanlovi". Energy.gov. Olingan 19 noyabr 2020.
  139. ^ "Havoni to'g'ridan-to'g'ri olish uchun zamonaviy qattiq sorbentlarni ishlab chiqish". netl.doe.gov. Olingan 19 noyabr 2020.
  140. ^ "CCUS sherikligi (DAC RECO2UP) uchun energiyani to'g'ridan-to'g'ri havodan olish.". netl.doe.gov. Olingan 19 noyabr 2020.
  141. ^ "FOA 2187 va FOA 2188 loyihalari tanlovi". Energy.gov. Olingan 19 noyabr 2020.
  142. ^ "CO2 ni to'g'ridan-to'g'ri havo bilan ushlab turish uchun past regeneratsiya harorati sorbentlari". netl.doe.gov. Olingan 19 noyabr 2020.
  143. ^ "FOA 2187 va FOA 2188 loyihalari tanlovi". Energy.gov. Olingan 19 noyabr 2020.
  144. ^ "Atrof-muhit haroratida past vakuumli CO2 ushlash uchun gradient amin sorbentlari". netl.doe.gov. Olingan 19 noyabr 2020.
  145. ^ "Elektrokimyoviy ta'sir etadigan karbonat angidridni ajratish". netl.doe.gov. Olingan 19 noyabr 2020.
  146. ^ "FOA 2187 va FOA 2188 loyihalari tanlovi". Energy.gov. Olingan 19 noyabr 2020.
  147. ^ "Iqtisodiy geologiya byurosi er osti karbonat angidrid gazini saqlash uchun birinchi yirik ko'lamli AQSh sinovlari uchun 38 million dollar oladi". Jsg.utexas.edu. 24 oktyabr 2007. Arxivlangan asl nusxasi 2010 yil 11 iyunda. Olingan 14 aprel 2010.
  148. ^ "Davlat xizmatlari komissiyasi seshanba kuni Missisipi Power Kemper stavkasini oshirish masalasini ko'rib chiqadi". gulflive.com. 2013 yil 4 mart.
  149. ^ a b Yan Urbina. "Toza ko'mir" loyihasi ortida iflos sirlarning uyumlari, The New York Times, 2016 yil 5-iyul.
  150. ^ Goldenberg, Suzanna (2014 yil 12 mart). "Kemper AQShning" toza ko'mir "dan foydalanadigan birinchi elektr stantsiyasiga aylanishi mumkinmi?". Guardian. Olingan 14 iyul 2014.
  151. ^ Geuss, Megan (2017 yil 29-iyun). "7,5 milliard dollarlik Kemper elektr stantsiyasi ko'mirni gazlashtirishni to'xtatdi". Ars Technica. Olingan 1 iyul 2017.
  152. ^ Emi, Jeff (2015 yil 17-dekabr). "Kemper zavodi Kongressdan ko'proq pul olishi mumkin". Klarion-Ledger.
  153. ^ "Southern Co. kompaniyasining Kemper elektr stantsiyasining narxi yana oshdi". Atlanta Business Chronicle. 2016 yil 4 aprel.
  154. ^ Drajem, Mark (2014 yil 14-aprel). "AQShning eng qimmat elektr stantsiyasi bilan ko'mirning eng yaxshi umidlari ko'tarildi". Bloomberg Business.
  155. ^ "Uglerodni tortib olish va sekvestratsiya texnologiyalari @ MIT". sekvestratsiya.mit.edu. Olingan 22 noyabr 2018.
  156. ^ "Terrell tabiiy gazni qayta ishlash zavodi (sobiq Val Verde tabiiy gaz zavodlari) | Uglerodni saqlash va saqlash bo'yicha global institut". www.globalccsinstitute.com. Arxivlandi asl nusxasi 2018 yil 21-iyul kuni. Olingan 22 noyabr 2018.
  157. ^ a b v Inc., NRG Energy. "Petra Nova". NRG Energy. Olingan 23 noyabr 2018.
  158. ^ "Uglerodni tortib olish va sekvestratsiya texnologiyalari @ MIT". sekvestratsiya.mit.edu. Olingan 23 noyabr 2018.
  159. ^ "DOE Illinoys sanoat CCS loyihasida erishilgan muhim voqeani e'lon qildi" (Matbuot xabari). AQSh Energetika vazirligi. Olingan 25 noyabr 2018.
  160. ^ Brisko, Toni (2017 yil 23-noyabr). "Decatur zavodi uglerod chiqindilarini er osti quvurlariga etkazib berishda etakchi o'rinda turadi, ammo xarajatlar savol tug'diradi". Chicago Tribune. Olingan 5 noyabr 2019.
  161. ^ "Archer Daniels Midland Company". AQSh Energetika vazirligi, fotoalbom energiya idorasi. Olingan 5 noyabr 2019.
  162. ^ "Xayrlashadigan tutunlar: startap nol chiqindilar bilan qazib olinadigan yoqilg'i quvvatini ixtiro qiladi". Ilm-fan. Olingan 25 iyul 2019.
  163. ^ "Uglerod chiqindilari va havoni ifloslantirmaydigan tabiiy gaz stansiyasi? Ishlayapti". Vox.
  164. ^ "Butun dunyoda uglerodni tortib olish bo'yicha 22 ta loyihada | Uglerod haqida qisqacha ma'lumot". Uglerod haqida qisqacha ma'lumot. 7 oktyabr 2014 yil. Olingan 23 noyabr 2018.
  165. ^ Xills, Tomas P.; Sceats, Mark; Renni, Doniyor; Fennell, Pol (iyul 2017). "LEILAC: Tsement va ohak sanoati uchun arzon narxlardagi CO2 ushlash". Energiya protseduralari. 114: 6166–6170. doi:10.1016 / j.egypro.2017.03.1753.
  166. ^ "Hamkorlar - ANICA". Olingan 23 iyun 2020.
  167. ^ a b "Port Authority, Gasunie va EBN Rotterdamda CCSni amalga oshirish imkoniyatlarini o'rganmoqda". Rotterdam porti. 2017 yil 6-noyabr. Olingan 28 noyabr 2018.
  168. ^ "Climeworks dunyoda birinchi bo'lgan CO2 tortishish zavodi bilan tarix yaratdi | Climeworks - CO2 havodan ushlab olish". www.climeworks.com. Olingan 4 dekabr 2018.
  169. ^ "Climeworks and CarbFix2: To'g'ridan-to'g'ri havoni tortib olish orqali dunyodagi birinchi uglerodni olib tashlash uchun yechim | Climeworks - CO2 ni havodan olish". www.climeworks.com. Olingan 4 dekabr 2018.
  170. ^ "Uglerodni saqlash va saqlash - Atrof muhit - Dyuk Energiya". Dyuk Energiya. Olingan 27 noyabr 2018.
  171. ^ "Alternative yoqilg'i ma'lumotlari markazi: qayta tiklanadigan uglevodorodli bioyoqilg'i". afdc.energy.gov. Olingan 22 aprel 2020.
  172. ^ www.open-100.com https://www.open-100.com/. Olingan 19 noyabr 2020. Yo'qolgan yoki bo'sh sarlavha = (Yordam bering)
  173. ^ "Energiyaga ta'sir ko'rsatish markazi | Iqlim o'zgarishi | Vashington, DC". energiyaimpaktsentratsiya. Olingan 19 noyabr 2020.
  174. ^ a b v d e f Rubin, Edvard S. (sentyabr 2012). "CCS xarajatlar smetasining kamchiliklarini tushunish". Issiqxona gazlarini boshqarish bo'yicha xalqaro jurnal. 10: 181–190. doi:10.1016 / j.ijggc.2012.06.004.
  175. ^ Rubin, Edvard S.; Mantripragada, Xari; Marklar, Aaron; Versteeg, Piter; Kitchin, Jon (oktyabr 2012). "Uglerodni tortib olish texnologiyasini takomillashtirish istiqbollari". Energiya va yonish fanida taraqqiyot. 38 (5): 630–671. doi:10.1016 / j.pecs.2012.03.003.
  176. ^ a b Rochon, Emily va boshq. Soxta umid: Nima uchun uglerodni ushlab qolish va saqlash iqlimni saqlab qolmaydi Arxivlandi 2009-05-04 da Orqaga qaytish mashinasi Greenpeace, 2008 yil may, p. 5.
  177. ^ Torbyornsson, Anders; Vaxtmeyster, Xenrik; Vang, Tszianliang; Xyuk, Mikael (2015 yil aprel). "Uglerodni olish va ko'mirni iste'mol qilish: energiya jarimalari va keng miqyosda tarqatishning oqibatlari". Energiya strategiyasini ko'rib chiqish. 7: 18–28. doi:10.1016 / j.esr.2014.12.001.
  178. ^ Keyting, Deyv (18 sentyabr, 2019 yil). "'Bizga bu dinozavr kerak: Evropa Ittifoqi gazni dekarbonizatsiyalash strategiyasida pardani olib tashlamoqda ". euractiv.com. Olingan 27 sentyabr 2019.
  179. ^ "Ko'mirni qutqarish uchun uglerodni saqlash, saqlash va ulardan foydalanish? Xitoy va AQShga global istiqbol va e'tibor". www.ifri.org. Olingan 27 sentyabr 2019.
  180. ^ "Quvvatdagi CCUS - tahlil". IEA. Olingan 20 noyabr 2020.
  181. ^ "Sanoat chiqindilarini tejash uchun CCU va CCS bo'yicha ochiq munozaralarni chaqirish". Energiya simlarini tozalang. 27 sentyabr 2018 yil. Olingan 17 iyun 2019.
  182. ^ Butler, Klark (2020 yil iyul). "Uglerodni olish va saqlash iqtisodiy emas, balki obro'ga bog'liq" (PDF). IEEFA.
  183. ^ "Energiya" (PDF).
  184. ^ "CCS hisobotining global holati: 2011 yil". Global CCS instituti. Arxivlandi asl nusxasi 2012 yil 12 yanvarda. Olingan 14 dekabr 2011.
  185. ^ muharriri, Adam Morton Environment (2 oktyabr 2020). "'Qayta tiklanadigan manbalardan olinadigan yashil vodorod "o'n yil ichida eng arzon" o'zgaruvchan yoqilg'iga "aylanishi mumkin".. Guardian. ISSN  0261-3077. Olingan 3 oktyabr 2020.CS1 maint: qo'shimcha matn: mualliflar ro'yxati (havola)
  186. ^ SBSTA COP16-da global karbonat angidridni saqlash va saqlash ma'lumotlarini taqdim etadi Arxivlandi 2011 yil 28 iyul Orqaga qaytish mashinasi
  187. ^ Bonner, Mark. "CCS CMP 7 da CDM ga kiradi". Global CCS instituti. Arxivlandi asl nusxasi 2013 yil 24 yanvarda. Olingan 7 may 2012.
  188. ^ "IPCC maxsus hisoboti: Uglerodni tutib olish va saqlash bo'yicha texnik xulosa. IPCC. 27-bet." (PDF). Arxivlandi asl nusxasi (PDF) 2013 yil 1-noyabrda. Olingan 6 oktyabr 2013.
  189. ^ "Yo'q, tabiiy gaz elektrostansiyalari toza emas". Xavotirga tushgan olimlar ittifoqi. 9-noyabr, 2018-yil. Olingan 3 oktyabr 2020.
  190. ^ a b "CCS - Norvegiya: Uglerodni tutish jarayonida ajralib chiqadigan aminlar, nitrosaminlar va nitraminlar 0,3 ng / m3 havodan oshmasligi kerak (Norvegiya sog'liqni saqlash instituti) - ekopolitan". www.ekopolitan.com. Arxivlandi asl nusxasi 2015 yil 23 sentyabrda. Olingan 19 dekabr 2012.
  191. ^ "Yaqinlashib kelayotgan energetik o'tish orqali quvvat olish". MIT yangiliklari | Massachusets texnologiya instituti. Olingan 20 noyabr 2020.
  192. ^ "IPCC maxsus hisoboti: Uglerodni tutib olish va saqlash bo'yicha texnik xulosa. IPCC. 27-bet." (PDF). Arxivlandi asl nusxasi (PDF) 2013 yil 1-noyabrda. Olingan 6 oktyabr 2013.
  193. ^ "IPCC maxsus hisoboti: karbonat angidrid oksidini saqlash va saqlash bo'yicha texnik xulosa" (PDF). Iqlim o'zgarishi bo'yicha hukumatlararo hay'at. Arxivlandi asl nusxasi (PDF) 2011 yil 5 oktyabrda. Olingan 5 oktyabr 2011.
  194. ^ "Germaniyada tarkibiy, iqtisodiy va ekologik jihatlar bo'yicha uglerodni tortib olish va saqlashni qayta tiklanadigan energiya texnologiyalari bilan taqqoslash" (PDF). 2013 yil mart.
  195. ^ "Sidney universiteti: CO2 zaxirasidan oqib chiqadigan global isish ta'siri" (PDF). 2013 yil mart.
  196. ^ "BECCS loyihalarining global holati 2010 - saqlash xavfsizligi". Arxivlandi asl nusxasi 2013 yil 19 mayda. Olingan 5 aprel 2012.
  197. ^ Natuurwetenschap & Techniek; 2009 yil aprel; CCS qochqin xavfi[o'lik havola ]
  198. ^ Vagner, Leonard (2007). "Uglerodni saqlash va saqlash" (PDF). Moraassociates.com. Arxivlandi asl nusxasi (PDF) 2012 yil 21 martda.
  199. ^ "Norvegiya: StatoilHydro-ning Sleipner uglerodni olish va saqlash bo'yicha loyihasi muvaffaqiyatli davom etmoqda". Energiya-pediya. 2009 yil 8 mart. Olingan 19 dekabr 2009.
  200. ^ Allan Keysi, Uglerod qabristoni, Kanada Geographic jurnali, 2008 yil yanvar / fevral, p. 61
  201. ^ Lafler, Pol (2010 yil 27-avgust). "Tuproq gazini geokimyoviy tadqiq qilish, SW30-5-13-W2M maydonini o'rganish, Veybern Maydon, Saskaçevan". Arxivlandi asl nusxasi 2011 yil 19 fevralda. Olingan 12 yanvar 2011.. Ga bog'langan PDF-fayl Matbuot xabari Arxivlandi 2011-01-31 da Orqaga qaytish mashinasi 2011-01-11.
  202. ^ IEA GHG Weyburn-Midale CO2 Monitoring and Storage Project - Petro-Find Gehchem Ltd. tadqiqotiga javob (PDF), Neft texnologiyalari tadqiqot markazi, 2011 yil 19-yanvar, arxivlangan asl nusxasi (PDF) 2016 yil 22 martda
  203. ^ AQSh DOE, 2012. Chuqur geologik hosilalarda saqlangan CO2 ni monitoring qilish, tekshirish va hisobga olish bo'yicha eng yaxshi amaliyotlar - 2012 yil yangilanishi.
  204. ^ Xollouey, S., A. Karimje, M. Akai, R. Pipatti va K. Rypdal, 2006-2011. Eggleston HS, Buendia L., Miwa K., Ngara T. va Tanabe K. (Eds.) Da karbonat angidridni tashish, in'ektsiya qilish va geologik saqlash, Milliy issiqxona zaxiralari uchun IPCC qo'llanmasi, IPCC issiqxona gazlarini zaxiralash milliy dasturi, Jahon savdo tashkiloti. / UNEP
  205. ^ Miles, Natasha L.; Devis, Kennet J.; Wyngaard, John C. (2005). "Eddi kovaryansi yordamida er osti CO2 suv omborlaridan qochqinlarni aniqlash". Chuqur geologik shakllanishda saqlash uchun uglerod dioksidini olish. Elsevier Science. 1031–1044-betlar. doi:10.1016 / B978-008044570-0 / 50149-5. ISBN  978-0-08-044570-0.
  206. ^ a b v Hedlund, Frank Xyess (2012). "Menzengraben kaliy konida karbonat angidridning haddan tashqari otilishi 1953 yil 7-iyul" (PDF). Xavfsizlik fanlari. 50 (3): 537–53. doi:10.1016 / j.ssci.2011.10.004.
  207. ^ "Eendensterfte eshik oqimi CO2-leiding (o'rdak o'lishi CO2 quvuri)". 2013 yil mart. (golland tilida)
  208. ^ a b v Smit, Berend; Reymer, Jeferi A.; Oldenburg, Kertis M.; Bur, Yan S Uglerodni tutib olish va sekvestrlashga kirish (Energiya bo'yicha Berkli ma'ruzalari - 1-jild.). Imperial kolleji matbuoti.
  209. ^ Biondi, Biondo; Ridder, Sjoerd; Chang, Jeyson (2013). "CO2 geologik sekvestratsiya loyihalarining doimiy passiv - seysmik monitoringi" (PDF). Olingan 6 may 2016. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  210. ^ "CCS loyihalari uchun offshor monitoringini ko'rib chiqish". IEAGHG. IEA Issiqxona gazini tadqiq etish va rivojlantirish dasturi. Arxivlandi asl nusxasi 2016 yil 3-iyun kuni. Olingan 6 may 2016.
  211. ^ Madsen, Rod; Xu, Liukang; Klasen, Brent; McDermitt, Dayle (2009 yil fevral). "Uglerodni tutib olish va saqlash loyihalarini sirtini kuzatish usuli". Energiya protseduralari. 1 (1): 2161–2168. doi:10.1016 / j.egypro.2009.01.281.
  212. ^ Trautz, Robert S.; Pugh, Jon D.; Varadxarajan, Charuleka; Zheng, Liange; Byanki, Marko; Niko, Piter S.; Spycher, Nikolas F.; Nyuell, Dennis L.; Esposito, Richard A.; Vu, Yuxin; Dafflon, Baptist; Xabbard, Syuzan S.; Birxolzer, Jens T. (2012 yil 20 sentyabr). "Eritilgan CO2 ning er osti suvlari sayoz tizimiga ta'siri: boshqariladigan bo'shatish maydonidagi tajriba". Atrof-muhit fanlari va texnologiyalari. 47 (1): 298–305. doi:10.1021 / es301280t. PMID  22950750.
  213. ^ a b "InSAR - sun'iy yo'ldoshga asoslangan texnika umumiy deformatsiyani aks ettiradi" rasm"". O'zgaruvchan dunyo uchun USGS Science. AQSh Geologik xizmati. Olingan 6 may 2016.
  214. ^ Kuéllar-Franca, Roza M.; Azapagic, Adisa (2015 yil 1 mart). "Uglerodni tortib olish, saqlash va ulardan foydalanish texnologiyalari: ularning hayot tsiklining atrof-muhitga ta'sirini tanqidiy tahlil qilish va taqqoslash". CO2 dan foydalanish jurnali. 9: 82–102. doi:10.1016 / j.jcou.2014.12.001. ISSN  2212-9820.
  215. ^ "Uglerodni tortib olish". Iqlim va energiya echimlari markazi. Olingan 22 aprel 2020.
  216. ^ Dibenedetto, Anjela; Anjelini, Antonella; Stufano, Paolo (2014 yil 1 mart). "Kimyoviy va yoqilg'i uchun xomashyo sifatida karbonat angidriddan foydalanish: bir hil va heterojen kataliz". Kimyoviy texnologiya va biotexnologiya jurnali. 89 (3): 334–353. doi:10.1002 / jctb.4229. ISSN  1097-4660.
  217. ^ Smit, Berend; Reymer, Jeffri A; Oldenburg, Kertis M; Bourg, Yan C (2013 yil 18-iyun). Uglerodni tutib olish va sekvestrlashga kirish. Berkli "Energiya bo'yicha ma'ruzalar". Imperial kolleji matbuoti. doi:10.1142 / p911. ISBN  9781783263271.
  218. ^ Xepbern, Kemeron; Adlen, Ella; Beddington, Jon; Karter, Emili A.; Fuss, Sabine; Mac Dowell, Niall; Minx, Yan S.; Smit, Pit; Uilyams, Sharlotta K. (6-noyabr, 2019-yil). "CO2 dan foydalanish va tozalashning texnologik va iqtisodiy istiqbollari". Tabiat. 575 (7781): 87–97. doi:10.1038 / s41586-019-1681-6. PMID  31695213.
  219. ^ Biniek, Krysta; Devies, Rayan; Xenderson, Kimberli. "Nima uchun tijorat maqsadlarida foydalanish uglerodni olishning kelajagi bo'lishi mumkin | McKinsey". mckinsey.com. Olingan 12 yanvar 2018.
  220. ^ Simon Robinson (2012 yil 22-yanvar). "Uglerodni kesish: uni ushlashimiz va saqlashimiz kerakmi?". TIME.
  221. ^ Jeykobson, Mark Z.; Delucchi, Mark A. (2010). "Butunjahon energiyasini shamol, suv va quyosh energiyasi bilan ta'minlash, I qism: texnologiyalar, energetika resurslari, infratuzilmaning miqdori va sohalari va materiallari" (PDF). Energiya siyosati. p. 4.
  222. ^ Sguridis, Sguris; Karbaxales-Deyl, Maykl; Tsala, Denes; Kiesa, Matteo; Bardi, Ugo (8 aprel 2019). "Qayta tiklanadigan elektr energiyasi va uglerodni olish va saqlashning taqqoslangan aniq energiya tahlili" (PDF). Tabiat energiyasi. 4 (6): 456–465. doi:10.1038 / s41560-019-0365-7. S2CID  134169612.
  223. ^ "Siyosat ishlab chiqaruvchilar uchun xulosa - 1,5 ºS global isish". Arxivlandi asl nusxasi 2019 yil 31 mayda. Olingan 1 iyun 2019.

Manbalar

Bibliografiya

Qo'shimcha o'qish

Tashqi havolalar