Metall-organik asos - Metal–organic framework

MOF kristalidagi urug 'skanerlashning elektron mikroskopli tasviri

Metall-organik ramkalar (MOF) - bu birikmalar sinfidir metall ionlari yoki klasterlar bilan muvofiqlashtirilgan organik ligandlar bir, ikki yoki uch o'lchovli tuzilmalarni shakllantirish. Ular subklassdir koordinatsion polimerlar, ular tez-tez uchraydigan o'ziga xos xususiyati bilan g'ovak. Kiritilgan organik ligandlar ba'zida "struts" yoki "linkers" deb nomlanadi, masalan bitta misol 1,4-benzenedikarboksilik kislota (BDC).

Rasmiy ravishda, metall-organik ramka - bu organik bilan muvofiqlashtirish tarmog'i ligandlar potentsial bo'shliqlarni o'z ichiga olgan. Muvofiqlashtiruvchi tarmoq - bu koordinatsion birlashmalar orqali bir o'lchovda takrorlanadigan, lekin ikki yoki undan ortiq alohida zanjirlar, tsikllar yoki spiro-bog'lanishlar orasidagi o'zaro bog'liqlik bilan kengaytirilgan koordinatsion birikma yoki koordinatsion birikma ikki yoki uchta o'lchamlari; va nihoyat a koordinatsion polimer bir, ikki yoki uch o'lchovga cho'zilgan takrorlanadigan koordinatsiya sub'ektlari bilan muvofiqlashtiruvchi birikma.[1]

Ba'zi hollarda, mehmon molekulalarini (ko'pincha erituvchi) yo'q qilish paytida teshiklar barqaror bo'lib, ularni boshqa birikmalar bilan to'ldirish mumkin. Ushbu xususiyat tufayli MOF kabi gazlarni saqlash uchun qiziqish uyg'otadi vodorod va karbonat angidrid. MOFlarning boshqa mumkin bo'lgan dasturlari mavjud gaz tozalash, yilda gazni ajratish, yilda kataliz, qattiq moddalar o'tkazuvchanligi kabi va superkondensatorlar.[2]

MOFlarning sintezi va xususiyatlari ushbu fanning asosiy yo'nalishini tashkil etadi retikulyar kimyo (dan.) Lotin retikulum, "kichik to'r").[3] MOFlardan farqli o'laroq, kovalent organik asos (COF) butunlay yengil elementlardan (H, B, C, N va O) kengaytirilgan tuzilmalarga ega.[4]

Tuzilishi

MOFlar ikkita asosiy tarkibiy qismdan iborat: metall ioni yoki metall ionlari klasteri va bog'lovchi deb nomlangan organik molekuladan. Shu sababli, materiallar ko'pincha gibrid organik-noorganik materiallar deb nomlanadi; ammo, yaqinda ushbu terminologiya aniq rad etildi.[1] Organik birliklar odatda mono-, di-, tri- yoki tetravalent ligandlar.[5] Metall va ulagichni tanlash MOFning tuzilishini va shuning uchun xususiyatlarini belgilaydi. Masalan, metall muvofiqlashtirish afzallik, qancha ligandlarning metallga bog'lanishini va qaysi yo'nalishda bo'lishini belgilab, teshiklarning kattaligi va shakliga ta'sir qiladi.

Tasnifi gibrid materiallar o'lchovliligiga asoslangan [6]
Anorganikning o'lchovliligi
0123
Hajmi
Organik
0Molekulyar komplekslarGibrid anorganik zanjirlarGibrid anorganik qatlamlar3-o'lchovli noorganik duragaylar
1Zanjir koordinatsion polimerlariAralash noorganik-organik qatlamlarAralashgan noorganik-organik 3-o'lchovli asos
2Qatlamli koordinatsion polimerAralashgan noorganik-organik 3-o'lchovli asos
33-o'lchovli koordinatsion polimerlar

MOF tuzilmalarini tavsiflash va tartibga solish uchun nomenklatura tizimi ishlab chiqilgan. Ikkinchi darajali qurilish birliklari (SBU) deb nomlangan MOFning bo'linmalari quyidagicha tavsiflanishi mumkin topologiyalar bir nechta tuzilmalar uchun umumiydir. Har bir topologiyaga, shuningdek, to'r deb nomlangan, qalin harflar bilan uchta kichik harflardan tashkil topgan belgi beriladi. MOF-5 masalan, a pcu to'r.

SBU-larga biriktirilgan ko'prikli ligandlar. MOF uchun odatda ko'prikli ligandlar di- va trikarboksilik kislotalardir. Ushbu ligandlar odatda qattiq umurtqa pog'onalariga ega. Masalan, benzol-1,4-dikarboksilik kislota (BDC yoki tereftalik kislota, bifenil-4,4'-dikarboksilik kislota (BPDC) va trikarboksilik kislota. trimesik kislota.

SBU ko'pincha asosiy asetat tuzilishidan kelib chiqadi, asetatlar o'rniga qattiq di- va trikarboksilatlar kiradi.

Sintez

Umumiy sintez

MOFlarni o'rganish muvofiqlashtirish kimyosi va qattiq moddalar noorganik kimyo, ayniqsa seolitlar. Oldindan tuzilgan ligandlardan tashqari, MOF va seolitlar deyarli faqat tomonidan ishlab chiqariladi gidrotermik yoki solvotermik usullar, bu erda kristallar asta sekin issiq eritmadan o'stiriladi. Zeolitlardan farqli o'laroq, MOFlar sintez davomida saqlanib qolgan ko'prikli organik ligandlardan qurilgan.[7] Seolit ​​sintezi ko'pincha "shablon" dan foydalanadi. Shablonlar - bu o'sib borayotgan noorganik ramka tuzilishiga ta'sir qiluvchi ionlar. Odatda templatuvchi ionlar to'rtinchi ammoniy kationlari bo'lib, keyinchalik olib tashlanadi. MOFlarda ramka SBU (ikkilamchi qurilish birligi) va organik ligandlar tomonidan shablon qilingan.[8][9] Gazni saqlash uchun mo'ljallangan MOFlar uchun foydali bo'lgan vasvasaga soluvchi usul bu N, N-dietilformamid va suv singari metallarni biriktiruvchi erituvchilardan foydalanishdir. Bunday hollarda, erituvchi evakuatsiya qilinganida metall joylar ta'sirlanib, bu joylarda vodorodning bog'lanishiga imkon beradi.[10]

To'rt ishlanma MOF kimyosini rivojlantirishda ayniqsa muhim edi.[11] (1) Metall o'z ichiga olgan birliklar qattiq shakllarda saqlanadigan qurilishning geometrik printsipi. Dastlabki MOFlar ditopik koordinatsion bog'lovchilar bilan bog'langan bitta atomlardan iborat edi. Ushbu yondashuv nafaqat mo'ljallangan sintezga yo'naltirilgan bo'lishi mumkin bo'lgan oz sonli afzal topologiyalarni aniqlashga olib keldi, balki doimiy g'ovaklikka erishish uchun markaziy nuqta bo'ldi. (2) Tizimning topologiyasini o'zgartirmasdan uning hajmi va tabiati o'zgarib turadigan izoretik printsipdan foydalanish MOFlarni juda yuqori darajaga olib keldi g'ovaklilik va g'ayrioddiy darajada katta teshik teshiklari. (3) MOFlarning post-sintetik modifikatsiyasi organik birliklar va metall-organik komplekslarni bog'lovchi bilan reaksiyaga kirishish orqali ularning funksionalligini oshirdi. (4) Ko'p funktsional MOFlar bir nechta funktsiyalarni bitta ramkada birlashtirdilar.

MOF laridagi ligandlar odatda teskari bog'lanib turadiganligi sababli, kristallarning sekin o'sishi ko'pincha nuqsonlarni qayta tiklanishiga imkon beradi, natijada millimetr miqyosidagi kristallar va muvozanatga yaqin nuqson zichligi bo'lgan material paydo bo'ladi. Solvotermik sintez strukturani aniqlash uchun mos bo'lgan kristallarni etishtirish uchun foydalidir, chunki kristallar bir necha soatdan bir necha kungacha o'sib boradi. Shu bilan birga, MOFni iste'mol mahsulotlarini saqlash materiallari sifatida ishlatish ularning sintezini ulkan darajada oshirishni talab qiladi. MOFlarni miqyosini oshirish keng o'rganilmagan, biroq bir nechta guruhlar mikroto'lqinli pechlardan foydalanish mumkinligini isbotladilar nukleat MOF kristallari eritmadan tezda.[12][13] Ushbu usul "mikroto'lqinli solvotermik sintez" deb nomlanib, seolit ​​adabiyotida keng qo'llaniladi,[7] va mikron miqyosdagi kristallarni bir necha soniyadan daqiqalarga qadar ishlab chiqaradi,[12][13] sekin o'sish usullariga o'xshash hosildorlikda.

Mezoporozli MIL-100 (Fe) kabi ba'zi MOFlar,[14] xona haroratida va sharoitida yumshoq sharoitda olinishi mumkin yashil erituvchilar (suv, etanol) kengaytiriladigan sintez usullari orqali.

Bir qator kristalli MOFlarning erituvchisiz sintezi tavsiflangan.[15] Odatda metall asetat va organik proligand aralashtiriladi va shar tegirmoni bilan maydalanadi. Cu3(BTC)2 miqdoriy hosildorlikda shu tarzda tezda sintez qilinishi mumkin. Cu holatida3(BTC)2 solventsiz sintezlangan mahsulotning morfologiyasi sanoatda ishlab chiqarilgan Basolit C300 bilan bir xil edi. Bilye tegirmonidagi to'qnashuv energiyasi yuqori bo'lganligi sababli tarkibiy qismlarning lokalize erishi reaktsiyaga yordam berishi mumkin deb o'ylashadi. Sharik tegirmonidagi reaktsiyalarda sirka kislotasining yon mahsulot sifatida hosil bo'lishi reaktsiyaga hal qiluvchi ta'sirida ham yordam berishi mumkin.[16] to'p tegirmonida. Cu ning mexanik-kimyoviy sintezi uchun oz miqdordagi etanol qo'shilishi ko'rsatilgan3(BTC)2 olingan materialdagi struktura nuqsonlari miqdorini sezilarli darajada kamaytiradi.[17]

MOF plyonkalari va kompozitsiyalarini erituvchisiz tayyorlash bo'yicha so'nggi yutuq ularning sintezidir kimyoviy bug 'cho'kmasi. Ushbu jarayon, MOF-CVD,[18]birinchi marta ZIF-8 uchun namoyish etilgan va ikki bosqichdan iborat. Birinchi qadamda metall oksidi oldingi qatlamlari yotqiziladi. Ikkinchi bosqichda ushbu kashshof qatlamlar ta'sir ko'rsatadi sublimed ligand molekulalari, bu MOF kristal panjarasiga fazali transformatsiyani keltirib chiqaradi. Ushbu reaktsiya paytida suv hosil bo'lishi transformatsiyani boshqarishda hal qiluvchi rol o'ynaydi. Ushbu jarayon sanoat mikrofabrikasi standartlariga mos ravishda birlashtirilgan toza xona jarayoniga muvaffaqiyatli o'tkazildi.[19]

MOFlarning yo'naltirilgan ingichka lm sifatida o'sishi uchun ko'plab usullar haqida xabar berilgan. Biroq, bu usullar faqat oz miqdordagi MOF topologiyalarini sintez qilish uchun javob beradi. UiyO tipidagi bir necha MOF ning yupqa plyonka sintezi uchun ishlatilishi mumkin bo'lgan bug 'yordamida konversiya (VAC) bunday misollardan biridir.[20]

Yuqori ishlab chiqarish sintezi

Yuqori samaradorlik (HT) usullari kombinatorial kimyoning bir qismi va samaradorlikni oshirish vositasidir. HT usullarida asosan ikkita sintetik strategiya mavjud: bir tomondan kombinatorial yondashuv, bu erda barcha reaktsiyalar bir idishda sodir bo'ladi, bu mahsulot aralashmalariga olib keladi va boshqa tomondan parallel sintez, bu erda reaktsiyalar sodir bo'ladi turli idishlar. Bundan tashqari, yupqa plyonkalar va hal qiluvchi asosidagi usullar o'rtasida farq bor.[21]

Solvotermik sintez an'anaviy ravishda konvektsiya pechidagi teflon reaktorida yoki mikroto'lqinli pechdagi shisha reaktorlarda (yuqori o'tkazuvchanlik mikroto'lqinli sintez) amalga oshirilishi mumkin. Mikroto'lqinli pechdan foydalanish reaktsiya parametrlarini qisman o'zgartiradi.

Solvotermik sintezdan tashqari, foydalanishda ham yutuqlar mavjud superkritik suyuqlik doimiy oqim reaktorida erituvchi sifatida. Superkritik suv mis va nikel asosidagi MOFlarni bir necha soniya ichida sintez qilish uchun birinchi marta 2012 yilda ishlatilgan.[22] 2020 yilda, superkritik karbonat angidrid suvga asoslangan superkritik usul bilan bir xil vaqt o'lchovi bo'yicha doimiy oqim reaktorida ishlatilgan, ammo karbonat angidridning quyi kritik nuqtasi tsirkonyumga asoslangan MOF UiO-66 sinteziga imkon bergan.[23]

Yuqori samaradorlikdagi solvotermik sintez

Yuqori o'tkazuvchan solvotermik sintezda teflon reaktorlari uchun (masalan) 24 bo'shliq bo'lgan solvotermik reaktor ishlatiladi. Bunday reaktor ba'zida multiklav deb ataladi. Reaktor bloki yoki reaktor qo'shimchasi zanglamaydigan po'latdan yasalgan va to'rtta qatorda joylashgan 24 ta reaktsiya kamerasini o'z ichiga oladi. Miniatizatsiya qilingan teflon reaktorlari bilan 2 ml gacha bo'lgan hajmlardan foydalanish mumkin. Reaktor bloki zanglamaydigan po'latdan yasalgan avtoklavda muhrlangan; shu maqsadda to'ldirilgan reaktorlar reaktorning pastki qismiga kiritiladi, teflon reaktorlari ikkita teflon plyonka bilan yopiladi va reaktorning yuqori tomoni qo'yiladi. Keyinchalik avtoklav gidravlik pressda yopiladi. Keyin muhrlangan solvotermik reaktorni harorat vaqti dasturiga kiritish mumkin. Qayta ishlatiladigan teflon plyonka mexanik ta'sirga qarshi turishga xizmat qiladi, bir martalik teflon plyonka esa reaksiya tomirlarini yopadi. Reaktsiyadan so'ng mahsulotlarni ajratish va vakuum filtri moslamasida parallel ravishda yuvish mumkin. Keyin filtr qog'ozida mahsulotlar namunaviy kutubxonada alohida-alohida mavjud bo'lib, keyinchalik avtomatlashtirilgan rentgen kukunlari difraksiyasi bilan tavsiflanishi mumkin. Olingan ma'lumotlar keyinchalik keyingi sintezlarni rejalashtirish uchun ishlatiladi.[24]

Psevdomorfik replikatsiya

Psevdomorfik minerallarni almashtirish hodisalari, har qanday mineral faza muvozanatsiz bo'lgan suyuqlik bilan aloqa qilganda sodir bo'ladi. Qayta muvozanat erkin energiyani kamaytirish va boshlang'ich fazani termodinamik jihatdan barqaror fazaga aylantirish, erish va qayta quyish jarayonlarini o'z ichiga oladi.[25][26]

Bunday geologik jarayonlardan ilhomlanib, MOF ingichka plyonkalari kombinatsiyasi orqali o'stirilishi mumkin atom qatlamini cho'ktirish (ALD) ning alyuminiy oksidi mos substrat ustiga (masalan, FTO) va keyingi solvotermik mikroto'lqinli sintezga. Alyuminiy oksidi qatlami ham me'morchilikni boshqaruvchi vosita, ham MOF strukturasining orqa miya uchun metall manbai bo'lib xizmat qiladi.[27] G'ovakli 3D metall-organik ramkaning qurilishi mikroto'lqinli sintez paytida, atom qatlami yotqizilgan substratga kerakli bog'lovchi eritmasi ta'sirida DMF / H2O 3: 1 aralashmasi (v / v) yuqori haroratda. Analog, Kornienko va uning hamkasblari 2015 yilda kobalt-porfirin MOF (Al2(OH)2TCPP-Co; TCPP-H2 = 4,4 ′, 4 ″, 4 ‴ - (porfirin-5,10,15,20-tetrayl) tetrabenzoat), suvning elektrokatalitik konversiyasi uchun qurilgan birinchi MOF katalizatori CO2 ga CO.[28]

Post-sintetik modifikatsiya

G'ovaklarning uch o'lchovli tuzilishi va ichki muhiti nazariy jihatdan tugunlarni va organik bog'lovchi guruhlarni to'g'ri tanlash orqali boshqarilishi mumkin bo'lsa-da, MOF tizimlarining yuqori sezgirligi tufayli bunday materiallarni kerakli funktsionallik bilan to'g'ridan-to'g'ri sintez qilish qiyin bo'lishi mumkin. Issiqlik va kimyoviy sezgirlik, shuningdek reaktsiya materiallarining yuqori reaktivligi, kerakli mahsulotlarni shakllantirishni qiyinlashtirishi mumkin. Mehmon molekulalarining almashinuvi va qarshi ionlar va erituvchilarni olib tashlash ba'zi qo'shimcha funktsiyalarni bajarishga imkon beradi, ammo ular hali ham ramkaning ajralmas qismlari bilan chegaralanadi.[29] Organik bog'lovchilar va metall ionlarining post-sintetik almashinuvi maydonning kengayib borayotgan maydonidir va murakkab tuzilmalar, funksionallikni oshirish va tizimni boshqarish uchun imkoniyatlar ochadi.[29][30]

Ligand almashinuvi

Post-sintetik modifikatsiyalash usullaridan tayyor MOFda mavjud bo'lgan organik bog'lovchi guruhni yangi bog'lovchi bilan almashtirish uchun foydalanish mumkin. ligand almashinuvi yoki qisman ligand almashinuvi.[30][31] Ushbu almashinuv teshiklarni va ba'zi hollarda MOFlarning umumiy doirasini aniq maqsadlar uchun moslashtirishga imkon beradi. Ushbu usullardan ba'zilari tanlab adsorbsiyalash, gazni saqlash va kataliz uchun materialni aniq sozlashni o'z ichiga oladi.[30][10] Ligand almashinuvini amalga oshirish uchun oldindan tayyorlangan MOF kristallari erituvchi bilan yuviladi va keyin yangi bog'lovchi eritmasiga solinadi. Almashish ko'pincha issiqlikni talab qiladi va bir necha kunlik vaqt miqyosida sodir bo'ladi.[31] Post-sintetik ligand almashinuvi ham qo'shilishini ta'minlaydi funktsional guruhlar aks holda MOF sintezida omon qololmaydigan, harorat, pH qiymati yoki boshqa reaktsiya sharoitlari sababli yoki qarz ligandidagi donor guruhlar bilan raqobatlashib sintezga xalaqit beradigan MOFlarga.[30]

Metall almashinuv

Post-sintetik modifikatsiyalash usullari, shuningdek, oldindan tayyorlangan MOFda mavjud bo'lgan metall ionini yangi metall ionlari bilan metall ionlari almashinuvi bilan almashtirishda ham qo'llanilishi mumkin. Ramkaning ajralmas qismidan to'liq metall metateziga MOFning tuzilishi yoki teshik tuzilishi o'zgarmasdan erishildi. Post-sintetik ligand almashinuviga o'xshash post-sintetik metall almashinuvi oldindan tayyorlangan MOF kristallarini erituvchi bilan yuvib, so'ngra kristalni yangi metall eritmasiga singdirish orqali amalga oshiriladi.[32] Post-sintetik metall almashinuvi bir xil asosda, ammo har xil metall ionlari bilan MOF hosil bo'lishining oddiy yo'lini ochishga imkon beradi.[29]

Qatlamli sintez

Ligandlar va metallarning o'zlarining ishlashini o'zgartirishdan tashqari, MOF tuzilishini kengaytirish uchun post-sintetik modifikatsiyadan foydalanish mumkin. Post-sintetik modifikatsiyadan foydalangan holda MOFlar yuqori tartibli kristalli materialdan heterojen gözenekli materialga aylantirilishi mumkin.[33] Post-sintetik usullardan foydalangan holda MOF kristaliga domenlarni boshqariladigan tarzda o'rnatish mumkin, bu noyob strukturaviy va funktsional xususiyatlarga ega. Qatlamlar noyob funktsionalizatsiyaga ega bo'lgan, ammo aksariyat hollarda bu erda asosiy qobiqli MOFlar va boshqa qatlamli MOFlar tayyorlangan. kristallografik jihatdan qatlamdan qatlamga mos keladi.[34]

Muvofiqlashtiruvchi saytlarni oching

Ba'zi hollarda MOF metall tuguni to'yinmagan muhitga ega va turli xil texnikalar yordamida ushbu muhitni o'zgartirish mumkin. Agar ligandning kattaligi teshik teshiklarining o'lchamiga to'g'ri keladigan bo'lsa, mavjud MOF tuzilishiga qo'shimcha ligandlarni o'rnatish mumkin.[35][36] Ba'zida metall tugunlar noorganik turlar uchun yaxshi bog'lanish yaqinligiga ega. Masalan, metall tugun uzaytirishi va uranil kationi bilan birikma hosil qilishi mumkinligi ko'rsatildi.[37]

Kompozit materiallar

MOFlarda adsorbsiyani oshirishga yana bir yondashuv tizimni shunday o'zgartirishdir xemosorbtsiya mumkin bo'ladi. Ushbu funktsiya tarkibiga MOF va kompleksini o'z ichiga olgan kompozit material tayyorlash orqali kiritilgan platina bilan faol uglerod. Sifatida tanilgan effektda vodorod tushishi, H2 vodorod molekulasini ikkita vodorod atomiga ajratadigan va ularning faollashgan ugleroddan MOF yuzasiga o'tishini ta'minlaydigan dissotsiluvchi mexanizm orqali platina yuzasiga bog'lanishi mumkin. Ushbu yangilik MOFning xona haroratini saqlash hajmining uch baravar ko'payishiga olib keldi; ammo desorbsiya 12 soatgacha davom etishi mumkin va qaytariladigan desorbsiya ba'zan atigi ikki tsiklda kuzatiladi.[38][39] MOFlarda vodorodni to'kib yuborish va vodorodni saqlash xususiyatlari o'rtasidagi munosabatlar yaxshi tushunilmagan, ammo vodorodni saqlashga tegishli bo'lishi mumkin.

Vodorodni saqlash

Molekulyar vodorod eng yuqori ko'rsatkichga ega o'ziga xos energiya har qanday yoqilg'idan.

Ammo vodorod gazi siqilmasa, uning hajmli energiya zichligi juda past bo'ladi, shuning uchun vodorodni tashish va saqlash energiya talab qiladigan siqish va suyultirish jarayonlarini talab qiladi.[40][41][42] Shu sababli, amaliy hajmli energiya zichligi uchun zarur bo'lgan bosimni kamaytiradigan vodorodni saqlashning yangi usullarini ishlab chiqish tadqiqotning faol yo'nalishi hisoblanadi.[40] MOF adsorptiv vodorodni saqlash uchun material sifatida yuqori bo'lganligi sababli e'tiborni tortadi o'ziga xos sirt maydonlari va sirtdan hajmga nisbatlar, shuningdek ularning kimyoviy sozlanishi tuzilmalari.[38]

Bo'sh bilan taqqoslaganda gaz balloni, MOF bilan to'ldirilgan gaz tsilindri ma'lum bir bosimda ko'proq vodorodni saqlashi mumkin, chunki vodorod molekulalari yutish MOFlar yuzasiga. Bundan tashqari, MOFlar o'lik hajmdan xoli, shuning uchun bo'sh joyni blokirovka qilish natijasida saqlash hajmi deyarli yo'qolmaydi.[5] Bundan tashqari, chunki vodorodni iste'mol qilish asosan asoslanadi fizizortsiya, ko'plab MOFlar butunlay qaytarib olinadigan qabul qilish va ozod qilish xatti-harakatlariga ega. Katta emas faollashtirish to'siqlari adsorbsiyalangan vodorodni ajratishda talab qilinadi.[5] MOFni saqlash hajmi vodorodning suyuq fazali zichligi bilan cheklanadi, chunki MOFlar tomonidan ta'minlanadigan foyda faqat vodorod gaz holatida bo'lgan taqdirda amalga oshirilishi mumkin.[5]

Gazning MOF yuzasiga qanchalik adsorbsiyalanishi gazning harorati va bosimiga bog'liq. Umuman olganda, adsorbsiya haroratning pasayishi va bosimning oshishi bilan ortadi (maksimal darajaga etguncha, odatda 20-30 bar, undan keyin adsorbsion quvvat pasayadi).[5][38][42] Biroq, MOFlar ishlatilishi kerak vodorodni saqlash avtoulovda yonilg'i xujayralari atrof-muhit harorati va 1 dan 100 bargacha bo'lgan bosimlarda samarali ishlashi kerak, chunki bu avtomobillar uchun xavfsiz deb hisoblanadigan qiymatlardir.[38]

MOF-177

The AQSh Energetika vazirligi (DOE) ushbu sohadagi tadqiqotchilarga rahbarlik qiluvchi engil yoqilg'i kameralari uchun vodorodni saqlash uchun yillik texnik tizim maqsadlari ro'yxatini e'lon qildi (5,5 vt% / 40 g L−1 2017 yilgacha; 7,5% / 70 g L−1 yakuniy).[43] MOFlar kabi yuqori g'ovakliligi va yuqori sirt maydoni bo'lgan materiallar ushbu maqsadlarga erishish uchun ishlab chiqilgan va sintez qilingan. Ushbu adsorptiv materiallar odatda katta bo'lganligi sababli xemosorbtsiya emas, balki fizik adsorbsiya orqali ishlaydi HOMO-LUMO bo'shliq va molekulyar vodorodning past HOMO energiya darajasi. Ushbu maqsadga qaratilgan etalon material MOF-177 bo'lib, u vodorodni 7,5% og'irlikda saqlaydi, uning hajmi 32 g L ga teng.−1 77 K va 70 barda.[44] MOF-177 tarkibiga kiradi [Zn4O]6+ 1,3,5-benzebetribenzoat organik bog'lovchilar bilan o'zaro bog'langan va o'lchovga ega klasterlar Garov sirt maydoni 4630 m2 g−1. Yana bir namunali material - bu PCN-61, u 6,24% va 42,5 g L vodorodni qabul qilishni namoyish etadi.−1 35 barda va 77 K va atmosfera bosimida 2,25%.[45] PCN-61 [Cu dan iborat2]4+ 5,5 ′, 5 ′ through - benzol-1,3,5-triiltris (1-etinil-2-izoftalat) organik bog'lovchilar orqali bog'langan va o'lchangan BET sirt maydoni 3000 m2 g−1. Ushbu istiqbolli MOF misollariga qaramay, vodorodni amaliy saqlash uchun eng yuqori ko'rsatkichlarga ega bo'lgan sintetik gözenekli materiallar sinflari faol uglerod va kovalent organik ramkalar (COF).[46]

Dizayn tamoyillari

Vodorodni saqlash uchun MOFlarning amaliy qo'llanmalari bir nechta qiyinchiliklarga duch kelmoqda. Xona haroratiga yaqin vodorod adsorbsiyasi uchun vodorod majburiy energiya sezilarli darajada oshirilishi kerak edi.[38] MOFlarning bir nechta sinflari o'rganilgan, shu jumladan karboksilat asoslangan MOFlar, heterosiklik azolat asosli MOFlar, metal-siyanidli MOFlar va kovalent organik ramkalar. Karboksilat asosidagi MOFlarga hozirgacha eng katta e'tibor qaratildi, chunki

  1. ular sotuvda mavjud yoki osongina sintez qilinadi,
  2. ular yuqori kislotalikka ega (pK)a ˜ 4) qulaylik yaratishga imkon berish joyida deprotatsiya,
  3. metall-karboksilat bog'lanishining shakllanishi qaytariluvchan bo'lib, yaxshi tartiblangan kristalli MOFlar hosil bo'lishiga yordam beradi va
  4. ko'prik bidentate karboksilat guruhlarining koordinatsion qobiliyati erituvchi teshiklardan evakuatsiya qilish uchun zarur bo'lgan sharoitlarda MOF arxitekturasini saqlash uchun zarur bo'lgan yuqori darajadagi ramka aloqasi va kuchli metall-ligand bog'lanishlarini qo'llab-quvvatlaydi.[38]

Eng keng tarqalgan o'tish metallari karboksilat asosidagi ramkalarda ishlatiladigan Cu2+ va Zn2+. Yengilroq asosiy guruh metall ionlari ham o'rganilgan. Bo'ling12(OH)12(BTB)4, engil asosiy guruh metall ionidan tashkil topgan birinchi muvaffaqiyatli sintezlangan va tarkibiy jihatdan xarakterli MOF yuqori vodorodni saqlash qobiliyatini ko'rsatadi, ammo amalda foydalanish uchun juda zaharli.[47] Mg tarkibidagi magnezium kabi boshqa engil asosiy guruh metallarining ionlaridan tashkil topgan MOFlarni ishlab chiqarishda katta kuch sarflanmoqda.4(BDC)3.[38]

Quyida 2012 yil may oyiga kelib vodorodni saqlash uchun eng yaxshi xususiyatlarga ega deb hisoblangan bir nechta MOFlarning ro'yxati keltirilgan (vodorodni saqlash hajmini kamaytirish maqsadida).[38] Ta'riflangan har bir MOF o'zining afzalliklariga ega bo'lsa-da, ushbu MOFlarning hech biri AQSh DOE tomonidan belgilangan barcha standartlarga erisha olmaydi. Shuning uchun, yuqori sirt maydonlari, kichik teshiklari yoki ikki yoki uch valentli metall klasterlari bo'lgan materiallar vodorodni saqlash uchun eng maqbul MOF ishlab chiqaradimi, hali ma'lum emas.[5]


  • Zn4O (BTE) (BPDC), qaerda BTE3−= 4,4 ′, 4 ″ - [benzol-1,3,5-triil-tris (etin-2,1-diyl)] tribenzoat va BPDC2−= bifenil-4,4′-dikarboksilat (MOF-210) [48]

    Vodorodni saqlash hajmi (77 K da): 77 K va 80 barda 8,6 ortiqcha vazn (jami wt% 17,6). 44 g g2/ L 80 bar va 77 K da.[48]

    Vodorodni saqlash hajmi (298 K da): 2.90 etkazib berish wt% (1-100 bar) 298 K va 100 barda.
  • Zn4O (BBC)2, qaerda BBC3−= 4,4 ′, 4 ″ - [benzol-1,3,5-triil-tris (benzol-4,1-diyl)] tribenzoat (MOF-200) [48]
    Vodorodni saqlash hajmi (77 K da): 77 K va 80 barda 7.4 ortiqcha vazn% (umumiy og'irlik% 16.3). Jami 36 g2/ L 80 bar va 77 K da.[48]
    Vodorodni saqlash hajmi (298 K da): 3.24 etkazib berish wt% (1-100 bar) 298 K va 100 barda.
  • Zn4O (BTB)2qaerda BTB3−= 1,3,5-benzenetribenzoat (MOF-177) [49]
    Tuzilishi: Tetraedral [Zn4O]6+ birliklari katta, uchburchak trikarboksilat ligandlari bilan bog'langan. Diametri 10,8 diamond bo'lgan olmos shaklidagi oltita kanal (yuqori) tutilgan BTBni o'z ichiga olgan teshikni o'rab oladi3− qismlar (pastki).
    Vodorodni saqlash hajmi: 7,1% 77 K va 40 barda; 11 baravar vazn 78 bar va 77 K da.
    MOF-177 teshiklari kattaroq, shuning uchun vodorod sirtga adsorbsiyalanish o'rniga teshiklar ichida siqiladi. Bu jami yuqori ko'rsatkichlarga olib keladi gravimetrik olish, lekin pastroq hajmli saqlash zichligi MOF-5 bilan taqqoslaganda.[38]
  • Zn4O (BDC)3, bu erda BDC2−= 1,4-benzenedikarboksilat (MOF-5) [50]
    Tuzilishi: Kvadrat teshiklari yo'nalishga qarab 13,8 yoki 9,2 'dir aromatik uzuklar.
    Vodorodni saqlash hajmi: 7,1% 77 K va 40 barda; 100 barda 10% og'irlik; hajmli saqlash zichligi 66 g / l.
    MOF-5 bog'laydigan vodorodni kuchaytirish vositasi bo'lgan MOF sirtidagi qisman zaryadlari tufayli nazariyotchilar tomonidan katta e'tiborga sazovor bo'ldi. dipol -molekulalararo o'zaro ta'sirlar; ammo MOF-5 xona haroratida yomon ishlashga ega (100 barda 9,1 g / L).[38]
  • Mn3[(Mn4Cl)3(BTT)8]2, qaerda H3BTT = benzol-1,3,5-tris (1H-tetrazol) [51]
    Tuzilishi: Kvadrat yuzlarni taqsimlaydigan kesilgan oktahedral kataklardan iborat bo'lib, diametri taxminan 10 Å bo'lgan teshiklarga olib keladi. Ochiq Mn ni o'z ichiga oladi2+ muvofiqlashtirish saytlari.
    Vodorodni saqlash hajmi: 77 g va 90 barda 60 g / l; 12,1 g / L 90 bar va 298 K. Bu MOF vodorod adsorbsiyasi kuchini oshiradigan ochiq metall koordinatsion maydonlarining birinchi namoyishi bo'lib, natijada 298 K da ishlash ko'rsatkichlari yaxshilanadi, u nisbatan kuchli metall-vodorod o'zaro ta'siriga ega. Spin holati majburiy yoki klassikaga o'zgartirish Coulombic attraktsioni.[38]
  • Cu3(BTC)2(H2O)3, qaerda H3BTC =1,3,5-benzenetrikarboksilik kislota [52]
    Tuzilishi: Diametri taxminan 9,8 Å bo'lgan teshiklarni aniqlash uchun pervanel birliklarini taqsimlovchi sakkiztaral kataklardan iborat.

Vodorodni yuqori darajada qabul qilish jozibali qatlam bilan bog'liq potentsial bir nechta mis belkurak-g'ildirak birliklaridan: har bir Cu (II) markazi potentsial ravishda terminal hal qiluvchi yo'qotishi mumkin ligand bilan bog'langan eksenel holati, vodorodni bog'lash uchun ochiq koordinatsiya maydonchasini taqdim etadi.[38]

Vodorodni saqlash hajmiga tizimli ta'sir

Bugungi kunga kelib MOFlarda vodorodni saqlash xona haroratida saqlash qobiliyatini maksimal darajaga ko'tarish va adsorbentlar ramkasining yaxlitligini saqlab qolish (masalan, teshiklarni to'liq evakuatsiya qilish, MOF tuzilishini saqlab qolish va h.k.) ko'plab tsikllarda saqlanib qoladi. Vodorodni saqlash uchun MOF dizaynini tartibga soluvchi ikkita asosiy strategiya mavjud:

1) materialning nazariy saqlash hajmini oshirish va
2) ish sharoitlarini atrof-muhit harorati va bosimiga yaqinlashtirish. Rowsell va Yagi ba'zi dastlabki hujjatlarda ushbu maqsadlarga erishish uchun bir nechta yo'nalishlarni aniqladilar.[53][54]

Yuzaki maydon

Vodorodni saqlash uchun ishlatiladigan MOFlarning umumiy tendentsiyasi shundaki, sirt qancha ko'p bo'lsa, MOF shuncha ko'p vodorodni saqlashi mumkin. Yuqori sirt materiallari ko'proq mikropore hajmini va asosan quyi zichlikni namoyon qiladi, bu esa ko'proq vodorod adsorbsiyasi paydo bo'lishiga imkon beradi.[38]

Vodorod adsorbsiyasi entalpiyasi

Vodorodning yuqori adsorbsiyasi entalpiya ham muhimdir. Nazariy tadqiqotlar shuni ko'rsatdiki, 22-25 kJ / mol o'zaro ta'sirlar vodorodni xona haroratida saqlash uchun juda mos keladi, chunki ular H ni adsorbsiyalash uchun kuchlidir.2, ammo tez desorbsiyani ta'minlaydigan darajada kuchsiz.[55] Vodorod va zaryadsiz organik bog'lovchilarning o'zaro ta'siri bu qadar kuchli emas, shuning uchun katta miqdordagi ish MOFlarni ochiq metalli joylar bilan sintez qilishda davom etdi, bu erda vodorod 5-10 kJ / mol entalpiya bilan adsorbsiyalanadi. Sintetik tarzda, bunga foydalanish orqali erishish mumkin ligandlar geometriyasi metallni to'liq muvofiqlashtirishga to'sqinlik qiladi o'zgaruvchan sintez jarayonida metal bilan bog'langan erituvchi molekulalar va qo'shimcha metall kationlari bilan postintintetik singdirish orqali.[10][51] (C5H5) V (CO)3(H2) va Mo (CO)5(H2) ochiq metallarni koordinatsiya qilish joylari tufayli bog'lanish energiyasini ko'paytirishning ajoyib namunalari;[56] ammo, ularning yuqori metall-vodorod bog'lanish dissotsilanish energiyalari natijada vodorod yuklanganda juda katta issiqlik ajralib chiqadi, bu esa unchalik qulay emas yonilg'i xujayralari.[38] Shuning uchun MOFlar bunday kuchli metall-vodorod bog'lanishiga olib keladigan orbital o'zaro ta'sirlardan qochishi va oddiy zaryadga bog'liq holda foydalanishi kerak. dipol Mn da ko'rsatilgandek o'zaro ta'sirlar3[(Mn4Cl)3(BTT)8]2.

22-25 kJ / mol assotsiatsiya energiyasi zaryadli dipol ta'siriga xosdir va shuning uchun zaryadlangan bog'lovchilar va metallardan foydalanishga qiziqish mavjud.[38] Metall-vodorod bog'lanish kuchliligi MOFlarda zaryad diffuziyasi tufayli kamayadi, shuning uchun bu o'zaro ta'sirni yanada kuchaytirish uchun 2+ va 3+ metall ionlari o'rganilmoqda. Ushbu yondashuv bilan bog'liq muammo shundaki, ochiq metall yuzalarga ega bo'lgan MOFlar bog'lovchilarning past konsentratsiyasiga ega; bu ularni sintez qilishni qiyinlashtiradi, chunki ular ramka qulashiga moyil. Bu ularning foydali umrlarini ham kamaytirishi mumkin.[10][38]

Havodagi namlikka sezgirlik

MOFlar havodagi namlikka tez-tez sezgir. Xususan, IRMOF-1 xona haroratida oz miqdordagi suv mavjud bo'lganda parchalanadi. Metall analoglari bo'yicha tadqiqotlar Zn dan boshqa metallarning yuqori haroratda yuqori suv kontsentratsiyasini ushlab turish qobiliyatini aniqladi.[57][58]

Buning o'rnini qoplash uchun qimmatga tushishi mumkin bo'lgan maxsus qurilgan saqlash idishlari talab qilinadi. Ma'lumki, metall-imidazolat, -triazolat va -pirazolat ramkalaridagi kuchli metal-ligand bog'lanishlari MOFning havoga sezgirligini pasaytiradi va saqlash xarajatlarini kamaytiradi.[38]

Teshik hajmi

Mikroporozli materialda qaerda fizizortsiya va kuchsiz van der Waals kuchlari dominant adsorbsiya, saqlash zichligi teshiklarning kattaligiga katta bog'liq. Idealizatsiya qilingan bir hil materiallarni hisoblash, masalan, grafit karbonlari va uglerodli nanotubalar, kengligi 7 g 'bo'lgan gözenekli mikroporozli material xona haroratida maksimal vodorodni qabul qilishni namoyish etadi. Ushbu kenglikda vodorod molekulalarining to'liq ikki qatlami qarama-qarshi sirtlarda adsorbsiyalanadi, ular orasida bo'sh joy qolmaydi.[38][59]10 g kenglikdagi teshiklar ham ideal o'lchamga ega, chunki bu kenglikda to'liq uch vodorod qatlami mavjud bo'lib, ular orasida bo'sh joy qolmaydi.[38] (Vodorod molekulasi har bir atom uchun van der Wals radiusi 1,17 Å bo'lgan 0,74 a bog'lanish uzunligiga ega, shuning uchun uning van van Walsning samarali uzunligi 3,08 is ni tashkil qiladi.) [60]

Tuzilish nuqsonlari

MOFlarning ishlashida tarkibiy nuqsonlar ham muhim rol o'ynaydi. Xona haroratida vodorodni ko'prik orqali olish to'kilmaslik asosan ikkita ta'sirga ega bo'lishi mumkin bo'lgan tuzilish nuqsonlari bilan boshqariladi:

1) qisman qulab tushgan ramka teshiklarga kirishni to'sib qo'yishi mumkin; shu bilan vodorodni iste'mol qilishni kamaytiradi va
2) panjara qusurlari yangi g'ovaklar va kanallarning murakkab massivini vujudga keltirishi mumkin, bu esa vodorodni ko'payishini kuchayishiga olib keladi.[61]

Strukturaviy nuqsonlar, shuningdek, metall o'z ichiga olgan tugunlarni to'liq muvofiqlashtirmasligi mumkin. Bu mavjud bo'lgan metall markazlari sonini ko'paytirish orqali vodorodni saqlash uchun ishlatiladigan MOF ish faoliyatini yaxshilaydi.[62] Va nihoyat, tarkibiy nuqsonlar transportni ta'sir qilishi mumkin fononlar ta'sir qiladi issiqlik o'tkazuvchanligi MOF.[63]

Vodorod adsorbsiyasi

Adsorbtsiya bu sirtga tushgan atomlarni yoki molekulalarni tutish jarayoni; shuning uchun materialning adsorbsion qobiliyati uning yuzasi bilan ortadi. Uch o'lchovda, maksimal sirt maydoni atomlar va molekulalar ichki yuzalarga kira oladigan darajada g'ovakli tuzilishga ega bo'ladi. Ushbu oddiy sifatli dalil shuni ko'rsatadiki, juda gözenekli metall-organik ramkalar (MOF) vodorodni saqlash qurilmalari uchun juda yaxshi nomzod bo'lishi kerak.

Adsorbsiyani keng ikki turdan biri deb tasniflash mumkin: fizizortsiya yoki xemosorbtsiya. Fizizortsiya kuchsizligi bilan ajralib turadi van der Waalsning o'zaro ta'siri, va bog'lanish entalpiyalari odatda 20 kJ / mol dan kam. Xemisorbtsiya, muqobil ravishda, kuchliroq bilan belgilanadi kovalent va ionli bog'lanishlar, 250 dan 500 kJ / mol gacha bo'lgan bog'lanish entalpiyalari bilan. Ikkala holatda ham adsorbat atomlar yoki molekulalar (ya'ni sirtga yopishgan zarralar) adsorbent (qattiq) sirtga jalb qilinadi, chunki sirt energiyasi yuzada joylashgan bo'lmagan bog'lanish joylaridan kelib chiqadi. Darajasi orbital qoplama keyin o'zaro ta'sirlarning fizizorptiv yoki xemisorptiv bo'lishini aniqlaydi.[64]

MOFlarda molekulyar vodorodning adsorbsiyasi fizizorptivdir. Molekulyar vodorod faqat ikkita elektronga ega bo'lgani uchun, dispersiya kuchlari kuchsiz, odatda 4-7 kJ / mol va faqat 298 K dan past haroratlarda adsorbtsiya uchun etarli.[38]

H ning to'liq izohi2 MOFlarda sorbsiya mexanizmiga katta kanonik ansamblda statistik o'rtacha hisoblash, bosim va haroratning keng doirasini o'rganish orqali erishildi.[65][66]

Vodorodni saqlash hajmini aniqlash

MOFlarni vodorodni saqlash materiallari sifatida tavsiflash uchun vodorodni qabul qilishni o'lchashning ikkita usuli qo'llaniladi: gravimetrik va hajmli. MOF tarkibidagi vodorodning umumiy miqdorini olish uchun uning yuzasida so'rilgan vodorod miqdori va uning teshiklarida yashovchi vodorod miqdori hisobga olinishi kerak. Mutlaq so'rilgan miqdorni hisoblash uchun (Nabs), sirt ortiqcha miqdori (Nsobiq) vodorodning katta zichligi mahsulotiga qo'shiladi (rommaviy) va MOFning teshik hajmi (Vteshik), quyidagi tenglamada ko'rsatilgandek:[67]

Gravimetrik usul

The increased mass of the MOF due to the stored hydrogen is directly calculated by a highly sensitive microbalance.[67] Sababli suzish qobiliyati, the detected mass of adsorbed hydrogen decreases again when a sufficiently high pressure is applied to the system because the density of the surrounding gaseous hydrogen becomes more and more important at higher pressures. Thus, this "weight loss" has to be corrected using the volume of the MOF's frame and the density of hydrogen.[68]

Volumetric method

The changing of amount of hydrogen stored in the MOF is measured by detecting the varied pressure of hydrogen at constant volume.[67] The volume of adsorbed hydrogen in the MOF is then calculated by subtracting the volume of hydrogen in free space from the total volume of dosed hydrogen.[69]

Other methods of hydrogen storage

There are six possible methods that can be used for the reversible storage of hydrogen with a high volumetric and gravimetric density, which are summarized in the following table, (where ρm is the gravimetric density, ρv is the volumetric density, T is the working temperature, and P is the working pressure):[70]

Saqlash usulirm (mass%)rv (kg H2/ m3)T (° C)P (bar)Izohlar
High-pressure gas cylinders13<4025800Compressed H2 gas in lightweight composite cylinder
Liquid hydrogen in cryogenic tankssize-dependent70.8−2521Suyuq H2; continuous loss of a few percent of H2 per day at 25 °C
Adsorbed hydrogen~220−80100Physisorption of H2 on materials
Adsorbed on interstitial sites in a host metal~2150251Atomic hydrogen reversibly adsorbs in host metals
Complex compounds<18150>1001Complex compounds ([AlH4] or [BH4]); desorption at elevated temperature, adsorption at high pressures
Metal and complexes together with water<40>150251Chemical oxidation of metals with water and liberation of H2

Of these, high-pressure gas cylinders and liquid hydrogen in cryogenic tanks are the least practical ways to store hydrogen for the purpose of fuel due to the extremely yuqori pressure required for storing hydrogen gas or the extremely past temperature required for storing hydrogen liquid. The other methods are all being studied and developed extensively.[70]

Kataliz

MOFs have potential as heterojen katalizatorlar, although applications have not been commercialized.[71] Their high surface area, tunable porosity, diversity in metal and functional groups make them especially attractive for use as catalysts. Zeolites are extraordinarily useful in catalysis.[72] Zeolites are limited by the fixed tetrahedral coordination of the Si/Al connecting points and the two-coordinated oxide linkers. Fewer than 200 zeolites are known. In contrast with this limited scope, MOFs exhibit more diverse muvofiqlashtirish geometriyalari, polytopic linkers, and ancillary ligandlar (F.), OH, H2O among others). It is also difficult to obtain zeolites with pore sizes larger than 1 nm, which limits the catalytic applications of zeolites to relatively small organic molecules (typically no larger than ksilollar ). Furthermore, mild synthetic conditions typically employed for MOF synthesis allow direct incorporation of delicate functionalities into the framework structures. Such a process would not be possible with zeolites or other microporous crystalline oxide-based materials because of the harsh conditions typically used for their synthesis (e.g., kalsinatsiya at high temperatures to remove organic templates). Metal-Organic Framework MIL-101 is one of the most used MOFs for catalysis incorporating different transition metals such as Cr.[73]

Zeolites still cannot be obtained in enantiopure form, which precludes their applications in catalytic assimetrik sintez, e.g., for the pharmaceutical, agrochemical, and fragrance industries. Enantiopure chiral ligands or their metal complexes have been incorporated into MOFs to lead to efficient asymmetric catalysts. Even some MOF materials may bridge the gap between zeolites and fermentlar when they combine isolated polynuclear sites, dinamik host–guest responses, and a hidrofob cavity environment. MOFs might be useful for making semi-conductors. Theoretical calculations show that MOFs are yarim o'tkazgichlar yoki izolyatorlar with band gaps between 1.0 and 5.5 eV which can be altered by changing the degree of konjugatsiya in the ligands indicating its possibility for being photocatalysts.

Dizayn

Example of MOF-5

Boshqalar singari heterojen katalizatorlar, MOFs may allow for easier post-reaction separation and recyclability than bir hil katalizatorlar. In some cases, they also give a highly enhanced catalyst stability. Additionally, they typically offer substrate-size selectivity. Nevertheless, while clearly important for reactions in living systems, selectivity on the basis of substrate size is of limited value in abiotic catalysis, as reasonably pure feedstocks are generally available.

Metal ions or metal clusters

Example of zeolite catalyst

Among the earliest reports of MOF-based catalysis was the cyanosilylation of aldegidlar by a 2D MOF (layered square grids) of formula Cd(4,4’-bpy)2(YO'Q3)2.[74] This investigation centered mainly on size- and shape-selective clathration. A second set of examples was based on a two-dimensional, square-grid MOF containing single Pd (II) ions as nodes and 2-hydroxypyrimidinolates as struts.[75] Boshlang'ichga qaramay coordinative saturation, paladyum centers in this MOF catalyze alcohol oxidation, olefin hydrogenation, and Suzuki C–C coupling. At a minimum, these reactions necessarily entail redox oscillations of the metal nodes between Pd (II) va Pd (0) intermediates accompanying by drastic changes in coordination number, which would certainly lead to destabilization and potential destruction of the original framework if all the Pd centers are catalytically active. The observation of substrate shape- and size-selectivity implies that the catalytic reactions are heterogeneous and are indeed occurring within the MOF. Nevertheless, at least for hydrogenation, it is difficult to rule out the possibility that catalysis is occurring at the surface of MOF-encapsulated palladium clusters/nanoparticles (i.e., partial decomposition sites) or defect sites, rather than at transiently labile, but otherwise intact, single-atom MOF nodes. "Opportunistic" MOF-based catalysis has been described for the cubic compound, MOF-5.[76] This material comprises coordinatively saturated Zn4O nodes and a fully complexed BDC struts (see above for abbreviation); yet it apparently catalyzes the Friedel–Crafts tert-butylation of both toluol va bifenil. Furthermore, para alkillanish is strongly favored over ortho alkylation, a behavior thought to reflect the encapsulation of reactants by the MOF.

Functional struts

The porous-framework material [Cu3(btc)2(H2O)3], also known as HKUST-1,[77] contains large cavities having windows of diameter ~6 Å. The coordinated water molecules are easily removed, leaving open Cu(II) sites. Kaskel and co-workers showed that these Lyuis kislotasi sites could catalyze the cyanosilylation of benzaldegid yoki aseton. The anhydrous version of HKUST-1 is an acid catalyst.[78] Ga solishtirganda Bronsted va boshqalar Lyuis kislotasi -catalyzed pathways, the product selectivity are distinctive for three reactions: isomerization of a-pinene oxide, cyclization of citronellal, and rearrangement of a-bromoacetals, indicating that indeed [Cu3(btc)2] functions primarily as a Lyuis kislotasi katalizator. The product selectivity and yield of catalytic reactions (e.g. siklopropanatsiya ) have also been shown to be impacted by defective sites, such as Cu(I) or incompletely deprotonated carboxylic acid moities of the linkers.[17]

MIL-101, a large-cavity MOF having the formula [Cr3F(H2O)2O (BDC)3], is a cyanosilylation catalyst.[79] The coordinated water molecules in MIL-101 are easily removed to expose Cr(III) sites. As one might expect, given the greater Lewis acidity of Cr(III) vs. Cu(II), MIL-101 is much more active than HKUST-1 as a catalyst for the cyanosilylation of aldegidlar. Additionally, the Kaskel group observed that the catalytic sites of MIL-101, in contrast to those of HKUST-1, are immune to unwanted reduction by benzaldegid. The Lewis-acid-catalyzed cyanosilylation of aromatik aldegidlar has also been carried out by Long and co-workers using a MOF of the formula Mn3[(Mn4Cl)3BTT8(CH3OH)10].[80] This material contains a three-dimensional pore structure, with the pore diameter equaling 10 Å. In principle, either of the two types of Mn (II) sites could function as a katalizator. Noteworthy features of this catalyst are high conversion yields (for small substrates) and good substrate-size-selectivity, consistent with channellocalized catalysis.

Encapsulated catalysts

The MOF encapsulation approach invites comparison to earlier studies of oxidative catalysis by zeolite-encapsulated Fe (porfirin )[81] shu qatorda; shu bilan birga Mn (porfirin )[82] tizimlar. The seolit studies generally employed iodosylbenzene (PhIO), rather than TPHP as oxidant. The difference is likely mechanistically significant, thus complicating comparisons. Briefly, PhIO is a single oxygen atom donor, while TBHP is capable of more complex behavior. In addition, for the MOF-based system, it is conceivable that oxidation proceeds via both oxygen transfer from a marganets okso intermediate as well as a marganets -initiated radical chain reaction pathway. Regardless of mechanism, the approach is a promising one for isolating and thereby stabilizing the porfirinlar against both oxo-bridged dimer formation and oxidative degradation.[83]

Metal-free organic cavity modifiers

Most examples of MOF-based kataliz foydalanish metall ionlari or atoms as active sites. Among the few exceptions are two nikel - and two mis -containing MOFs synthesized by Rosseinsky and co-workers.[84] These compounds employ aminokislotalar (L- or D-aspartat ) together with dipyridyls as struts. The muvofiqlashtirish chemistry is such that the amine group of the aspartat cannot be protonated by added HCl, but one of the aspartat karboksilatlar mumkin. Thus, the framework-incorporated aminokislota can exist in a form that is not accessible for the free aminokislota. Da nikel -based compounds are marginally g'ovak, on account of tiny channel dimensions, the mis versions are clearly g'ovak.The Rosseinsky group showed that the karbon kislotalari behave as Brønsted acidic catalysts, facilitating (in the copper cases) the ring-opening methanolysis of a small, cavityaccessible epoksid at up to 65% yield. Superior homogeneous catalysts exist however.Kitagava and co-workers have reported the synthesis of a catalytic MOF having the formula [Cd(4-BTAPA)2(YO'Q3)2].[85] The MOF is three-dimensional, consisting of an identical catenated pair of networks, yet still featuring pores of molecular dimensions. The nodes consist of single kadmiy ions, octahedrally ligated by pyridyl nitrogens. A dan kataliz standpoint, however, the most interesting feature of this material is the presence of guest-accessible amid funktsional imkoniyatlar. The amides are capable of base-catalyzing the Knoevenagel condensation of benzaldegid bilan malononitrile. Reactions with larger nitrillar, however, are only marginally accelerated, implying that catalysis takes place chiefly within the material's channels rather than on its exterior. A noteworthy finding is the lack of catalysis by the free strut in homogeneous solution, evidently due to intermolecular H-bonding between bptda molecules. Thus, the MOF architecture elicits catalytic activity not otherwise encountered.In an interesting alternative approach, Férey and coworkers were able to modify the interior of MIL-101 via Kr (III) coordination of one of the two available azot atomlar of each of several etilendiamin molekulalar.[86] The free non-coordinated ends of the ethylenediamines were then used as Brønsted basic catalysts, again for Knoevenagel kondensatsiyasi ning benzaldegid bilan nitrillar.A third approach has been described by Kim Kimoon va hamkasblar.[87] A dan foydalanish piridin -functionalized derivative of tartaric acid and a Zn (II) source they were able to synthesize a 2D MOF termed POST-1. POST-1 possesses 1D channels whose cross sections are defined by six trinuclear rux clusters and six struts. While three of the six piridinlar are coordinated by zinc ions, the remaining three are protonated and directed toward the channel interior. When neutralized, the noncoordinated pyridyl groups are found to catalyze transesterifikatsiya reactions, presumably by facilitating deprotonation of the reactant spirtli ichimliklar. The absence of significant catalysis when large spirtli ichimliklar are employed strongly suggests that the catalysis occurs within the channels of the MOF.

Achiral catalysis

Schematic Diagram for MOF Catalysis

Metals as catalytic sites

The metals in the MOF structure often act as Lyuis kislotalari. The metals in MOFs often coordinate to labile solvent molecules or counter ions which can be removed after activation of the framework. The Lewis acidic nature of such unsaturated metal centers can activate the coordinated organic substrates for subsequent organic transformations. The use of unsaturated metal centers was demonstrated in the cyanosilylation of aldehydes and imines by Fujita and coworkers in 2004.[88] They reported MOF of composition {[Cd(4,4′-bpy)2(H2O)2] • (NO3)2 • 4H2O} which was obtained by treating linear bridging ligand 4,4′-bipyridine (bpy) with Cd(NO3)2 . The Cd(II) centers in this MOF possesses a distorted octahedral geometry having four pyridines in the equatorial positions, and two water molecules in the axial positions to form a two-dimensional infinite network. On activation, two water molecules were removed leaving the metal centers unsaturated and Lewis acidic. The Lewis acidic character of metal center was tested on cyanosilylation reactions of tasavvur qiling where the imine gets attached to the Lewis-acidic metal centre resulting in higher electrophilicity of imines. For the cyanosilylation of imines, most of the reactions were complete within 1 h affording aminonitriles in quantitative yield. Kaskel and coworkers[89] carried out similar cyanosilylation reactions with coordinatively unsaturated metals in three-dimensional (3D) MOFs as heterogeneous catalysts. The 3D framework [Cu3(btc)2(H2O)3] (btc: Benzene-1,3,5- tricarboxylate) (HKUST-1 ) used in this study was first reported by Williams va boshq.[90] The open framework of [Cu3(btc)2(H2O)3] is built from dimeric cupric tetracarboxylate units (paddle-wheels) with aqua molecules coordinating to the axial positions and btc bridging ligands. The resulting framework after removal of two water molecules from axial positions possesses porous channel. This activated MOF catalyzes the trimethylcyanosilylation of benzaldehydes with a very low conversion (<5% in 24 h) at 293 K. As the reaction temperature was raised to 313 K, a good conversion of 57% with a selectivity of 89% was obtained after 72 h. In comparison, less than 10% conversion was observed for the background reaction (without MOF) under the same conditions. But this strategy suffers from some problems like 1) the decomposition of the framework with increase of the reaction temperature due to the reduction of Cu(II) to Cu(I) by aldegidlar; 2) strong solvent inhibition effect; electron donating solvents such as THF competed with aldehydes for coordination to the Cu(II) sites, and no cyanosilylation product was observed in these solvents; 3) the framework instability in some organic solvents. Several other groups have also reported the use of metal centres in MOFs as catalysts[80][91] Again, electron-deficient nature of some metals and metal clusters makes the resulting MOFs efficient oksidlanish catalysts. Mori and coworkers[92] reported MOFs with Cu2 paddle wheel units as heterogeneous catalysts for the oxidation of spirtli ichimliklar. The catalytic activity of the resulting MOF was examined by carrying out alcohol oxidation with H2O2 oksidlovchi sifatida. It also catalyzed the oxidation of primary alcohol, secondary alcohol and benzyl alcohols with high selectivity. Tepalik va boshq.[93] have demonstrated the sulfoxidation of tioeterlar using an MOF based on vanadium-oxo cluster V6O13 building units.

Functional linkers as catalytic sites

Functional linkers can be also utilized as catalytic sites. A 3D MOF {[Cd(4- BTAPA)2(YO'Q3)2] • 6H2O • 2DMF} (4-BTAPA=1,3,5-benzene tricarboxylic acid tris [N-(4-pyridyl)amide], DMF =N,N-dimethylformamide) constructed by tridentate amide linkers and cadmium salt catalyzes the Knoevenagel kondensatsiyasi reaktsiya.[85] The pyridine groups on the ligand 4-BTAPA act as ligands binding to the octahedral cadmium centers, while the amide groups can provide the functionality for interaction with the incoming substrates. Specifically, the – NH moiety of the amide group can act as elektron acceptor whereas the C=O group can act as electron donor to activate organic substrates for subsequent reactions. Ferey va boshq.[94] reported a robust and highly porous MOF [Cr33-O)F(H2O)2(BDC)3] (BDC: Benzene-1,4- dicarboxylate) where instead of directly using the unsaturated Cr(III) centers as catalytic sites, the authors grafted etilendiamin (ED) onto the Cr(III) sites. The uncoordinated ends of ED can act as base catalytic sites, ED-grafted MOF was investigated for Knoevenagel condensation reactions. A significant increase in conversion was observed for ED-grafted MOF compared to untreated framework (98% vs 36%).

Entrapment of catalytically active noble metal nanoparticles

The entrapment of catalytically active asil metallar can be accomplished by grafting on functional groups to the unsaturated metal site on MOFs. Ethylenediamine (ED) has been shown to be grafted on the Cr metal sites and can be further modified to encapsulate noble metals such as Pd.[86] The entraped Pd has similar catalytic activity as Pd/C in the Heck reaction. Ruthenium nanoparticles have catalytic activity in a number of reactions when entrapped in the MOF-5 framework.[95] This Ru-encapsulated MOF catalyzes oxidation of benzil spirt to benzyaldehyde, although degradation of the MOF occurs. The same catalyst was used in the hydrogenation of benzol ga sikloheksan. In another example, Pd nanoparticles embedded within defective HKUST-1 framework enable the generation of tunable Lewis basic sites.[96] Therefore, this multifunctional Pd/MOF composite is able to perform stepwise benzyl alcohol oxidation and Knoevenagel condensation.

Reaction hosts with size selectivity

MOFs might prove useful for both fotokimyoviy va polimerizatsiya reactions due to the tuneability of the size and shape of their pores. A 3D MOF {[Co(bpdc)3(bpy)] • 4DMF • H2O} (bpdc: biphenyldicarboxylate, bpy: 4,4′-bipyridine) was synthesized by Li and coworkers.[97] Using this MOF photochemistry of o-methyl dibenzyl ketone (o-MeDBK) was extensively studied. This molecule was found to have a variety of photochemical reaction properties including the production of siklopentanol. MOFs have been used to study polymerization in the confined space of MOF channels. Polymerization reactions in confined space might have different properties than polymerization in open space. Stiren, divinilbenzol, substituted atsetilenlar, methyl methacrylate, and vinyl acetate have all been studied by Kitagava and coworkers as possible activated monomers for radikal polimerizatsiya.[98][99] Due to the different linker size the MOF channel size could be tunable on the order of roughly 25 and 100 Å2. The channels were shown to stabilize propagating radicals and suppress termination reactions when used as radical polymerization sites.

Asimmetrik kataliz

Several strategies exist for constructing homoxiral MOFs. Crystallization of homochiral MOFs via self-resolution from axiral linker ligands is one of the way to accomplish such a goal. However, the resulting bulk samples contain both enantiomorflar and are racemic. Aoyama and coworkers[100] successfully obtained homochiral MOFs in the bulk from achiral ligands by carefully controlling nucleation in the kristall growth process. Zheng and coworkers[101] reported the synthesis of homochiral MOFs from achiral ligands by chemically manipulating the statistical fluctuation of the formation of enantiomeric pairs of crystals. Growing MOF crystals under chiral influences is another approach to obtain homochiral MOFs using achiral linker ligands. Rosseinsky and coworkers[102][103] have introduced a chiral coligand to direct the formation of homochiral MOFs by controlling the qo'li ning spirallar during the crystal growth. Morris and coworkers[104] utilized ionli suyuqlik with chiral cations as reaction media for synthesizing MOFs, and obtained homochiral MOFs. The most straightforward and rational strategy for synthesizing homochiral MOFs is, however, to use the readily available chiral linker ligands for their construction.

Homochiral MOFs with interesting functionalities and reagent-accessible channels

Homochiral MOFs have been made by Lin and coworkers using 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP ), 1,1′-bi-2,2′-naphthol (BINOL ) as a chiral ligands.[105] These ligands can coordinate with catalytically active metal sites to enhance the enantioselektivlik. A variety of linking groups such as piridin, fosfonik kislota va karboksilik kislota can be selectively introduced to the 3,3′, 4,4′, and the 6,6′ positions of the 1,1'-binaphthyl moiety. Moreover, by changing the length of the linker ligands the porosity and framework structure of the MOF can be selectivily tuned.

Postmodification of homochiral MOFs

Lin and coworkers have shown that the postmodification of MOFs can be achieved to produce enantioselective homochiral MOFs for use as catalysts.[106] The resulting 3D homochiral MOF {[Cd3(L)3Cl6]• 4DMF • 6MeOH • 3H2O} (L=(R)-6,6'-dichloro-2,2'-dihydroxyl-1,1'-binaphthyl-bipyridine) synthesized by Lin was shown to have a similar catalytic efficiency for the diethylzinc addition reaction as compared to the homogeneous analogue when was pretreated by Ti(OmenPr)4 to generate the grafted Ti- BINOLate species. The catalytic activity of MOFs can vary depending on the framework structure. Lin and others found that MOFs synthesized from the same materials could have drastically different catalytic activities depending on the framework structure present.[107]

Homochiral MOFs with precatalysts as building blocks

Another approach to construct catalytically active homochiral MOFs is to incorporate chiral metal complexes which are either active catalysts or precatalysts directly into the framework structures. For example, Hupp and coworkers[108] have combined a chiral ligand and bpdc (bpdc: biphenyldicarboxylate) with Zn(NO3)2 and obtained twofold interpenetrating 3D networks. The orientation of chiral ligand in the frameworks makes all Mn(III) sites accessible through the channels. The resulting open frameworks showed catalytic activity towards asymmetric olefin epoxidation reactions. No significant decrease of catalyst activity was observed during the reaction and the catalyst could be recycled and reused several times. Lin and coworkers[109] have reported zirconium phosphonate-derived Ru-BINAP systems. Zirkonyum phosphonate-based chiral porous hybrid materials containing the Ru(BINAP)(diamine)Cl2 precatalysts showed excellent enantioselectivity (up to 99.2% ee) in the asymmetric hydrogenation of aromatic ketones.

Biomimetic design and photocatalysis

Some MOF materials may resemble enzymes when they combine isolated polynuclear sites, dynamic host–guest responses, and hidrofob cavity environment which are characteristics of an ferment.[110] Some well-known examples of cooperative catalysis involving two metal ions in biological systems include: the diiron sites in metan monooksigenaza, dicopper in sitoxrom s oksidaza, and tricopper oksidazlar which have analogy with polynuclear clusters found in the 0D coordination polymers, such as binuclear Cu2 paddlewheel units found in MOP-1[111][112] and [Cu3(btc)2] (btc=benzene-1,3,5-tricarboxylate) in HKUST-1 or trinuclear units such as {Fe3O (CO2)6} in MIL-88,[113] and IRMOP-51.[114] Thus, 0D MOFs have accessible biomimetik catalytic centers. In enzymatic systems, protein units show "molecular recognition", high affinity for specific substrates. It seems that molecular recognition effects are limited in zeolites by the rigid zeolite structure.[115] In contrast, dynamic features and guest-shape response make MOFs more similar to enzymes. Indeed, many hybrid frameworks contain organic parts that can rotate as a result of stimuli, such as light and heat.[116] The porous channels in MOF structures can be used as fotokataliz saytlar. In photocatalysis, the use of mononuclear complexes is usually limited either because they only undergo single- electron process or from the need for high-energy irradiation. In this case, binuclear systems have a number of attractive features for the development of photocatalysts.[117] For 0D MOF structures, polycationic nodes can act as semiconductor kvant nuqtalari which can be activated upon photoogohlantiruvchi vositalar with the linkers serving as photon antennae.[118] Theoretical calculations show that MOFs are yarim o'tkazgichlar yoki izolyatorlar with band gaps between 1.0 and 5.5 eV which can be altered by changing the degree of conjugation in the ligands.[119] Experimental results show that the tarmoqli oralig'i of IRMOF-type samples can be tuned by varying the functionality of the linker.[120] An integrated MOF nanozyme was developed for anti-inflammation therapy.[121]

Additional potential applications

Electrocatalysis

The high surface area and atomic metal sites feature of MOFs make them a suitable candidate for electrocatalysts, especially energy-related ones.Until now, MOFs have been used extensively as electrocatalyst for water splitting (hydrogen evolution reaction and oxygen evolution reaction), carbon dioxide reduction, and oxygen reduction reaction.[122] Currently there are two routes: 1. Using MOFs as precursors to prepare electrocatalysts with carbon support.[123] 2. Using MOFs directly as electrocatalysts.[124][125] However, some results have shown that some MOFs are not stable under electrochemical environment.[126]

Biological imaging and sensing

MOF-76 crystal, where oxygen, carbon, and lanthanide atoms are represented by maroon, black, and blue spheres, respectively. Includes metal node connectivity (blue polyhedra), infinite-rod SBU, and 3D representation of MOF-76.

A potential application for MOFs is biological imaging and sensing via photoluminescence. A large subset of luminescent MOFs use lanthanides in the metal clusters. Lanthanide photoluminescence has many unique properties that make them ideal for imaging applications, such as characteristically sharp and generally non-overlapping emission bands in the visible and near-infrared (NIR) regions of the spectrum, resistance to photobleaching or 'blinking', and long luminescence lifetimes.[127] However, lanthanide emissions are difficult to sensitize directly because they must undergo LaPorte forbidden f-f transitions. Indirect sensitization of lanthanide emission can be accomplished by employing the "antenna effect," where the organic linkers act as antennae and absorb the excitation energy, transfer the energy to the excited state of the lanthanide, and yield lanthanide luminescence upon relaxation.[128] A prime example of the antenna effect is demonstrated by MOF-76, which combines trivalent lanthanide ions and 1,3,5-benzenetricarboxylate (BTC) linkers to form infinite rod SBUs coordinated into a three dimensional lattice.[129] As demonstrated by multiple research groups, the BTC linker can effectively sensitize the lanthanide emission, resulting in a MOF with variable emission wavelengths depending on the lanthanide identity.[130][131] Additionally, the Yan group has shown that Eu3+- and Tb3+- MOF-76 can be used for selective detection of acetophenone from other volatile monoaromatic hydrocarbons. Upon acetophenone uptake, the MOF shows a very sharp decrease, or söndürme, of the luminescence intensity.[132]

For use in biological imaging, however, two main obstacles must be overcome:

  • MOFs must be synthesized on the nanoscale so as not to affect the target's normal interactions or behavior
  • The absorbance and emission wavelengths must occur in regions with minimal overlap from sample autofluorescence, other absorbing species, and maximum tissue penetration.[133][134]

Regarding the first point, nanoscale MOF (NMOF) synthesis has been mentioned in an earlier section. The latter obstacle addresses the limitation of the antenna effect. Smaller linkers tend to improve MOF stability, but have higher energy absorptions, predominantly in the ultraviolet (UV) and high-energy visible regions. A design strategy for MOFs with redshifted absorption properties has been accomplished by using large, chromophoric linkers. These linkers are often composed of polyaromatic species, leading to large pore sizes and thus decreased stability. To circumvent the use of large linkers, other methods are required to redshift the absorbance of the MOF so lower energy excitation sources can be used. Post-synthetic modification (PSM) is one promising strategy. Luo va boshq. introduced a new family of lanthanide MOFs with functionalized organic linkers. The MOFs, deemed MOF-1114, MOF-1115, MOF-1130, and MOF-1131, are composed of octahedral SBUs bridged by amino functionalized dicarboxylate linkers. The amino groups on the linkers served as sites for covalent PSM reactions with either salicylaldehyde or 3-hydroxynaphthalene-2-carboxyaldehyde. Both of these reactions extend the π-conjugation of the linker, causing a redshift in the absorbance wavelength from 450 nm to 650 nm. The authors also propose that this technique could be adapted to similar MOF systems and, by increasing pore volumes with increasing linker lengths, larger pi-conjugated reactants can be used to further redshift the absorption wavelengths.[135] Biological imaging using MOFs has been realized by several groups, namely Foucault-Collet and co-workers. In 2013, they synthesized a NIR-emitting Yb3+-NMOF using phenylenevinylene dicarboxylate (PVDC) linkers. They were observed cellular uptake in both HeLa cells and NIH-3T3 cells using confocal, visible, and NIR spectroscopy.[136] Although low quantum yields persist in water and Hepes buffer solution, the luminescence intensity is still strong enough to image cellular uptake in both the visible and NIR regimes.

Nuclear wasteform materials

Schematic representation of different ways to incorporate Actinide species inside the MOF.

The development of new pathways for efficient nuclear waste administration is essential in wake of increased public concern about radioactive contamination, due to nuclear plant operation and nuclear weapon decommission. Synthesis of novel materials capable of selective actinide sequestration and separation is one of the current challenges acknowledged in the nuclear waste sector. Metal–organic frameworks (MOFs) are a promising class of materials to address this challenge due to their porosity, modularity, crystallinity, and tunability. We can use every building blocks of MOF structure for actinide incorporation. First, we can synthesise the MOF starting from actinide salts. In this case actinides go to the metal node.[37][137] In addition, in terms of metal nodes we can do either metal nodes extension, or we can do cation exchange.[37] Also we can use organic linkers and functionalize it with a groups capable of actinide uptake.[138][139][140][141][142][143] And the last but not list, we can use porosity of MOFs to incorporate an contained guest molecules[144][145][146] and trap them in a structure by installation of additional or capping linkers.[37]

Drug delivery systems

The synthesis, characterization, and drug-related studies of low toxicity, biocompatible MOFs has shown that they have potential for medical applications. Many groups have synthesized various low toxicity MOFs and have studied their uses in loading and releasing various therapeutic drugs for potential medical applications. A variety of methods exist for inducing drug release, such as pH-response, magnetic-response, ion-response, temperature-response, and pressure response.[147]

In 2010 Smaldone et al., an international research group, synthesized a biocompatible MOF termed CD-MOF-1 from cheap edible natural products. CD-MOF-1 consists of repeating base units of 6 γ-cyclodextrin rings bound together by potassium ions. γ-cyclodextrin (γ-CD) is a symmetrical cyclic oligosaccharide that is mass-produced enzymatically from starch and consists of eight asymmetric α-1,4-linked D-glucopyranosyl residues.[148] The molecular structure of these glucose derivatives, which approximates a truncated cone, bucket, or torus, generates a hydrophilic exterior surface and a nonpolar interior cavity. Cyclodextrins can interact with appropriately sized drug molecules to yield an inclusion complex.[149] Smaldone's group proposed a cheap and simple synthesis of the CD-MOF-1 from natural products. They dissolved sugar (γ-cyclodextrin) and an alkali salt (KOH, KCl, potassium benzoate) in distilled bottled water and allowed 190 proof grain alcohol (Everclear) to vapor diffuse into the solution for a week. The synthesis resulted in a cubic (γ-CD)6 repeating motif with a pore size of approximately 1 nm. Subsequently, in 2017 Hartlieb et al. at Northwestern did further research with CD-MOF-1 involving the encapsulation of ibuprofen. The group studied different methods of loading the MOF with ibuprofen as well as performing related bioavailability studies on the ibuprofen-loaded MOF. They investigated two different methods of loading CD-MOF-1 with ibuprofen; crystallization using the potassium salt of ibuprofen as the alkali cation source for production of the MOF, and absorption and deprotonation of the free-acid of ibuprofen into the MOF. From there the group performed in vitro and in vivo studies to determine the applicability of CD-MOF-1 as a viable delivery method for ibuprofen and other NSAIDs. In vitro studies showed no toxicity or effect on cell viability up to 100 μM. In vivo studies in mice showed the same rapid uptake of ibuprofen as the ibuprofen potassium salt control sample with a peak plasma concentration observed within 20 minutes, and the cocrystal has the added benefit of double the half-life in blood plasma samples.[150] The increase in half-life is due to CD-MOF-1 increasing the solubility of ibuprofen compared to the pure salt form.

Since these developments many groups have done further research into drug delivery with water-soluble, biocompatible MOFs involving common over-the-counter drugs. In March 2018 Sara Rojas and her team published their research on drug incorporation and delivery with various biocompatible MOFs other than CD-MOF-1 through simulated cutaneous administration. The group studied the loading and release of ibuprofen (hydrophobic) and aspirin (hydrophilic) in three biocompatible MOFs (MIL-100(Fe), UiO-66(Zr), and MIL-127(Fe)). Under simulated cutaneous conditions (aqueous media at 37 °C) the six different combinations of drug-loaded MOFs fulfilled "the requirements to be used as topical drug-delivery systems, such as released payload between 1 and 7 days" and delivering a therapeutic concentration of the drug of choice without causing unwanted side effects.[151] The group discovered that the drug uptake is "governed by the hydrophilic/hydrophobic balance between cargo and matrix" and "the accessibility of the drug through the framework." The "controlled release under cutaneous conditions follows different kinetics profiles depending on: (i) the structure of the framework, with either a fast delivery from the very open structure MIL-100 or a slower drug release from the narrow 1D pore system of MIL-127 or (ii) the hydrophobic/hydrophilic nature of the cargo, with a fast (Aspirin) and slow (Ibuprofen) release from the UiO-66 matrix."

Recent research involving MOFs as a drug delivery method includes more than just the encapsulation of everyday drugs like ibuprofen and aspirin. In early 2018 Chen et al., published detailing their work on the use of MOF, ZIF-8 (zeolitic imidazolate framework-8) in antitumor research "to control the release of an autophagy inhibitor, 3-methyladenine (3-MA), and prevent it from dissipating in a large quantity before reaching the target."[152] The group performed in vitro studies and determined that "the autophagy-related proteins and autophagy flux in HeLa cells treated with 3-MA@ZIF-8 NPs show that the autophagosome formation is significantly blocked, which reveals that the pH-sensitive dissociation increases the efficiency of autophagy inhibition at the equivalent concentration of 3-MA." This shows promise for future research and applicability with MOFs as drug delivery methods in the fight against cancer.

Yarimo'tkazgichlar

In 2014 researchers proved that they can create electrically conductive thin films of MOFs (Cu3(BTC)2 (shuningdek, nomi bilan tanilgan HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) infiltrated with the molecule 7,7,8,8-tetracyanoquinododimethane) that could be used in applications including photovoltaics, sensors and electronic materials and a path towards creating semiconductors. The team demonstrated tunable, air-stable electrical conductivity with values as high as 7 siemens per meter, comparable to bronze.[153]

Ni
3
(2,3,6,7,10,11-hexaiminotriphenylene)2 was shown to be a metal-organic grafen analogue that has a natural tarmoqli oralig'i, making it a semiconductor, and is able to self-assemble. It represents a family of similar compounds. Because of the symmetry and geometry in 2,3,6,7,10,11-hexaiminotriphenylene (HITP), the overall organometallic complex has an almost fraktal nature that allows it to perfectly self-organize. By contrast, graphene must be doped to give it the properties of a semiconductor. Ni3(HITP)2 pellets had a conductivity of 2 S/cm, a record for a metal-organic compound.[154][155]

Bio-mimetic mineralization

Biomolecules can be incorporated during the MOF crystallization process. Biomolecules including proteins, DNA and antibodies could be encapsulated within ZIF-8. Enzymes encapsulated in this way were stable and active even after being exposed to harsh conditions (e.g. aggressive solvents and high temperature). ZIF-8, MIL-88A, HKUST-1, and several luminescent MOFs containing lanthanide metals were used for the biomimetic mineralization process.[156]

Uglerodni tortib olish

Because of their small, tunable pore sizes and high void fractions, MOFs are a promising potential material for use as an adsorbent to capture CO2. MOFs could provide a more efficient alternative to traditional amine solvent-based methods CO da2 capture from coal-fired power plants.[157]

MOFs could be employed in each of the main three carbon capture configurations for coal-fired power plants: pre-combustion, post-combustion, and oxy-combustion.[158] However, since the post-combustion configuration is the only one that can be retrofitted to existing plants, it garners the most interest and research. In post-combustion carbon capture, the flue gas from the power plant would be fed through a MOF in a packed-bed reactor setup. Baca gazi odatda CO ning qisman bosimi bilan 40 dan 60 ° C gacha2 0,13 - 0,16 barda. CO2 har ikkisi orqali ham MOF yuzasiga bog'lanishi mumkin fizizortsiya sabab bo'lgan Van der Waalsning o'zaro ta'siri, yoki xemosorbtsiya sabab bo'lgan kovalent boglanish shakllanish.[159] MOF CO bilan to'yinganidan keyin2, CO2 MOFdan harorat tebranishi yoki bosim tebranishi orqali olib tashlanadi. Ushbu jarayon yangilanish deb nomlanadi. Haroratni tebranish regeneratsiyasida MOF CO ga qadar isitiladi2 desorbs. Amin jarayoni bilan taqqoslanadigan ish qobiliyatiga erishish uchun MOFni 200 ° C atrofida qizdirish kerak. Bosim tebranishida bosim CO ga qadar kamayadi2 desorbs.[160]

Turli xil molekulalar uchun sozlanishi selektivliklaridan tashqari, MOFlarning yana bir xususiyati, ularni uglerod olish uchun yaxshi nomzodga aylantiradi, bu ularning past issiqlik quvvati. Monoetanolamin (MEA) eritmalari, CO olishning etakchi usuli2 chiqindi gazdan, 3-4 J / g K gacha bo'lgan issiqlik quvvatiga ega, chunki ular asosan suvdir. Ushbu yuqori issiqlik quvvati erituvchini qayta tiklash bosqichida, ya'ni adsorbsiyalangan CO bo'lganda energiya jazosiga hissa qo'shadi2 MEA eritmasidan chiqariladi. MOF-177, CO uchun mo'ljallangan MOF2 tutish, atrof-muhit haroratida 0,5 J / g K issiqlik quvvatiga ega.[158]

AQSh DOE tomonidan homiylik qilingan hamkorlikdagi loyihada MOFlar CO ning 90% ni ajratib ko'rsatgan2 vakuum bosimi tebranish jarayoni yordamida chiqindi gaz oqimidan. MOF Mg (dobdc) 21,7% og'irlikdagi CO ga ega2 yuklash hajmi. Hisob-kitoblar shuni ko'rsatdiki, agar shunga o'xshash tizim keng ko'lamli elektr stantsiyasiga tatbiq etilsa, energiya narxi 65 foizga oshadi, AQSh esa NETL amin asosidagi tizim 81% ga o'sishiga olib keladi (AQSh DOE maqsadi 35%). COni olish narxi2 tonna CO $ 57 bo'ladi2 ushlangan, ammo amin tizimining narxi CO 72 tonna / tonnani tashkil etadi2 qo'lga olindi. Loyiha 580 MVt quvvatli elektr stantsiyasida ushbu loyihani amalga oshirish uchun zarur bo'lgan jami kapital 354 million dollarni tashkil etishini taxmin qildi.[161]

Tuzsizlantirish / ionlarni ajratish

MOF membranalari sezilarli ion selektivligini taqlid qilishi mumkin. Bu tuzsizlantirish va suvni tozalashda foydalanish imkoniyatlarini taklif etadi. 2018 yildan boshlab teskari osmoz global tuzni tozalash qobiliyatining yarmidan ko'pini va suvni tozalash jarayonlarining so'nggi bosqichini ta'minladi. Osmoz ishlatilmaydi suvsizlanish yoki selektiv ion transporti biologik kanallarda va u energiya tejaydigan emas. Tog'-kon sanoati, suv ifloslanishini kamaytirish va metallarni qayta tiklash uchun membranaga asoslangan jarayonlardan foydalanadi. MOF dengiz suvi va chiqindi oqimlaridan lityum kabi metallarni olish uchun ishlatilishi mumkin.[162]

Angstrom miqyosidagi derazalar va nanometrli bo'shliqlardan tashkil topgan bir xil subnanometrli teshiklari bo'lgan ZIF-8 va UiO-66 membranalari kabi MOF membranalari gidroksidi metall ionlarining ultrafast selektiv tashilishini namoyish etdi. Derazalar gidroksidi metall ionlari uchun ion selektiv filtrlari, bo'shliqlar esa transport uchun teshiklar vazifasini bajargan. ZIF-8[163] va UiO-66[164] membranalar a ko'rsatdi LiCl /RbCl ~ 4.6 va ~ 1.8 selektivligi, an'anaviy membranalarda 0,6 dan 0,8 gacha bo'lgan selektivlikdan ancha yuqori.[165] 2020 yilgi tadqiqotlar shuni ko'rsatdiki, PSP-MIL-53 nomli yangi MOF bilan birgalikda foydalanish mumkin quyosh nuri suvni atigi yarim soat ichida tozalash uchun.[166]

Suv bug'ini ushlab turish va namlikni yo'qotish

Suv bug'larini havodan ushlab turadigan, so'ngra mavjud tijorat texnologiyalari bilan taqqoslaganda ozroq miqdorda issiqlik bilan uni chiqaradigan prototip ishlab chiqilgan.[167]

Bunday MOFlar xona haroratini sovutish dasturlarida energiya samaradorligini oshirish uchun ham ishlatilishi mumkin.[168] Kosmik sovutish 2016 yilda dunyodagi birlamchi energiyadan foydalanishning taxminan 3 foizini tashkil qilgan va rivojlanayotgan mamlakatlarda talab tobora yuqori sur'atlarda o'sib bormoqda. Shuning uchun konditsionerlik samaradorligi kelajakda energiya sarfi va ushbu energiyani ishlab chiqarish natijasida CO2 ishlab chiqarishni ko'payishini kamaytirish uchun juda kerakli sohadir.[169]

MOFni quritish uchun sxematik diagramma, MIL-100 (Fe), xususan suv adsorbsion qobiliyati yuqori bo'lgan MOF.

Tashqi havoni sovutganda, sovutish moslamasi ikkala bilan ham kurashishi kerak oqilona issiqlik va yashirin issiqlik tashqi havoning. Odatda bug 'siqishni-konditsioner (VCAC) qitish qabul qilingan joydagi nam havoning shudring nuqtasi haroratidan pastroq bo'lgan sovutish qanotlari orqali havodagi suv bug'ining yashirin issiqligini boshqaradi. Ushbu qanotchalar suvni quyultiradi, havoni suvsizlantiradi va shu bilan havoning issiqlik tarkibini sezilarli darajada kamaytiradi. Afsuski, sovutgichning energiyasidan foydalanish sovutish batareyasining haroratiga juda bog'liq va agar bu spiralning harorati yuqoridan ko'tarilsa juda yaxshilanadi. shudring nuqtasi.[170] Kondensatsiyadan boshqa vositalar yordamida namlikni yo'qotish bilan shug'ullanishni ma'qul ko'radi.Bunday usullardan biri havodagi suvni issiqlik almashinuvchisi ustiga quritilgan quritgichga singdirish, jihozdan chiqarilgan chiqindi issiqlik yordamida sorbentdan suvni tozalash va shu tariqa. takroriy foydalanish uchun quritgichni qayta tiklash. Bunga ikkita kondensator / evaporatator bo'linmasi orqali erishiladi, ular orqali sovutgich oqimi kondensator ustiga qurituvchi to'yinganidan keyin qaytarilishi mumkin va shu bilan kondensator bug'lanadi va aksincha.[168]

Xulosa shuki, ko'p miqdordagi suvni yutib yuboradigan va keyin osongina bo'shatib yuboradigan qurituvchi ushbu dastur uchun juda mos keladi.[171] MOFlarning juda yuqori sirt maydoni va g'ovakliligi bilan ular so'nggi o'n yil ichida suvni adsorbsiyalashda ko'plab tadqiqotlar mavzusi bo'ldi.[168][171][172][173] Bundan tashqari, adsorbsiya / desorbsiya uchun eng yaxshi nisbiy namlikni va suv olishning aniqligini sozlashda yordam beradigan turli xil kimyoviy variantlar mavjud.[168]

Ferroelektriklar va multiferroiklar

Ba'zi MOFlar o'z-o'zidan paydo bo'ladigan elektr polarizatsiyasini namoyish etadilar, bu elektr dipollarini (qutbli bog'lovchilar yoki mehmon molekulalari) ma'lum bir o'zgarishlar o'tish haroratidan pastroq tartibda joylashishi tufayli yuzaga keladi.[174] Agar bu uzoq masofali dipolyar tartibni tashqi elektr maydoni boshqarishi mumkin bo'lsa, MOF ferroelektrik deb ataladi.[175] Ba'zi ferroelektrik MOFlar magnit tartibini namoyish etib, ularni bir fazali multiferroiklarga aylantiradi. Ushbu moddiy xususiyat yuqori ma'lumot zichligi bo'lgan xotira qurilmalarini qurish uchun juda qiziq I tip [(CH3)2NH2] [Ni (HCOO)3] molekulyar multiferoik - bu o'z-o'zidan elastik shtamm vositachiligidagi bilvosita birikma.[176]

Shuningdek qarang

Adabiyotlar

  1. ^ a b Batten SR, Champness NR, Chen XM, Garsiya-Martines J, Kitagava S, Ohström L, O'Keeffe M, Suh MP, Reedijk J (2013). "Metall-organik ramkalar va koordinatsion polimerlar terminologiyasi (IUPAC tavsiyalari 2013)" (PDF). Sof va amaliy kimyo. 85 (8): 1715–1724. doi:10.1351 / PAC-REC-12-11-20. S2CID  96853486.
  2. ^ Cejka J, tahrir. (2011). Katalizdan gazni saqlashgacha bo'lgan metall-organik ramkalar. Vili-VCH. ISBN  978-3-527-32870-3.
  3. ^ O'Keeffe M, Yaghi OM (2005). "Retikulyar kimyo - bugungi va kelajak istiqbollari" (PDF). Qattiq jismlar kimyosi jurnali. 178 (8): v – vi. Bibcode:2005JSSCh.178D ... 5.. doi:10.1016 / S0022-4596 (05) 00368-3.
  4. ^ Côte AP, Benin AI, Okvig NW, O'Keeffe M, Matzger AJ, Yaghi OM (noyabr 2005). "Gözenekli, kristalli, kovalent organik ramkalar". Ilm-fan. 310 (5751): 1166–70. Bibcode:2005 yil ... 310.1166C. doi:10.1126 / science.1120411. PMID  16293756. S2CID  35798005.
  5. ^ a b v d e f Czaja AU, Truxan N, Myuller U (may 2009). "Metall-organik ramkalarning sanoat dasturlari". Kimyoviy jamiyat sharhlari. 38 (5): 1284–93. doi:10.1039 / b804680 soat. PMID  19384438.
  6. ^ Cheetham AK, Rao CN, Feller RK (2006). "Gibrid anorganik-organik ramka materiallarining tarkibiy xilma-xilligi va kimyoviy tendentsiyalari". Kimyoviy aloqa (46): 4780–4795. doi:10.1039 / b610264f. PMID  17345731.
  7. ^ a b Cheetham AK, Ferrey G, Loiseau T (1999 yil noyabr). "Ochiq ramkali noorganik materiallar". Angewandte Chemie. 38 (22): 3268–3292. doi:10.1002 / (SICI) 1521-3773 (19991115) 38:22 <3268 :: AID-ANIE3268> 3.0.CO; 2-U. PMID  10602176.
  8. ^ Bucar DK, Papaefstathiou GS, Hamilton TD, Chu QL, Georgiev IG, MacGillivray LR (2007). "Muvofiqlashtirish asosida boshqariladigan o'z-o'zini yig'ish printsiplari bo'yicha organik qattiq holatda shablon bilan boshqariladigan reaktivlik". Evropa noorganik kimyo jurnali. 2007 (29): 4559–4568. doi:10.1002 / ejic.200700442.
  9. ^ Parnham ER, Morris RE (oktyabr 2007). "Zeolitlar, metall-organik ramkalar va noorganik-organik duragaylarning ionotermik sintezi". Kimyoviy tadqiqotlar hisoblari. 40 (10): 1005–13. doi:10.1021 / ar700025k. PMID  17580979.
  10. ^ a b v d Dincă M, Long JR (2008). "Ochiq metall joylari bo'lgan mikroporozli metall-organik ramkalarda vodorodni saqlash". Angewandte Chemie. 47 (36): 6766–79. doi:10.1002 / anie.200801163. PMID  18688902.
  11. ^ Git, Vitaliy; Rothenberg, Gadi (2020). Git, Vitaliy; Rothenberg, Gadi (tahr.). G'ovakli materiallar bo'yicha qo'llanma. 4. Singapur: JAHON ILMIY. 110-111 betlar. doi:10.1142/11909. ISBN  978-981-12-2328-0.
  12. ^ a b Ni Z, Masel RI (2006 yil sentyabr). "Mikroto'lqinli solvotermik sintez orqali metall-organik ramkalarni tez ishlab chiqarish". Amerika Kimyo Jamiyati jurnali. 128 (38): 12394–5. doi:10.1021 / ja0635231. PMID  16984171.
  13. ^ a b Choi JS, Son VJ, Kim J, Ahn VS (2008). "Mikroto'lqinli isitish orqali tayyorlangan MOF-5 metall-organik ramkasi: e'tiborga olinadigan omillar". Mikroporozli va mezoporous materiallar. 116 (1–3): 727–731. doi:10.1016 / j.micromeso.2008.04.033.
  14. ^ Shtenxaut, Timoti; Hermans, Sofi; Filinchuk, Yaroslav (2020). "Katta miqdordagi bimetalik MIL-100 (Fe, M) MOF seriyasining yashil sintezi". Yangi kimyo jurnali. 44 (10): 3847–3855. doi:10.1039 / D0NJ00257G. ISSN  1144-0546.
  15. ^ Pichon A, Jeyms SL (2008). "Erituvchisiz mexanokimyoviy sharoitda reaktsiyalarni massiv asosida o'rganish - tushunchalar va tendentsiyalar". CrystEngComm. 10 (12): 1839–1847. doi:10.1039 / B810857A.
  16. ^ Braga D, Giaffreda SL, Grepioni F, Chierotti MR, Gobetto R, Palladino G, Polito M (2007). "" Solventsiz "reaktsiyadagi hal qiluvchi effekti". CrystEngComm. 9 (10): 879–881. doi:10.1039 / B711983F.
  17. ^ a b Shtenxaut, Timoti; Gregoire, Nikolas; Barozzino-Konsiglio, Gabriella; Filinchuk, Yaroslav; Hermans, Sofi (2020). "HKUST-1 mexanik-kimyoviy nuqsonlari muhandisligi va hosil bo'lgan nuqsonlarning karbonat angidrid sorbsiyasi va katalitik siklopropanatsiyaga ta'siri". RSC avanslari. 10 (34): 19822–19831. doi:10.1039 / C9RA10412G. ISSN  2046-2069.
  18. ^ Stassen I, Styles M, Grenci G, Gorp HV, Vanderlinden V, Feyter SD, Falcaro P, Vos DD, Vereecken P, Ameloot R (mart 2016). "Zeolitik imidazolatli yupqa plyonkalarning kimyoviy bug'lanishi". Tabiat materiallari. 15 (3): 304–10. Bibcode:2016NatMa..15..304S. doi:10.1038 / nmat4509. PMID  26657328.
  19. ^ Cruz A, Stassen I, Ameloot, R va boshq. (2019). "Katta maydonli zeolitik imidazolatli ramka yupqa plyonkalarini bug 'fazasi bilan cho'ktirish uchun birlashtirilgan toza xonadagi jarayon". Materiallar kimyosi. 31 (22): 9462–9471. doi:10.1021 / acs.chemmater.9b03435. hdl:10550/74201.
  20. ^ Virmani, Erika; Rotter, Julian M.; Mexringer, Andre; fon Zons, Tobias; Godt, Adelheid; Benin, Tomas; Vutke, Stefan; Medina, Dana D. (2018-04-11). "Bug 'yordamida konversiya qilish orqali yuqori yo'naltirilgan ingichka metall - organik ramka plyonkalarini yuzasida sintez qilish". Amerika Kimyo Jamiyati jurnali. 140 (14): 4812–4819. doi:10.1021 / jacs.7b08174. ISSN  0002-7863. PMID  29542320.
  21. ^ Sebastyan Bauer, Norbert Stok (2007 yil oktyabr), "Hochdurchsatz-Methoden in der Festkörperchemie. Schneller zum Ziel", Unserer Zeit-dagi Chemie (nemis tilida), 41 (5), 390-398 betlar, doi:10.1002 / ciuz.200700404, ISSN  0009-2851
  22. ^ Gimeno-Fabra, Mikel; Munn, Aleksis S.; Stivens, Li A .; Drej, Trevor S.; Grant, Devid M.; Kashtiban, Rizo J.; Sloan, Jeremi; Lester, Edvard; Uolton, Richard I. (2012 yil 7 sentyabr). "Tezkor MOFlar: erituvchilarni tez aralashtirish orqali metall-organik ramkalarni uzluksiz sintezi". Kimyoviy aloqa. 48 (86): 10642–4. doi:10.1039 / C2CC34493A. PMID  23000779. Olingan 22 iyun 2020.
  23. ^ Rasmussen, Elizabeth G.; Kramlich, Jon; Novosselov, Igor V. (3 iyun 2020). "Superkritik CO2 yordamida masshtabli uzluksiz oqim metali - organik asos (MOF) sintezi". ACS Barqaror kimyo va muhandislik. 8 (26): 9680–9689. doi:10.1021 / acssuschemeng.0c01429.
  24. ^ Enrica Biemmi, Sandra Christian, Norbert Stok, Tomas Bein (2009), "MOF-5 va HKUST-1 metall-organik ramkalarini shakllantirishda sintez parametrlarining yuqori o'tkazuvchanligi skriningi", Mikroporozli va mezoporous materiallar (nemis tilida), 117 (1-2), 111-117 betlar, doi:10.1016 / j.micromeso.2008.06.040CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  25. ^ Putnis, Endryu (2009-01-01). "Minerallarni almashtirish reaktsiyalari". Mineralogiya va geokimyo bo'yicha sharhlar. 70 (1): 87–124. Bibcode:2009RvMG ... 70 ... 87P. doi:10.2138 / rmg.2009.70.3. ISSN  1529-6466.
  26. ^ Reboul, Julien; Furukava, Shuxey; Horike, Nao; Tsotsalas, Manuel; Xirai, Kenji; Uehara, Xiromitsu; Kondo, Mio; Luveyn, Nikolas; Sakata, Osami; Kitagava, Susumu (2012 yil avgust). "Psevdomorfik replikatsiya bilan yaratilgan g'ovakli koordinatsion polimerlarning mezoskopik arxitekturalari". Tabiat materiallari. 11 (8): 717–723. Bibcode:2012 yil NatMa..11..717R. doi:10.1038 / nmat3359. hdl:2433/158311. ISSN  1476-4660. PMID  22728321.
  27. ^ Robatjazi, Xusseyn; Vaynberg, Doniyor; Qasamyod qiluvchi, Dayne F.; Jeykobson, nasroniy; Chjan, Min; Tian, ​​Shu; Chjou, Linan; Nordlander, Piter; Halas, Naomi J. (fevral, 2019). "Metall-organik ramkalar alyuminiy nanokristallarining xususiyatlariga moslashtirilgan". Ilmiy yutuqlar. 5 (2): eaav5340. Bibcode:2019SciA .... 5.5340R. doi:10.1126 / sciadv.aav5340. ISSN  2375-2548. PMC  6368424. PMID  30783628.
  28. ^ Kornienko, Nikolay; Chjao, Yingbo; Kley, Kristofer S.; Chju, Chenxuy; Kim, Doxyong; Lin, Qo'shiq; Chang, Kristofer J.; Yagi, Omar M.; Yang, Peidong (2015-11-11). "Karbonat angidrid oksidini elektrokatalitik kamaytirish uchun metall-organik asoslar". Amerika Kimyo Jamiyati jurnali. 137 (44): 14129–14135. doi:10.1021 / jacs.5b08212. ISSN  0002-7863. PMID  26509213.
  29. ^ a b v Das S, Kim H, Kim K (Mart 2009). "Yagona kristalldagi metatez: metall-organik ramkalarni tashkil etuvchi metall ionlarining to'liq va qaytaruvchan almashinuvi". Amerika Kimyo Jamiyati jurnali. 131 (11): 3814–5. doi:10.1021 / ja808995d. PMID  19256486.
  30. ^ a b v d Burrows AD, Frost CG, Mahon MF, Richardson C (2008-10-20). "Belgilangan metall-organik ramkalarning post-sintetik modifikatsiyasi". Angewandte Chemie. 47 (44): 8482–6. doi:10.1002 / anie.200802908. PMID  18825761.
  31. ^ a b Li T, Kozlowski MT, Doud EA, Bleykli MN, Rosi NL (avgust 2013). "Mezoporozli MOFlar oilasini tayyorlash uchun bosqichma-bosqich ligand almashinuvi". Amerika Kimyo Jamiyati jurnali. 135 (32): 11688–91. doi:10.1021 / ja403810k. PMID  23688075.
  32. ^ Sun D, ​​Liu V, Qiu M, Chjan Y, Li Z (2015 yil fevral). "Post-sintetik metall almashinuvi orqali fotokatalitik ishlashni kuchaytirish bo'yicha mediatorni metall-organik ramkalarda (MOF) joriy etish". Kimyoviy aloqa. 51 (11): 2056–9. doi:10.1039 / c4cc09407g. PMID  25532612.
  33. ^ Liu C, Rosi NL (sentyabr 2017). "Uchlamchi gradiyentli metall-organik ramkalar". Faraday munozaralari. 201: 163–174. Bibcode:2017FaDi..201..163L. doi:10.1039 / c7fd00045f. PMID  28621353.
  34. ^ Liu C, Zeng C, Luo TY, Merg AD, Jin R, Rosi NL (sentyabr 2016). "Qisman Postsintetik Ligand almashinuvidan foydalangan holda metall-organik doiradagi g'ovaklik gradyanlarini o'rnatish". Amerika Kimyo Jamiyati jurnali. 138 (37): 12045–8. doi:10.1021 / jacs.6b07445. PMID  27593173.
  35. ^ Yuan S, Lu V, Chen YP, Chjan Q, Lyu TF, Feng D, Vang X, Qin J, Chjou XS (mart 2015). "Ketma-ket bog'lovchini o'rnatish: ko'p o'zgaruvchan metall-organik ramkalarda funktsional guruhlarni aniq joylashtirish". Amerika Kimyo Jamiyati jurnali. 137 (9): 3177–80. doi:10.1021 / ja512762r. PMID  25714137.
  36. ^ Yuan S, Chen YP, Qin JS, Lu V, Zou L, Chjan Q, Vang X, Sun X, Chjou XS (iyul 2016). "Linkerni o'rnatish: Zirkonyum MOF-larida aniq joylashtirilgan funktsionallik bilan muhandislik gözenek muhiti". Amerika Kimyo Jamiyati jurnali. 138 (28): 8912–9. doi:10.1021 / jacs.6b04501. OSTI  1388673. PMID  27345035.
  37. ^ a b v d Dolgopolova EA, Ejegbavwo OA, Martin CR, Smit MD, Setyawan V, Karakalos SG, Henager CH, Zur Loye HC, Shustova NB (2017 yil noyabr). "Ko'p qirrali modullik: Aktinidli metall-organik ramkalarda bosqichma-bosqich murakkablikni yaratish uchun kalit". Amerika Kimyo Jamiyati jurnali. 139 (46): 16852–16861. doi:10.1021 / jacs.7b09496. PMID  29069547.
  38. ^ a b v d e f g h men j k l m n o p q r s t Murray LJ, Dincă M, Long JR (may 2009). "Vodorodni metall-organik ramkalarda saqlash". Kimyoviy jamiyat sharhlari. 38 (5): 1294–314. CiteSeerX  10.1.1.549.4404. doi:10.1039 / b802256a. PMID  19384439.
  39. ^ Li Y, Yang RT (2007). "Supero'tkazilgan uglerodga biriktirilgan platinaviy nanopartikullarda vodorodni saqlash". Jismoniy kimyo jurnali C. 111 (29): 11086–11094. doi:10.1021 / jp072867q.
  40. ^ a b Kelajakdagi vodorodni ishlab chiqarish va undan foydalanishning alternativalari va strategiyalari qo'mitasi, Milliy tadqiqot kengashi, Milliy muhandislik akademiyasi (2004). Vodorod iqtisodiyoti: imkoniyatlar, xarajatlar, to'siqlar va ilmiy-tadqiqot ishlari ehtiyojlari. Vashington, DC: Milliy akademiyalar. 11-24, 37-44 betlar. ISBN  978-0-309-09163-3.CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  41. ^ Ronneau C (2004-11-29). Energie, ifloslanish de l'air et developpement bardoshli. Luvayn-la-Noyve: Press Universitaires de Luvain. ISBN  9782875581716.
  42. ^ a b Cite error: Nomlangan ma'lumotnoma Praya09 chaqirilgan, ammo hech qachon aniqlanmagan (qarang yordam sahifasi).
  43. ^ "Yengil transport vositalari uchun vodorodni saqlash uchun DOE texnik maqsadlari". Energy.gov.
  44. ^ Tomas KM (mart 2009). "Vodorodni adsorbsiyalash va saqlash uchun qo'llaniladigan metall-organik ramkali materiallarda desorbsiya: boshqa nanoporous materiallar bilan solishtirish". Dalton operatsiyalari. 0 (9): 1487–505. doi:10.1039 / B815583F. PMID  19421589.
  45. ^ Yuan D, Chjao D, Sun D, ​​Chjou XS (2010 yil iyul). "Dendritik geksakarboksilat ligandlari va gazni qabul qilish qobiliyati juda yuqori bo'lgan metall-organik ramkalarning izoretik qatori". Angewandte Chemie. 49 (31): 5357–61. doi:10.1002 / anie.201001009. PMID  20544763.
  46. ^ Liu J (2016 yil 2-noyabr). "H2 va CH4 saqlash uchun gözenekli materiallarning so'nggi ishlanmalari". Tetraedr xatlari. 57 (44): 4873–4881. doi:10.1016 / j.tetlet.2016.09.085.
  47. ^ Sumida K, Hill MR, Horike S, Dailly A, Long JR (oktyabr 2009). "Be (12) (OH) (12) (1,3,5-benzenetribenzoat) (4) ning sintezi va vodorodni saqlash xususiyatlari" ". Amerika Kimyo Jamiyati jurnali. 131 (42): 15120–1. doi:10.1021 / ja9072707. PMID  19799422.
  48. ^ a b v d Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O'Keeffe M, Kim J, Yaghi OM (iyul 2010). "Metall-organik ramkalardagi ultra yuqori g'ovaklilik". Ilm-fan. 329 (5990): 424–8. Bibcode:2010Sci ... 329..424F. doi:10.1126 / science.1192160. PMID  20595583. S2CID  25072457.
  49. ^ Rowsell JL, Millward AR, Park KS, Yaghi OM (2004 yil may). "Funktsionallashtirilgan metall-organik ramkalarda vodorod sorbsiyasi". Amerika Kimyo Jamiyati jurnali. 126 (18): 5666–7. doi:10.1021 / ja049408c. PMID  15125649.
  50. ^ Rosi NL, Ekkert J, Eddaoudi M, Vodak DT, Kim J, O'Kifff M, Yaghi OM (may 2003). "Mikro gözenekli metall-organik ramkalarda vodorodni saqlash". Ilm-fan. 300 (5622): 1127–9. Bibcode:2003 yil ... 300.1127R. doi:10.1126 / science.1083440. PMID  12750515. S2CID  3025509.
  51. ^ a b Dincă M, Dailly A, Liu Y, Brown Brown, Neumann DA, Long JR (dekabr 2006). "Mn2 + koordinatsion joylari ochiq bo'lgan mikro-gözenekli metall-organik asosda vodorodni saqlash". Amerika Kimyo Jamiyati jurnali. 128 (51): 16876–83. doi:10.1021 / ja0656853. PMID  17177438.
  52. ^ Li J, Li J, Jagiello J (2005). "Mikroporozli metall organik ramkalarning gazni sorbsion xossalari". Qattiq jismlar kimyosi jurnali. 178 (8): 2527–2532. Bibcode:2005 yil JSSCh.178.2527L. doi:10.1016 / j.jssc.2005.07.002.
  53. ^ Rowsell JL, Yaghi OM (iyul 2005). "Vodorodni metallda saqlash strategiyasi - organik ramkalar". Angewandte Chemie. 44 (30): 4670–9. doi:10.1002 / anie.200462786. PMID  16028207.
  54. ^ Rowsell JL, Yaghi OM (2006 yil fevral). "Metall-organik ramkalarning past bosimli vodorod adsorbsion xususiyatlariga metall oksidi va organik bog'laydigan birliklarning funktsionalizatsiyasi, katenatsiyasi va o'zgarishi ta'siri". Amerika Kimyo Jamiyati jurnali. 128 (4): 1304–15. doi:10.1021 / ja056639q. PMID  16433549.
  55. ^ Garrone E, Bonelli B, Arean CO (2008). "Seolitlarda vodorod adsorbsiyasi uchun entalpiya-entropiya korrelyatsiyasi". Kimyoviy fizika xatlari. 456 (1–3): 68–70. Bibcode:2008CPL ... 456 ... 68G. doi:10.1016 / j.cplett.2008.03.014.
  56. ^ Kubas, G. J. (2001). Metall dihidrogen va s-bog'lanish komplekslari: tuzilishi, nazariyasi va reaktivligi. Nyu-York: Kluwer Academic.
  57. ^ Bellarosa L, Calero S, Lopes N (may 2012). "Suyuq suvdagi metall-organik ramkalarning birinchi printsiplar molekulyar dinamikasidan buzilishining dastlabki bosqichlari". Fizik kimyo Kimyoviy fizika. 14 (20): 7240–5. Bibcode:2012PCCP ... 14.7240B. doi:10.1039 / C2CP40339K. PMID  22513503.
  58. ^ Bellarosa L, Castillo JM, Vlugt T, Calero S, Lopes N (sentyabr 2012). "Izoretikulyar metall-organik ramkalarning (IRMOF) nam muhitda beqarorligi mexanizmi to'g'risida". Kimyo. 18 (39): 12260–6. doi:10.1002 / chem.201201212. PMID  22907782.
  59. ^ Stern AC, Belof JL, Eddaoudi M, Space B (yanvar 2012). "Vodorod sorbsiyasini toraygan kanallar bilan qutbli metall-organik asosda tushunish". Kimyoviy fizika jurnali. 136 (3): 034705. Bibcode:2012JChPh.136c4705S. doi:10.1063/1.3668138. PMID  22280775.
  60. ^ Dolgonos G (2005). "S ga qancha vodorod molekulalarini kiritish mumkin60? "Vodorodli dopingli fullerenni AM1 bilan davolash" maqolasida sharhlar, nH2@C60'L. Turker va S. Erkoch tomonidan'". Molekulyar tuzilish jurnali: THEOCHEM. 723 (1–3): 239–241. doi:10.1016 / j.theochem.2005.02.017.
  61. ^ Tsao CS, Yu MS, Vang CY, Liao PY, Chen HL, Jeng AQSh, Tzeng YR, Chung TY, Wu HC (fevral 2009). "Nanostruktura va ko'prikli metall-organik ramkalarning vodorod bilan to'kilishi". Amerika Kimyo Jamiyati jurnali. 131 (4): 1404–6. doi:10.1021 / ja802741b. PMID  19140765.
  62. ^ Mulfort KL, Farha OK, Stern CL, Sarjeant AA, Hupp JT (mart 2009). "Metall-organik asoslar tarkibida post-sintez qilingan alkoksid hosil bo'lishi: yuqori darajada koordinatali to'yinmagan metall ionlarini kiritish strategiyasi". Amerika Kimyo Jamiyati jurnali. 131 (11): 3866–8. doi:10.1021 / ja809954r. PMID  19292487.
  63. ^ Huang BL, Ni Z, Millward A, McGaughey AJ, Uher C, Kaviany M, Yaghi O (2007). "Metall-organik ramkaning issiqlik o'tkazuvchanligi (MOF-5): II qism. O'lchash". Xalqaro issiqlik va ommaviy uzatish jurnali. 50 (3–4): 405–411. doi:10.1016 / j.ijheatmasstransfer.2006.10.001.
  64. ^ McQuarrie DA, Simon JD (1997). Jismoniy kimyo: Molekulyar yondashuv. Sausalito, Kaliforniya: Universitet ilmiy kitoblari.
  65. ^ Belof JL, Stern AC, Eddaoudi M, Space B (2007 yil dekabr). "Vodorodni metall-organik karkas materialida saqlash mexanizmi to'g'risida". Amerika Kimyo Jamiyati jurnali. 129 (49): 15202–10. doi:10.1021 / ja0737164. PMID  17999501.
  66. ^ Belof J, Stern A, Space B (2009). "Metall-organik materiallar uchun vodorod sorbsiyasining bashoratli modeli". Jismoniy kimyo jurnali C. 113 (21): 9316–9320. doi:10.1021 / jp901988e.
  67. ^ a b v Chjao D, Yan D, Chjou X (2008). "Vodorodni metall-organik ramkalarda saqlashning hozirgi holati". Energiya va atrof-muhit fanlari. 1 (2): 225–235. doi:10.1039 / b808322n. S2CID  44187103.
  68. ^ Furukava X, Miller MA, Yaghi OM (2007). "MOF-177 tarkibidagi vodorodni to'yinganligini mustaqil tekshirish va metall-organik ramkalarda vodorod adsorbsiyasi uchun etalonni yaratish". Materiallar kimyosi jurnali. 17 (30): 3197–3204. doi:10.1039 / b703608f.
  69. ^ Lowell S, Shilds JE, Tomas MA, Tommes M (2004). G'ovakli qattiq moddalar va kukunlarning xarakteristikasi: sirt maydoni, gözenek hajmi va zichligi. Springer Niderlandiya. doi:10.1007/978-1-4020-2303-3. ISBN  978-90-481-6633-6.
  70. ^ a b Züttel A (2004 yil aprel). "Vodorodni saqlash usullari". Naturwissenschaften vafot etdi. 91 (4): 157–72. Bibcode:2004NW ..... 91..157Z. doi:10.1007 / s00114-004-0516-x. PMID  15085273. S2CID  6985612.
  71. ^ Mitch Jacoby "Materiallar kimyosi: metall-organik ramkalar tijoratga kirishadi" Kimyo va muhandislik yangiliklari, 91 (51), 2013 yil 23-dekabr
  72. ^ Cejka J, Corma A, zonalar S (27 may 2010). Seolitlar va kataliz: sintez, reaktsiyalar va qo'llanilish. John Wiley & Sons. ISBN  978-3-527-63030-1.
  73. ^ Esmaeil Niknam "Benzoazollarni toza sintez qilish uchun samarali heterogen katalizator sifatida MIL-101 (Cr) metall-organik asosi" ACS omega, 3 (12), 2018 yil 12-dekabr
  74. ^ Fujita M, Kvon YJ, Washizu S, Ogura K (1994). "Kadmiy (II) va 4,4'-Bipiridindan tashkil topgan ikki o'lchovli to'rtburchak tarmoq materialini tayyorlash, klatrlash qobiliyati va katalizatsiyasi". Amerika Kimyo Jamiyati jurnali. 116 (3): 1151. doi:10.1021 / ja00082a055.
  75. ^ Llabresixamena F, Abad A, Corma A, Garcia Garcia (2007). "Katalizator sifatida MOFlar: Pd o'z ichiga olgan MOFning faolligi, qayta ishlatilishi va shakli tanlanganligi". Kataliz jurnali. 250 (2): 294–298. doi:10.1016 / j.jcat.2007.06.004.
  76. ^ Ravon U, Domine ME, Gaudillere C, Desmartin-Chomel A, Farrusseng D (2008). "MOFlar shakli selektivlik xususiyatiga ega kislota katalizatori sifatida". Yangi kimyo jurnali. 32 (6): 937. doi:10.1039 / B803953B.
  77. ^ Chuy SS, Lo SM, Charmant JP, Orpen AG, Uilyams ID (1999). "Kimyoviy funktsional nanoporous material [Cu3(TMA)2(H2O)3]n". Ilm-fan. 283 (5405): 1148–50. Bibcode:1999Sci ... 283.1148C. doi:10.1126 / science.283.5405.1148. PMID  10024237.
  78. ^ Alaerts L, Seguin E, Poelman H, Tibo-Starzyk F, Jacobs PA, De Vos DE (sentyabr 2006). "Lyuis kislotaliligi va metall-organik ramkaning katalitik faolligini tekshirish [Cu3 (btc) 2] (BTC = benzol-1,3,5-trikarboksilat)". Kimyo. 12 (28): 7353–63. doi:10.1002 / chem.200600220. hdl:1854 / LU-351275. PMID  16881030.
  79. ^ Henschel A, Gedrich K, Kraehnert R, Kaskel S (sentyabr 2008). "MIL-101 ning katalitik xususiyatlari". Kimyoviy aloqa (35): 4192–4. doi:10.1039 / B718371B. PMID  18802526.
  80. ^ a b Horike S, Dinca M, Tamaki K, Long JR (may 2008). "Ochiq Mn2 + koordinatsion joylari bo'lgan mikroporozli metall-organik asosdagi Lyuis kislota katalizi". Amerika Kimyo Jamiyati jurnali. 130 (18): 5854–5. doi:10.1021 / ja800669j. PMID  18399629.
  81. ^ Chen L, Yang Y, Jiang D (2010 yil iyul). "CMPlar gözenekli katalitik ramkalar qurish uchun iskala sifatida: nanoporous metalloporphyrin polimerlari asosida yuqori faollik va selektivlikka ega bo'lgan o'rnatilgan heterojen katalizator". Amerika Kimyo Jamiyati jurnali. 132 (26): 9138–43. doi:10.1021 / ja1028556. PMID  20536239.
  82. ^ Rahiman AK, Rajesh K, Bharathi KS, Sreedaran S, Narayanan V (2009). "Alkenlarni marganets (III) bilan porfirin bilan kapsulalangan Al, V, Si-mezoporous molekulyar elaklardan katalitik oksidlash". Inorganica Chimica Acta. 352 (5): 1491–1500. doi:10.1016 / j.ica.2008.07.011.
  83. ^ Mansuy D, Bartoli JF, Momenteau M (1982). "Metalloporhirinlar tomonidan katalizlangan alkan gidroksillanishi: oksidlovchilar sifatida alkilgidroperoksidlar va yodosobenzol bilan faol kislorod turlarining turli xilligiga dalil". Tetraedr xatlari. 23 (27): 2781–2784. doi:10.1016 / S0040-4039 (00) 87457-2.
  84. ^ Ingleson MJ, Barrio JP, Bacsa J, Dikkinson C, Park H, Rosseinsky MJ (mart 2008). "Chiral doirada qattiq Brönsted kislotasi uchastkasining paydo bo'lishi". Kimyoviy aloqa (11): 1287–9. doi:10.1039 / B718443C. PMID  18389109.
  85. ^ a b Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S (mart 2007). "Tridentat ligandga asoslangan amid guruhlari bilan funktsionalizatsiya qilingan uch o'lchovli gözenekli koordinatsion polimer: selektiv sorbsiya va kataliz". Amerika Kimyo Jamiyati jurnali. 129 (9): 2607–14. doi:10.1021 / ja067374y. PMID  17288419.
  86. ^ a b Xvan YK, Xong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Ferey G (2008). "MOFlarning koordinatsion to'yinmagan metall markazlariga amin payvandlash: kataliz va metallni kapsulalash uchun oqibatlari". Angewandte Chemie. 47 (22): 4144–8. doi:10.1002 / anie.200705998. PMID  18435442.
  87. ^ Seo JS, Vang D, Li X, Jun SI, Oh J, Jeon YJ, Kim K (2000 yil aprel). "Enantioselektiv ajratish va kataliz uchun gomoxiral metall-organik gözenekli material". Tabiat. 404 (6781): 982–6. Bibcode:2000 yil Natur.404..982S. doi:10.1038/35010088. PMID  10801124. S2CID  1159701.
  88. ^ Ohmori O, Fujita M (2004 yil iyul). "Muvofiqlashtiruvchi tarmoqning heterojen katalizi: Cd (II) - (4,4'-bipiridin) kvadrat panjara kompleksi tomonidan katalizlangan ilmlarning siyanosililatsiyasi". Kimyoviy aloqa (14): 1586–7. doi:10.1039 / B406114B. PMID  15263930.
  89. ^ Schlichte K, Kratzke T, Kaskel S (2004). "Cu metal-organik ramka birikmasining sintezi, issiqlik barqarorligi va katalitik xususiyatlari yaxshilandi3(BTC)2". Mikroporozli va mezoporous materiallar. 73 (1–2): 81–85. doi:10.1016 / j.micromeso.2003.12.027.
  90. ^ Chuy SS, Lo SM, Charmant JP, Orpen AG, Uilyams ID (1999). "Kimyoviy funktsional nanoporous material [Cu3(TMA)2(H2O)3] n ". Ilm-fan. 283 (5405): 1148–1150. Bibcode:1999Sci ... 283.1148C. doi:10.1126 / science.283.5405.1148. PMID  10024237.
  91. ^ Evans OR, Ngo HL, Lin V (2001). "Lamellar lantanid fosfonatlar asosidagi chiral gözenekli qattiq moddalar". Amerika Kimyo Jamiyati jurnali. 123 (42): 10395–6. doi:10.1021 / ja0163772. PMID  11603994.
  92. ^ Kato C, Xasegawa M, Sato T, Yoshizawa A, Inoue T, Mori V (2005). "Mikroporous dinuclear mis (II) trans-1,4-sikloheksanikarboksilat: vodorod peroksid bilan heterojen oksidlanish katalizi va perokso mis (II) oraliq moddasining rentgen kukuni tuzilishi ". Kataliz jurnali. 230: 226–236. doi:10.1016 / j.jcat.2004.11.032.
  93. ^ Han JW, Hill CL (2007 yil dekabr). "O2 asosidagi oksidlanishlarni katalizlaydigan koordinatsion tarmoq". Amerika Kimyo Jamiyati jurnali. 129 (49): 15094–5. doi:10.1021 / ja069319v. PMID  18020331.
  94. ^ Ferrey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (sentyabr 2005). "Xrom tereftalat asosidagi qattiq g'ovak hajmi va yuzasi bilan qattiq". Ilm-fan. 309 (5743): 2040–2. Bibcode:2005 yil ... 309.2040F. doi:10.1126 / science.1116275. PMID  16179475. S2CID  29483796.
  95. ^ Schröder F, Esken D, Cokoja M, van den Berg MW, Lebedev OI, Van Tendeloo G, Walaszek B, Buntkowsky G, Limbach HH, Chaudret B, Fischer RA (may 2008). "Adsorbsiyalangan [Ru (cod) (yotoq)] ning gidrogenolizasi orqali g'ovakli [Zn4O (bdc) 3] ichidagi ruteniyum nanozarralari: sirt faol moddalar stabillashgan ruteniy kolloidlari uchun qattiq holatli mos yozuvlar tizimi". Amerika Kimyo Jamiyati jurnali. 130 (19): 6119–30. doi:10.1021 / ja078231u. PMID  18402452.
  96. ^ Tan YC, Zeng HC (oktyabr 2018). "Lyuisning asosliligi, nanozarrachalarga kiritilgan nuqsonli metall-organik ramkalarda zaryadlarning mahalliy muvozanati natijasida hosil bo'lgan". Tabiat aloqalari. 9 (1): 4326. Bibcode:2018NatCo ... 9.4326T. doi:10.1038 / s41467-018-06828-4. PMC  6194069. PMID  30337531.
  97. ^ Pan L, Liu H, Ley X, Xuang X, Olson DH, Turro NJ, Li J (2003 yil fevral). "RPM-1: butilkada sintez qilish va katta uglevodorod sorbsiyasi uchun yaroqli qayta ishlanadigan nanoporous material". Angewandte Chemie. 42 (5): 542–6. doi:10.1002 / anie.200390156. PMID  12569485.
  98. ^ Uemura T, Kitaura R, Ohta Y, Nagaoka M, Kitagava S (iyun 2006). "G'ovakli koordinatsion polimerlarda o'rnini bosuvchi asetilenlarni nanokannel bilan ta'minlangan polimerizatsiyasi". Angewandte Chemie. 45 (25): 4112–6. doi:10.1002 / anie.200600333. PMID  16721889.
  99. ^ Uemura T, Xiramatsu D, Kubota Y, Takata M, Kitagava S (2007). "G'ovakli koordinatsion polimerlarda divinilbenzenlarning topotaktik chiziqli radikal polimerizatsiyasi". Angewandte Chemie. 46 (26): 4987–90. doi:10.1002 / anie.200700242. PMID  17514689.
  100. ^ Ezuhara T, Endo K, Aoyama Y (1999). "Kristallar tarkibidagi Axiral komponentlaridan spiral koordinatsion polimerlar. Gomoxiral kristallanish, qattiq holatda gomoxiral spiralni o'rash va urug'lantirish orqali chirallikni boshqarish". Amerika Kimyo Jamiyati jurnali. 121 (14): 3279. doi:10.1021 / ja9819918.
  101. ^ Wu ST, Wu YR, Kang QQ, Zhang H, Long LS, Zheng Z, Huang RB, Zheng LS (2007). "Kristallanishdagi statistik tebranishni kimyoviy manipulyatsiya qilish yo'li bilan Chiral simmetriyasini buzish". Angewandte Chemie. 46 (44): 8475–9. doi:10.1002 / anie.200703443. PMID  17912730.
  102. ^ Kepert CJ, Old TJ, Rosseinsky MJ (2000). "O'zaro konvertatsiya qilinadigan mikroporous Chiral molekulyar doiralarining ko'p qirrali oilasi: Tarmoq chiralligini Ligand nazoratining birinchi misoli". Amerika Kimyo Jamiyati jurnali. 122 (21): 5158–5168. doi:10.1021 / ja993814s.
  103. ^ Bradshaw D, Prior TJ, Cussen EJ, Claridge JB, Rosseinsky MJ (may 2004). "Chiral ochiq doirada doimiy mikropozitivlik va enantioselektiv sorbsiya". Amerika Kimyo Jamiyati jurnali. 126 (19): 6106–14. doi:10.1021 / ja0316420. PMID  15137776.
  104. ^ Lin Z, Slawin AM, Morris RE (aprel 2007). "3-o'lchovli koordinatsion polimerning ionotermik sintezidagi chiral induksiyasi". Amerika Kimyo Jamiyati jurnali. 129 (16): 4880–1. doi:10.1021 / ja070671y. PMID  17394325.
  105. ^ Xu A, Ngo HL, Lin V (2004 yil may). "Binapga 4,4'-o'rnini bosuvchi ta'sir: Beta-aril ketoesterlarni assimetrik gidrogenatsiyalash va ularni xona haroratidagi ionli suyuqliklarda immobilizatsiya qilish uchun yuqori enantioselektiv Ru katalizatorlari". Angewandte Chemie. 43 (19): 2501–4. doi:10.1002 / anie.200353415. PMID  15127435.
  106. ^ Wu CD, Xu A, Chjan L, Lin V (iyun 2005). "Yuqori enantiyoselektiv heterojen assimetrik kataliz uchun gomoxiral gözenekli metall-organik asos". Amerika Kimyo Jamiyati jurnali. 127 (25): 8940–1. doi:10.1021 / ja052431t. PMID  15969557.
  107. ^ Wu CD, Lin V (2007). "Gomoxiral metall-organik ramkalar bilan heterojen assimetrik kataliz: tarmoq tarkibiga bog'liq katalitik faollik". Angewandte Chemie. 46 (7): 1075–8. doi:10.1002 / anie.200602099. PMID  17183496.
  108. ^ Cho SH, Ma B, Nguyen ST, Xupp JT, Albrecht-Shmitt TE (iyun 2006). "Olefin epoksidlanishining enantioselektiv katalizatori vazifasini bajaradigan metall-organik asos materiali". Kimyoviy aloqa (24): 2563–5. doi:10.1039 / b600408c. PMID  16779478.
  109. ^ Xu A, Ngo HL, Lin V (sentyabr 2003). "Aromatik ketonlarni amaliy heterojen assimetrik gidrogenlash uchun Chiral gözenekli gibrid qattiq moddalar". Amerika Kimyo Jamiyati jurnali. 125 (38): 11490–1. doi:10.1021 / ja0348344. PMID  13129339.
  110. ^ Farrusseng D, Aguado S, Pinel C (2009). "Metall-organik ramkalar: kataliz imkoniyatlari". Angewandte Chemie. 48 (41): 7502–13. doi:10.1002 / anie.200806063. PMID  19691074.
  111. ^ Eddaoudi M, Kim J, Vachter J, Chae XK, O'Kifff M, Yagi OM (2001). "G'ovakli metall-organik poliedra: 25 kubometr 12 kubdan qurilgan2(CO2)4 Paddek-g'ildirak qurilish bloklari ". Amerika Kimyo Jamiyati jurnali. 123 (18): 4368–9. doi:10.1021 / ja0104352. PMID  11457217.
  112. ^ Furukava X, Kim J, Okvig NW, O'Keeffe M, Yaghi OM (sentyabr 2008). "Kristalli metall-organik ramkalar va ko'p qirralarning retikulyar sintezida vertikal geometriya, strukturaning o'lchamlari, funktsionalligi va gözenek metrikalarini boshqarish". Amerika Kimyo Jamiyati jurnali. 130 (35): 11650–61. doi:10.1021 / ja803783c. PMID  18693690.
  113. ^ Surblé S, Serre C, Mellot-Draznieks C, Millange F, Férey G (2006 yil yanvar). "MIL-88 topologiyasiga ega bo'lgan metall-organik ramkalarning yangi izoretik klassi". Kimyoviy aloqa (3): 284–6. doi:10.1039 / B512169H. PMID  16391735.
  114. ^ Sudik AC, Millward AR, Ockwig NW, Cote AP, Kim J, Yaghi OM (may 2005). "G'ovakli metall-organik tetraedral va geterokuboidal poliedraning dizayni, sintezi, tuzilishi va gaz (N2, Ar, CO2, CH4 va H2) sorbsion xossalari". Amerika Kimyo Jamiyati jurnali. 127 (19): 7110–8. doi:10.1021 / ja042802q. PMID  15884953.
  115. ^ Degnan T (2003). "Neft va neft-kimyo sanoati uchun katalizatorlar rivojlanishi uchun shakl selektivligi asoslarining natijalari". Kataliz jurnali. 216 (1–2): 32–46. doi:10.1016 / S0021-9517 (02) 00105-7.
  116. ^ Kuc A, Enyashin A, Seifert G (2007 yil iyul). "Metall-organik ramkalar: strukturaviy, energetik, elektron va mexanik xususiyatlar". Jismoniy kimyo jurnali B. 111 (28): 8179–86. doi:10.1021 / jp072085x. PMID  17585800.
  117. ^ Esswein AJ, Nocera DG (2007 yil oktyabr). "Molekulyar fotokataliz yordamida vodorod ishlab chiqarish". Kimyoviy sharhlar. 107 (10): 4022–47. doi:10.1021 / cr050193e. PMID  17927155.
  118. ^ Yang C, Messerschmidt M, Coppens P, Omary MA (avgust 2006). "Uch yadroli oltin (I) triazolatlar: keng polosali fosforlar va datchiklarning yangi klassi". Anorganik kimyo. 45 (17): 6592–4. doi:10.1021 / ic060943i. PMID  16903710.
  119. ^ Fuentes-Kabrera M, Nikolson DM, Sumpter BG, Widom M (2005). "Izoretik metall-organik ramkalarning elektron tuzilishi va xususiyatlari: M-IRMOF1 (M = Zn, Cd, Be, Mg va Ca) ishi". Kimyoviy fizika jurnali. 123 (12): 124713. Bibcode:2005JChPh.123l4713F. doi:10.1063/1.2037587. PMID  16392517.
  120. ^ Gascon J, Ernandes-Alonso MD, Almeyda AR, van Klink GP, Kapteijn F, Mul G (2008). "Izoretikulyar MOFlar sozlanishi tarmoqli oralig'i bilan samarali fotokatalizatorlar sifatida: propilendan fotokislotali oksidlanishni operando FTIR o'rganish". ChemSusChem. 1 (12): 981–3. doi:10.1002 / cssc.200800203. PMID  19053135.
  121. ^ https://advances.sciencemag.org/content/6/29/eabb2695
  122. ^ Zheng V, Tsang C, Li LY, Vong K (iyun 2019). "Ikki o'lchovli metall-organik ramka va kovalent-organik ramka: sintez va ularning energiya bilan bog'liq qo'llanmalari". Bugungi kimyo materiallari. 12: 34–60. doi:10.1016 / j.mtchem.2018.12.002.
  123. ^ Vang, Vey; Xu, Xiaomin; Chjou, Vey; Shao, Zongping (2017 yil aprel). "Elektrokatalitik va fotokatalitik suvni ajratishda qo'llash uchun metall-organik asoslarda so'nggi yutuqlar". Ilg'or ilm. 4 (4): 1600371. doi:10.1002 / advs.201600371. PMC  5396165. PMID  28435777.
  124. ^ Cheng, Vayren; Chjao, Xu; Su, Xui; Tang, Fumin; Che, Vey; Chjan, Xuy; Liu, Tsinghua (2019 yil 14-yanvar). "Ikki funktsional kislorod elektrokataliz uchun panjara suzilgan metall - organik asosli massivlar". Tabiat energiyasi. 4 (2): 115–122. Bibcode:2019NatEn ... 4..115C. doi:10.1038 / s41560-018-0308-8. S2CID  139760912.
  125. ^ Liu, Mengji; Chjen, Veyran; Ran, Sijiya; Boles, Stiven T.; Li, Lourens Yun Suk (2018 yil noyabr). "2D CoNi-Metal-Organic Framework va uning hosilasi asosida umumiy suv ajratuvchi elektrokatalizatorlar". Murakkab materiallar interfeyslari. 5 (21): 1800849. doi:10.1002 / admi.201800849.
  126. ^ Chjen, Veyran; Liu, Mengji; Li, Lourens Yon Suk (2020). "Metall-organik asoslarning elektrokimyoviy beqarorligi: haqiqiy faol saytlarni situ-spektroelektrokimyoviy tekshirish". ACS kataliz. 10: 81–92. doi:10.1021 / acscatal.9b03790.
  127. ^ Bünzli JK (2010 yil may). "Biyomedikal tahlillar va tasvirlash uchun lantanid lyuminesansi". Kimyoviy sharhlar. 110 (5): 2729–55. doi:10.1021 / cr900362e. PMID  20151630.
  128. ^ Amoroso AJ, Papa SJ (2015 yil iyul). "Molekulyar bioimagingda lantanid ionlaridan foydalanish" (PDF). Kimyoviy jamiyat sharhlari. 44 (14): 4723–42. doi:10.1039 / c4cs00293 soat. PMID  25588358.
  129. ^ Rosi NL, Kim J, Eddaoudi M, Chen B, O'Keeffe M, Yaghi OM (fevral 2005). "Tayoqcha shaklidagi ikkilamchi qurilish bloklaridan yasalgan tayoqchalar va metall organik ramkalar". Amerika Kimyo Jamiyati jurnali. 127 (5): 1504–18. doi:10.1021 / ja045123o. PMID  15686384.
  130. ^ Duan T, Yan B (2014-06-12). "Lantanid ionlari asosidagi duragaylar - faollashtirilgan itriy metal - organik ramkalar: funktsional yig'ish, polimer plyonka tayyorlash va lyuminestsentni sozlash". J. Mater. Kimyoviy. C. 2 (26): 5098–5104. doi:10.1039 / c4tc00414k. ISSN  2050-7534.
  131. ^ Xu H, Cao CS, Kang XM, Zhao B (noyabr 2016). "Lantanid asosidagi metall-organik ramkalar lyuminestsent probalar sifatida". Dalton operatsiyalari. 45 (45): 18003–18017. doi:10.1039 / c6dt02213h. PMID  27470090.
  132. ^ Lian X, Yan B (2016-01-26). "Bo'yoqlarni adsorbsiyalash va aromatik ifloslantiruvchi moddalarni aniqlash uchun lyuminestsentsiya uchun lantanidli metall-organik asos (MOF-76)". RSC avanslari. 6 (14): 11570–11576. doi:10.1039 / c5ra23681a. ISSN  2046-2069.
  133. ^ Pansare V, Hejazi S, Faenza V, Prud'home RK (mart 2012). "Uzoq to'lqinli optik va NIR tasvirlash materiallarini ko'rib chiqish: kontrastli moddalar, floroforlar va ko'p funktsional nano tashuvchilar". Materiallar kimyosi. 24 (5): 812–827. doi:10.1021 / cm2028367. PMC  3423226. PMID  22919122.
  134. ^ Della Rocca J, Liu D, Lin V (oktyabr 2011). "Biyomedikal tasvirlash va giyohvand moddalarni etkazib berish uchun nanobashkali metall-organik ramkalar". Kimyoviy tadqiqotlar hisoblari. 44 (10): 957–68. doi:10.1021 / ar200028a. PMC  3777245. PMID  21648429.
  135. ^ Luo TY, Liu S, Eliseeva SV, Muldoon PF, Petoud S, Rosi NL (iyul 2017). "2+ klasterlar: ratsional dizayn, yo'naltirilgan sintez va qo'zg'alish to'lqin uzunliklarini ataylab sozlash". Amerika Kimyo Jamiyati jurnali. 139 (27): 9333–9340. doi:10.1021 / jacs.7b04532. PMID  28618777.
  136. ^ Foucault-Collet A, Gogick KA, White KA, Villette S, Pallier A, Collet G, Kieda C, Li T, Geib SJ, Rosi NL, Petoud S (oktyabr 2013). "Yb3 + nano metall organik ramkalari bo'lgan tirik hujayralardagi infraqizil tasvirlar yaqinidagi lantanid". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 110 (43): 17199–204. Bibcode:2013PNAS..11017199F. doi:10.1073 / pnas.1305910110. PMC  3808657. PMID  24108356.
  137. ^ Li Y, Veng Z, Vang Y, Chen L, Sheng D, Diu J, Chay Z, Albrecht-Shmitt TE, Vang S (yanvar 2016). "Grafenga o'xshash (6,3) varaq topologiyasiga asoslangan toriy (iv) organik gibrid qatlamli va ramka tuzilmalaridagi uranil (vi) ga o'xshash past valentli aktinidlar uchun hayratlanarli koordinatsiya". Dalton operatsiyalari. 45 (3): 918–21. doi:10.1039 / C5DT04183J. PMID  26672441.
  138. ^ Carboni M, Abney CW, Liu S, Lin V (2013). "Uranni qazib olish uchun juda gözenekli va barqaror metall-organik ramkalar". Kimyo fanlari. 4 (6): 2396. doi:10.1039 / c3sc50230a. ISSN  2041-6520.
  139. ^ Vang Y, Li Y, Bai Z, Xiao S, Lyu Z, Lyu V, Chen L, Xe V, Divu J, Chay Z, Albrecht-Shmitt TE, Vang S (2015 yil noyabr). "Chiral uranga asoslangan mikroporozik metall organik ramkaning dizayni va sintezi yuqori SHG samaradorligi va past valentli aktinidlar uchun sekvestr potentsiali". Dalton operatsiyalari. 44 (43): 18810–4. doi:10.1039 / C5DT02337H. PMID  26459775.
  140. ^ Liu V, Dai X, Bai Z, Vang Y, Yang Z, Chjan L, Xu L, Chen L, Li Y, Guy D, Diu J, Vang J, Chjou R, Chay Z, Vang S (2017 yil aprel). "Lyuisent Mesoporous Metal-Organic Framework yordamida tabiiy suv tizimlarida yuqori sezgir va selektiv uranni aniqlash, mo'l-ko'l Lyuis asosiy saytlari bilan jihozlangan: kombinatsiyalangan guruh, rentgen nurlarini yutish spektroskopiyasi va simulyatsiya qilishning birinchi tamoyillari". Atrof-muhit fanlari va texnologiyalari. 51 (7): 3911–3921. Bibcode:2017 ENST ... 51.3911L. doi:10.1021 / acs.est.6b06305. PMID  28271891.
  141. ^ Vang LL, Luo F, Dang LL, Li JQ, Vu XL, Liu SJ, Luo MB (2015). "Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal–organic framework". Materiallar kimyosi jurnali A. 3 (26): 13724–13730. doi:10.1039/C5TA01972A. ISSN  2050-7488.
  142. ^ Demir S, Brune NK, Van Humbeck JF, Mason JA, Plakhova TV, Wang S, Tian G, Minasian SG, Tyliszczak T, Yaita T, Kobayashi T, Kalmykov SN, Shiwaku H, Shuh DK, Long JR (April 2016). "Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework". ACS Central Science. 2 (4): 253–65. doi:10.1021/acscentsci.6b00066. PMC  4850516. PMID  27163056.
  143. ^ Demir S, Brune NK, Van Humbeck JF, Mason JA, Plakhova TV, Wang S, Tian G, Minasian SG, Tyliszczak T, Yaita T, Kobayashi T, Kalmykov SN, Shiwaku H, Shuh DK, Long JR (April 2016). "Extraction of Lanthanide and Actinide Ions from Aqueous Mixtures Using a Carboxylic Acid-Functionalized Porous Aromatic Framework". ACS Central Science. 2 (4): 253–65. doi:10.1021/acscentsci.6b00066. PMC  4850516. PMID  27163056.
  144. ^ Banerjee D, Kim D, Schweiger MJ, Kruger AA, Thallapally PK (May 2016). "Removal of TcO4(-) ions from solution: materials and future outlook". Kimyoviy jamiyat sharhlari. 45 (10): 2724–39. doi:10.1039/C5CS00330J. PMID  26947251.
  145. ^ Li B, Dong X, Wang H, Ma D, Tan K, Jensen S, Deibert BJ, Butler J, Cure J, Shi Z, Thonhauser T, Chabal YJ, Han Y, Li J (September 2017). "Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps". Tabiat aloqalari. 8 (1): 485. Bibcode:2017NatCo...8..485L. doi:10.1038/s41467-017-00526-3. PMC  5589857. PMID  28883637.
  146. ^ Abney CW, Mayes RT, Saito T, Dai S (December 2017). "Materials for the Recovery of Uranium from Seawater". Kimyoviy sharhlar. 117 (23): 13935–14013. doi:10.1021/acs.chemrev.7b00355. OSTI  1412046. PMID  29165997.
  147. ^ Wu MX, Yang YW (June 2017). "Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy". Murakkab materiallar. 29 (23): 1606134. doi:10.1002/adma.201606134. PMID  28370555.
  148. ^ Smaldone RA, Forgan RS, Furukawa H, Gassensmith JJ, Slawin AM, Yaghi OM, Stoddart JF (November 2010). "Metal-organic frameworks from edible natural products". Angewandte Chemie. 49 (46): 8630–4. doi:10.1002/anie.201002343. PMID  20715239.
  149. ^ Jambhekar SS, Breen P (February 2016). "Cyclodextrins in pharmaceutical formulations I: structure and physicochemical properties, formation of complexes, and types of complex". Bugungi kunda giyohvand moddalarni kashf etish. 21 (2): 356–62. doi:10.1016/j.drudis.2015.11.017. PMID  26686054.
  150. ^ Hartlieb KJ, Ferris DP, Holcroft JM, Kandela I, Stern CL, Nassar MS, Botros YY, Stoddart JF (May 2017). "Encapsulation of Ibuprofen in CD-MOF and Related Bioavailability Studies". Molecular Pharmaceutics. 14 (5): 1831–1839. doi:10.1021/acs.molpharmaceut.7b00168. PMID  28355489.
  151. ^ Rojas S, Colinet I, Cunha D, Hidalgo T, Salles F, Serre C, Guillou N, Horcajada P (March 2018). "Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal-Organic Frameworks in View of Cutaneous Administration". ACS Omega. 3 (3): 2994–3003. doi:10.1021/acsomega.8b00185. PMC  5879486. PMID  29623304.
  152. ^ Chen X, Tong R, Shi Z, Yang B, Liu H, Ding S, Wang X, Lei Q, Wu J, Fang W (January 2018). "MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor". ACS Amaliy materiallar va interfeyslar. 10 (3): 2328–2337. doi:10.1021/acsami.7b16522. PMID  29286625.
  153. ^ Talin AA, Centrone A, Ford AC, Foster ME, Stavila V, Haney P, Kinney RA, Szalai V, El Gabaly F, Yoon HP, Léonard F, Allendorf MD (January 2014). "Tunable electrical conductivity in metal-organic framework thin-film devices". Ilm-fan. 343 (6166): 66–9. Bibcode:2014Sci...343...66T. doi:10.1126/science.1246738. PMID  24310609. S2CID  206552714.
  154. ^ "2D self-assembling semiconductor could beat out graphene". www.gizmag.com.
  155. ^ Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M (June 2014). "High electrical conductivity in Ni₃(2,3,6,7,10,11-hexaiminotriphenylene)₂, a semiconducting metal-organic graphene analogue". Amerika Kimyo Jamiyati jurnali. 136 (25): 8859–62. doi:10.1021/ja502765n. PMID  24750124.
  156. ^ Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P (June 2015). "Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules". Tabiat aloqalari. 6: 7240. Bibcode:2015NatCo...6.7240L. doi:10.1038/ncomms8240. PMC  4468859. PMID  26041070.
  157. ^ Choi S, Drese JH, Jones CW (2009-09-21). "Adsorbent materials for carbon dioxide capture from large anthropogenic point sources". ChemSusChem. 2 (9): 796–854. doi:10.1002/cssc.200900036. PMID  19731282.
  158. ^ a b Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (February 2012). "Carbon dioxide capture in metal-organic frameworks". Kimyoviy sharhlar. 112 (2): 724–81. doi:10.1021 / cr2003272. PMID  22204561.
  159. ^ Berger AH, Bhown AS (2011-01-01). "Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption". Energiya protseduralari. Issiqxona gazlarini boshqarish texnologiyalari bo'yicha 10-xalqaro konferentsiya. 4: 562–567. doi:10.1016/j.egypro.2011.01.089.
  160. ^ Smit B, Reimer JA, Oldenburg CM, Bourg IC (2014). Uglerodni tutib olish va sekvestrlashga kirish. London: Imperial kolleji matbuoti. ISBN  978-1-78326-328-8.
  161. ^ Lesch, David A (2010). "Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks". doi:10.2172/1003992. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  162. ^ "Researchers discover efficient and sustainable way to filter salt and metal ions from water". 2018 yil 9-fevral. Olingan 2018-02-11.
  163. ^ Greeves N. "ZIF-8 Metal Organic Framework". www.chemtube3d.com. Olingan 2018-02-12.
  164. ^ Greeves N. "UiO-66 Metal Organic Framework". www.chemtube3d.com. Olingan 2018-02-12.
  165. ^ Zhang H, Hou J, Hu Y, Wang P, Ou R, Jiang L, Liu JZ, Freeman BD, Hill AJ, Wang H (February 2018). "Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores". Ilmiy yutuqlar. 4 (2): eaaq0066. Bibcode:2018SciA....4...66Z. doi:10.1126/sciadv.aaq0066. PMC  5817922. PMID  29487910.
  166. ^ Ranwen Ou; va boshq. (2020). "A sunlight-responsive metal–organic framework system for sustainable water desalination". Nature Sustainability. doi:10.1038/s41893-020-0590-x.
  167. ^ "Researchers Find A New Way To Make Water From Thin Air". Milliy jamoat radiosi. 2017 yil 14 aprel.
  168. ^ a b v d Cui S, Qin M, Marandi A, Steggles V, Wang S, Feng X, Nouar F, Serre C (October 2018). "Metal-Organic Frameworks as advanced moisture sorbents for energy-efficient high temperature cooling". Ilmiy ma'ruzalar. 8 (1): 15284. Bibcode:2018NatSR...815284C. doi:10.1038/s41598-018-33704-4. PMC  6191459. PMID  30327543.
  169. ^ Birol F (2018). The Future of Cooling. The International Energy Agency.
  170. ^ Chua KJ, Chou SK, Yang WM, Yan J (April 2013). "Achieving better energy-efficient air conditioning–a review of technologies and strategies". Amaliy energiya. 104: 87–104. doi:10.1016/j.apenergy.2012.10.037.
  171. ^ a b Zhang JP, Zhu AX, Lin RB, Qi XL, Chen XM (March 2011). "Pore surface tailored SOD-type metal-organic zeolites". Murakkab materiallar. Deerfield Beach, Fla. 23 (10): 1268–71. doi:10.1002/adma.201004028. PMID  21381128.
  172. ^ Henninger SK, Habib HA, Janiak C (March 2009). "MOFs as adsorbents for low temperature heating and cooling applications". Amerika Kimyo Jamiyati jurnali. 131 (8): 2776–7. doi:10.1021/ja808444z. PMID  19206233.
  173. ^ Jeremias F, Khutia A, Henninger SK, Janiak C (2012). "MIL-100 (Al, Fe) as water adsorbents for heat transformation purposes—a promising application". Materiallar kimyosi jurnali. 22 (20): 10148–51. doi:10.1039/C2JM15615F.
  174. ^ Sieradzki A, Mączka M, Simenas M, Zaręba JK, Gągor A, Balciunas S, Kinka M, Ciupa A, Nyk M, Samulionis V, Banys J, Paluch M, Pawlus S (2018-08-13). "On the origin of ferroelectric structural phases in perovskite-like metal-organic formate". Materiallar kimyosi jurnali. 6 (35): 9420–9429. doi:10.1039/C8TC02421A.
  175. ^ Zhang W, Xiong RG (February 2012). "Ferroelectric metal-organic frameworks". Kimyoviy sharhlar. 112 (2): 1163–95. doi:10.1021/cr200174w. PMID  21939288.
  176. ^ Lipeng Xin, Zhiying Zhang, Michael A. Carpenter, Ming Zhang, Feng Jin, Qingming Zhang, Xiaoming Vang, Weihua Tang, and Xiaojie Lou (2018). "Strain Coupling and Dynamic Relaxation in a Molecular Perovskite-Like Multiferroic Metal–Organic Framework". Adv. Vazifasi. Mater. 2018, 28, 1806013. doi: 10.1002/adfm.201806013.

Tashqi havolalar