Mineral - Mineral

Ning kristallari serandit, natrolit, analcime va aegirine Kanadaning Kvebek shtatidagi Mont-Xildan

Yilda geologiya va mineralogiya, a mineral yoki mineral turlari keng ma'noda, qattiq narsa kimyoviy birikma juda aniq belgilangan kimyoviy tarkibi va o'ziga xos kristall tuzilishi, bu tabiiy ravishda sof shaklda yuzaga keladi.[1].[2]

Mineralning geologik ta'rifi odatda faqat tirik mavjudotlarda uchraydigan birikmalarni istisno qiladi. Ammo ba'zi minerallar ko'pincha biogen (kabi kaltsit ) yoki organik birikmalar kimyo ma'nosida (masalan sun'iy yo'ldosh ). Bundan tashqari, tirik mavjudotlar ko'pincha noorganik minerallarni sintez qiladi (masalan gidroksilapatit ) toshlarda ham uchraydi.

Mineral tushunchasi ajralib turadi tosh, etarlicha katta miqyosda nisbatan bir hil bo'lgan har qanday ommaviy qattiq geologik material. Tog 'jinsi bir turdagi minerallardan iborat bo'lishi mumkin yoki an bo'lishi mumkin yig'ma ikki yoki undan ortiq turli xil minerallar, kosmosda alohida ajratilgan fazalar.[3]

Kabi aniq kristalli tuzilishga ega bo'lmagan ba'zi tabiiy qattiq moddalar opal yoki obsidian, to'g'ri deb nomlangan mineraloidlar.[4] Agar kimyoviy birikma tabiiy ravishda turli xil kristalli tuzilmalar bilan yuzaga kelsa, har bir struktura turli xil mineral turlar hisoblanadi. Shunday qilib, masalan, kvarts va stishovit bir xil birikmadan tashkil topgan ikki xil minerallar, kremniy dioksidi.

The Xalqaro mineralogiya assotsiatsiyasi (IMA) - mineral turlarning ta'rifi va nomenklaturasi uchun odatda tan olingan standart organ. 2020 yil mart oyidan boshlab, IMA tan oladi 5,562 rasmiy mineral turlari[5] 5750 dan ortiq taklif qilingan yoki an'anaviy bo'lganlardan.[6]

Nomlangan mineral turlarining kimyoviy tarkibi oz miqdordagi aralashmalar kiritilishi bilan biroz farq qilishi mumkin. Maxsus navlari turlarning ba'zan o'ziga xos an'anaviy yoki rasmiy nomlari bor.[7] Masalan, ametist mineral turlarining binafsha rang xilma-xilligi kvarts. Ba'zi mineral turlarining o'zgaruvchan nisbati ikki yoki undan ortiq bo'lishi mumkin kimyoviy elementlar minerallar tarkibida ekvivalent o'rinlarni egallagan; masalan, ning formulasi makinavit sifatida berilgan (Fe, Ni)
9
S
8
, ma'no Fe
x
Ni
9-x
S
8
, qayerda x 0 dan 9 gacha bo'lgan o'zgaruvchan sondir. Ba'zan o'zgaruvchan tarkibi bo'lgan mineral alohida turlarga bo'linadi, o'zboshimchalik bilan yoki mineral guruh; bu silikatlar haqida Ca
x
Mg
y
Fe
2-x-y
SiO
4
, olivin guruhi.

Mineral turlarning tavsifi muhim kimyoviy tarkibi va kristall tuzilishidan tashqari, odatda uning umumiy fizik xususiyatlarini ham o'z ichiga oladi odat, qattiqlik, yorqinlik, diaflik, rang, chiziq, qat'iyat, dekolte, sinish, ajralish, o'ziga xos tortishish kuchi, magnetizm, lyuminestsentsiya, radioaktivlik, shuningdek, uning ta'mi yoki hidi va unga bo'lgan munosabati kislota.

Mineral moddalar asosiy kimyoviy tarkibiy qismlar bo'yicha tasniflanadi; ikkita dominant tizim Dana tasnifi va Strunz tasnifi. Silikat minerallari taxminan 90% ni tashkil qiladi Yer qobig'i.[8] Boshqa muhim mineral guruhlarga quyidagilar kiradi mahalliy elementlar, sulfidlar, oksidlar, galogenidlar, karbonatlar, sulfatlar va fosfatlar.

Ta'rif

IMA ta'rifi

The Xalqaro mineralogiya assotsiatsiyasi moddaga alohida mineral sifatida qaralishi uchun quyidagi talablarni o'rnatdi:[9][10]

  1. Bu tabiiy geologik jarayonlar natijasida hosil bo'lgan tabiiy ravishda yuzaga keladigan modda bo'lishi kerak, Yerda yoki boshqa g'ayritabiiy jismlarda. Bunga to'g'ridan-to'g'ri va faqat inson faoliyati natijasida hosil bo'lgan birikmalar kiritilmaydi (antropogen ) yoki tirik mavjudotlarda (biogen ), kabi volfram karbid, siydik toshlari, kaltsiy oksalat o'simlik to'qimalarida kristallar va dengiz qobig'i. Biroq, bunday kelib chiqishi bo'lgan moddalar, agar ularning genezisiga geologik jarayonlar jalb qilingan bo'lsa, tegishli bo'lishi mumkin (xuddi shunday holat) evenkite, o'simlik materialidan olingan; yoki taranakit, dan bat guano; yoki alpersit, kon qoldiqlaridan).[10] Gipotetik moddalar, hattoki ular hozirgi vaqtda Yer yadrosi yoki boshqa sayyoralar singari tabiiy muhitda yuzaga kelishi taxmin qilinayotgan bo'lsa ham, chiqarib tashlanadi.
  2. Bu tabiiy paydo bo'lishida qattiq moddalar bo'lishi kerak. Ushbu qoidadan katta istisno mahalliy hisoblanadi simob: u faqat 39 ° C dan pastroq kristallangan bo'lsa ham, IMA tomonidan mineral sifatida tasniflanadi, chunki u amaldagi qoidalar tuzilishidan oldin kiritilgan.[11] Suv va karbonat angidrid minerallar deb hisoblanmaydi, garchi ular tez-tez uchraydi qo'shimchalar boshqa foydali qazilmalarda; lekin suvli muz mineral hisoblanadi.[12]
  3. U aniq belgilangan kristallografik tuzilishga ega bo'lishi kerak; yoki umuman olganda tartiblangan atom tuzilishi.[13] Ushbu xususiyat bir nechta narsalarni nazarda tutadi makroskopik fizik xususiyatlari, masalan, kristall shakli, qattiqligi va dekolte.[14] Bu chiqarib tashlaydi ozokerit, limonit, obsidian va boshqa ko'plab amorf (kristal bo'lmagan) materiallar geologik sharoitlarda yuzaga keladi.
  4. U juda aniq belgilangan kimyoviy tarkibga ega bo'lishi kerak. Shu bilan birga, sobit tuzilishga ega, ammo tarkibi o'zgaruvchan ba'zi kristalli moddalar bitta mineral turlar deb hisoblanishi mumkin. Misollarning umumiy sinfi qattiq eritmalar kabi makinavit, (Fe, Ni)9S8, bu asosan a qora bilan almashtirilgan temir atomlarining muhim qismi bo'lgan sulfid nikel atomlar[13][15] Boshqa misollarga o'zgaruvchan qatlamli stackingli qatlamli kristallar yoki faqat vakansiyalar va almashtirishlarning muntazam joylashuvi bilan farq qiladigan kristallar kiradi. Boshqa tomondan, uzluksiz qator tarkibiga ega bo'lgan ba'zi moddalar o'zboshimchalik bilan bir nechta minerallarga bo'linishi mumkin. Odatda, misol olivin guruh (Mg, Fe)2SiO4magniyga boy va temirga boy oxirgi a'zolar alohida minerallar hisoblanadi (forsterit va fayalite ).

Ushbu qoidalarning tafsilotlari biroz munozarali.[13] Masalan, amorf moddalarni minerallar qatoriga kiritish bo'yicha so'nggi paytlarda bir nechta takliflar bo'lgan, ammo ular IMA tomonidan qabul qilinmagan.

IMA, tabiiy ravishda faqat shaklda uchraydigan minerallarni qabul qilishni istamaydi nanozarralar bo'ylab bir necha yuz atomlar mavjud, ammo minimal kristal o'lchamlarini aniqlamagan.[9]

Ba'zi mualliflar materialning a bo'lishini talab qiladi barqaror yoki metastabil qattiq xona harorati (25 ° C).[13] Biroq, IMA faqat moddaning tarkibi va tarkibi yaxshi aniqlanishi uchun etarlicha barqaror bo'lishini talab qiladi. Masalan, yaqinda tan oldi Meridianit (tabiiy ravishda paydo bo'lgan gidrat magniy sulfat ) hosil bo'lgan va barqaror bo'lganiga qaramay, mineral sifatida

Minerallarni nomlash

2020 yil yanvar holatiga ko'ra, 5562 mineral turlari IMA tomonidan tasdiqlangan.[5] Ular eng ko'p odam nomi bilan ataladi, so'ngra kashfiyot joyi; kimyoviy tarkibi yoki fizik xususiyatlariga asoslangan nomlar mineral nomi etimologiyasining yana ikkita asosiy guruhidir.[16][17] Aksariyat ismlar "-ite" bilan tugaydi; istisnolar odatda mineralogiyani tashkil etishdan oldin intizom sifatida yaxshi tasdiqlangan ismlardir galena va olmos.

Biogenik mineral munozarasi

Geologlar va mineralogistlar o'rtasida tortishuvlarning mavzusi IMA ning biogen kristalli moddalarni chiqarib tashlash to'g'risidagi qarori bo'ldi. Masalan, Lowenstam (1981) "organizmlar turli xil minerallar majmuasini shakllantirishga qodir, ularning ba'zilari biosferada noorganik shakllana olmaydi".[18]

Skinner (2005) barcha qattiq moddalarni potentsial minerallar deb hisoblaydi va ularning tarkibiga kiradi biominerallar organizmlarning metabolizm faoliyati natijasida hosil bo'lgan minerallar qirolligida. Skinner mineralning avvalgi ta'rifini "hosil bo'lgan element yoki birikmani, amorf yoki kristalli" tasniflash uchun kengaytirdi biogeokimyoviy jarayonlar, "mineral sifatida.[19]

So'nggi paytlarda yuqori aniqlikdagi yutuqlar genetika va Rentgen nurlarini yutish spektroskopiyasi o'rtasidagi biogeokimyoviy aloqalar to'g'risida ma'lumot beradi mikroorganizmlar va bu savolga yangi yorug'lik berishi mumkin bo'lgan minerallar.[10][19] Masalan, IMA tomonidan buyurtma qilingan "Atrof-muhit mineralogiyasi va geokimyosi bo'yicha ishchi guruh" tarkibidagi minerallar bilan shug'ullanadi gidrosfera, atmosfera va biosfera.[20] Guruh doirasiga minerallar hosil qiluvchi mikroorganizmlar kiradi, ular deyarli har bir tosh, tuproq va zarrachalar yuzasida er sharidan kamida 1600 metr chuqurlikda joylashgan. dengiz tubi va 70 km masofada joylashgan stratosfera (ehtimol mezosfera ).[21][22][23]

Biogeokimyoviy tsikllar milliardlab yillar davomida minerallarning paydo bo'lishiga hissa qo'shgan. Mikroorganizmlar mumkin cho'kma dan metallar yechim, shakllanishiga hissa qo'shadi ruda depozitlar. Ular ham mumkin kataliz qiling The eritma minerallar.[24][25][26]

Xalqaro mineralogiya assotsiatsiyasi ro'yxatidan oldin 60 dan ortiq biomineral moddalar topilgan, nomlangan va nashr etilgan.[27] Ushbu minerallar (Lowenstam-da keltirilgan pastki to'plam (1981)[18]) Skinner (2005) ta'rifiga muvofiq minerallar deb hisoblanadi.[19] Ushbu biomineral moddalar Xalqaro minerallar assotsiatsiyasining mineral nomlarning rasmiy ro'yxatiga kiritilmagan,[28] ammo, bu biomineral vakillarning aksariyati Dana tasniflash sxemasida keltirilgan 78 mineral sinflar orasida taqsimlangan.[19]

Skinner (2005) tomonidan mineralning ta'rifi mineralni kristalli va amorf bo'lishi mumkinligini ta'kidlab, bu masalani hisobga oladi.[19] Biyomineral moddalar minerallarning eng keng tarqalgan shakli bo'lmasa-da,[29] ular mineral tarkibiga kiradigan narsalarning chegaralarini aniqlashga yordam beradi. Nikel (1995) ning rasmiy ta'rifida kristallik moddani mineral sifatida aniqlash uchun kalit sifatida aniq ko'rsatilgan. 2011 yilgi maqola aniqlandi ikosahedrit, mineral sifatida alyuminiy-temir-mis qotishmasi; noyob tabiiyligi bilan nomlangan ikosahedral simmetriya, bu a kvazikristal. Haqiqiy kristalldan farqli o'laroq, kvazikristallar tartiblangan, ammo davriy emas.[30][31]

Toshlar, rudalar va toshlar

Shist a metamorfik jins platina minerallarining ko'pligi bilan ajralib turadi. Ushbu misolda tosh eng ko'zga ko'ringan sillimanit porfiroblastlar 3 sm (1,2 dyuym) gacha.

A tosh bir yoki bir nechta minerallarning yig'indisidir[32] yoki mineraloidlar. Kabi ba'zi toshlar ohaktosh yoki kvartsit, asosan, bitta mineraldan iborat - kaltsit yoki aragonit ohaktosh holatida va kvarts ikkinchi holda.[33][34] Boshqa jinslarni asosiy (muhim) minerallarning nisbiy ko'pligi bilan aniqlash mumkin; a granit kvars nisbati bilan aniqlanadi, gidroksidi dala shpati va plagioklazli dala shpati.[35] Tog 'jinslaridagi boshqa minerallar qo'shimcha minerallarva toshning asosiy tarkibiga katta ta'sir ko'rsatmaydi. Tog 'jinslari butunlay mineral bo'lmagan moddalardan iborat bo'lishi mumkin; ko'mir asosan organik ravishda hosil bo'lgan ugleroddan tashkil topgan cho'kindi jinsdir.[32][36]

Tog 'jinslarida ba'zi mineral turlari va guruhlari boshqalarga qaraganda ancha ko'p; bu tosh hosil qiluvchi minerallar deb nomlanadi. Ularning asosiy misollari kvarts, dala shpatlari, slyuda, amfibolalar, piroksenlar, zaytun moylari va kaltsit; ikkinchisidan tashqari bu minerallarning barchasi silikatlardir.[37] Umuman olganda, 150 ga yaqin minerallar, ularning ko'pligi yoki yig'ish jihatidan estetik qiymati jihatidan qat'i nazar, ayniqsa muhim hisoblanadi.[38]

Tijorat jihatdan qimmatli minerallar va toshlar deb nomlanadi sanoat minerallari. Masalan, muskovit, oq mika, derazalar uchun (ba'zan isinglass deb ataladi), plomba sifatida yoki izolyator sifatida ishlatilishi mumkin.[39]

Ruda ma'lum bir elementning yuqori konsentratsiyasiga ega bo'lgan minerallar, odatda metall. Misollar kinabar (HgS), simob rudasi; sfalerit (ZnS), rux rudasi; kassiterit (SnO2) qalay rudasi; va kolmanit, ning rudasi bor.

Toshlar bezak qiymatiga ega minerallar bo'lib, ular go'zalligi, chidamliligi va odatda noyobligi bilan qimmatbaho toshlardan ajralib turadi. Eng keng tarqalgan qimmatbaho toshlarning 35 ga yaqinini tashkil etadigan marvarid minerallariga tegishli 20 ga yaqin mineral turlari mavjud. Gem minerallari ko'pincha bir nechta navlarda mavjud va shuning uchun bitta mineral bir necha xil qimmatbaho toshlarni hisobga olishi mumkin; masalan, yoqut va safir ikkalasi ham korund, Al2O3.[40]

Etimologiya

"Mineral" so'zining birinchi ma'lum bo'lgan Ingliz tili (O'rta ingliz ) XV asr edi. So'z keldi O'rta asr lotin tili minerale, dan minera ma'dan, ma'dan.[41]

"Turlar" so'zi lotin tilidan olingan turlari, "o'ziga xos ko'rinishi yoki ko'rinishi bilan alohida turdagi, turdagi yoki turdagi".[42]

Kimyo

Hübnerit, marganetsga boy bo'lgan oxirgi a'zosi volframit ketma-ket, fonda kichik kvarts bilan

Minerallarning ko'pligi va xilma-xilligi to'g'ridan-to'g'ri ularning kimyosi tomonidan boshqariladi, bu esa o'z navbatida Yerdagi elementar mo'lliklarga bog'liq. Kuzatilgan minerallarning aksariyati Yer po'stidan olingan. Sakkizta element minerallarning asosiy tarkibiy qismlarini tashkil etadi, chunki ular er qobig'ida juda ko'p. Ushbu sakkiz element, og'irligi bo'yicha er qobig'ining 98% dan ortig'ini, mo'l-ko'llikni kamaytirish tartibida: kislorod, kremniy, alyuminiy, temir, magniy, kaltsiy, natriy va kaliy. Kislorod va kremniy eng muhim ikkitadir - kislorod og'irligi bo'yicha qobig'ining 47 foizini, kremniy esa 28 foizini tashkil qiladi.[43]

Hosil bo'lgan minerallar to'g'ridan-to'g'ri ota-ona tanasining asosiy kimyosi tomonidan boshqariladi. Masalan, a magma temir va magniyga boy bo'ladi mafiya minerallar, masalan, olivin va piroksenlar; aksincha, ko'proq silika boy magma ko'proq SiO qo'shadigan minerallarni hosil qilish uchun kristallanadi2, masalan, dala shpatlari va kvarts. A ohaktosh, kaltsit yoki aragonit (ikkalasi ham CaCO3) hosil bo'ladi, chunki tosh kaltsiy va karbonatga boy. Xulosa shuki, iz qoldiruvchi minerallar bundan mustasno, asosiy kimyosi ma'lum bir mineralning asosiy kimyosiga o'xshamaydigan toshda mineral topilmaydi. Masalan, kyanit, Al2SiO5 shakllari metamorfizm alyuminiyga boy slanets; kabi alyuminiy kambag'al toshda paydo bo'lishi mumkin emas kvartsit.

Kimyoviy tarkibi bir-biridan farq qilishi mumkin oxirgi a'zo a turlari qattiq eritma seriyali. Masalan, plagioklaz dala shpatlari dan doimiy qatorni o'z ichiga oladi natriy - boy a'zosi albit (NaAlSi3O8) ga kaltsiy - boy anortit (CaAl2Si2O8) ular orasida tanilgan to'rtta oraliq navlari bilan (natriydan kaltsiyga boygacha tartibda berilgan): oligoklaz, andesine, labradorit va bytownite.[44] Seriyadagi boshqa misollarga magneziumga boy forsterit va temirga boy fayalitning olivin qatori va volframit qatorlari marganets - boy hübnerit va temirga boy ferberit.

Kimyoviy almashtirish va koordinatsion polyhedra minerallarning ushbu umumiy xususiyatini tushuntiradi. Tabiatda minerallar toza moddalar emas va ular ushbu kimyoviy tizimda mavjud bo'lgan boshqa elementlar bilan ifloslangan. Natijada, bitta elementni boshqasiga almashtirish mumkin.[45] Kimyoviy almashtirish hajmi va zaryadi o'xshash ionlar orasida bo'ladi; masalan, K+ Si o'rnini bosmaydi4+ hajmi va zaryadining katta farqidan kelib chiqadigan kimyoviy va strukturaviy nomuvofiqliklar tufayli. Kimyoviy almashtirishning keng tarqalgan misoli Si4+ Al tomonidan3+, ular javobgarlikka yaqin, kattaligi va er qobig'idagi mo'lligi. Plagioklaz misolida almashtirishning uchta holati mavjud. Dala shpatlari - bu silikon-kislorod nisbati 2: 1 bo'lgan barcha ramka silikatlaridir va boshqa elementlar uchun joy Si o'rnini bosadi4+ Al tomonidan3+ [AlSi ning asosiy birligini berish3O8]; almashtirishsiz, formulalar SiO sifatida zaryadga muvozanatlangan bo'ladi2, kvars berish.[46] Ushbu tuzilish xususiyatining ahamiyati koordinatsion ko'pburchak bilan izohlanadi. Ikkinchi almashtirish Na o'rtasida sodir bo'ladi+ va Ca2+; ammo, zaryadning farqini Si ning ikkinchi almashtirishini hisobga olish kerak4+ Al tomonidan3+.[47]

Muvofiqlashtiruvchi polyhedra - bu kationning anion bilan o'ralganligi haqidagi geometrik tasvirlar. Mineralogiyada koordinatsion poliedralar odatda qobig'ida ko'pligi sababli kislorod nuqtai nazaridan ko'rib chiqiladi. Silikat minerallarining asosiy birligi silika tetraedr - bitta Si4+ to'rtta O bilan o'ralgan2−. Silikat koordinatsiyasini tavsiflashning muqobil usuli raqam bilan ifodalanadi: silika tetraedrida kremniy koordinatsion soniga ega deyiladi 4. Turli kationlar mumkin bo'lgan koordinatsion sonlarning ma'lum diapazoniga ega; kremniy uchun deyarli har doim 4 bo'ladi, faqat birikma siqilgan juda yuqori bosimli minerallardan tashqari, kremniy kislorod bilan olti marta (oktahedral) koordinatsiyada bo'ladi. Kattaroq kationlarning koordinatsion soni kattaroq, chunki kislorodga nisbatan nisbiy kattalashgan (oxirgi) orbital subhell og'irroq atomlar ham farq qiladi). Muvofiqlashtiruvchi sonlarning o'zgarishi fizik va mineralogik farqlarga olib keladi; masalan, yuqori bosimda, masalan mantiya, ko'plab minerallar, ayniqsa olivin va kabi silikatlar granat, a ga o'zgaradi perovskit tuzilishi, bu erda silikon oktahedral koordinatsiyada. Boshqa misollar aluminosilikatlardir kyanit, andalusit va sillimanit (polimorflar, chunki ular Al formulasini baham ko'rishadi2SiO5), ular Al ning koordinatsion raqami bilan farq qiladi3+; bu minerallar bosim va harorat o'zgarishiga javoban bir-biridan o'tishadi.[43] Silikat materiallari uchun Si o'rnini bosishi4+ Al tomonidan3+ zaryadlarni muvozanatlash zarurati tufayli turli xil minerallarga imkon beradi.[48]

Mineral moddalar reaksiyaga kirishganda, mahsulotlar ba'zida reaktiv shaklini oladi; mahsulot mineral reaktivning (yoki undan keyin) psevdomorfasi deb nomlanadi. Bu erda psevdomorf tasvirlangan kaolinit keyin ortoklaz. Bu erda psevdomorf Carlsbadni saqlab qoldi egizak ortoklazada keng tarqalgan.

Harorat va bosim va tarkibidagi o'zgarishlar tosh namunasining mineralogiyasini o'zgartiradi. Kabi jarayonlar tarkibidagi o'zgarishlar sabab bo'lishi mumkin ob-havo yoki metasomatizm (gidrotermik o'zgarish ). Temperatura va bosimning o'zgarishi mezbon jinsga tushganda sodir bo'ladi tektonik yoki magmatik turli xil jismoniy rejimlarga o'tish. O'zgarishlar termodinamik sharoitlar mineral birikmalarning yangi minerallarni ishlab chiqarish uchun bir-biri bilan reaksiyaga kirishishini qulaylashtiradi; Shunday qilib, ikkita mineral jinsga o'xshash mineralogiyaga ega bo'lmagan holda bir xil yoki juda o'xshash quyma toshlar kimyosiga ega bo'lishi mumkin. Ushbu mineralogik o'zgarish jarayoni tosh tsikli. Bir qator mineral reaktsiyalarning misoli quyidagicha tasvirlangan.[49]

Ortoklaz dala shpati (KAlSi3O8) odatda topilgan mineraldir granit, a plutonik magmatik tosh. Ob-havo ta'sirida u reaksiyaga kirishadi kaolinit (Al2Si2O5(OH)4, cho'kindi mineral va kremniy kislotasi ):

2 KAlSi3O8 + 5 H2O + 2 H+ → Al2Si2O5(OH)4 + 4 H2SiO3 + 2 K+

Past darajadagi metamorfik sharoitda kaolinit kvarts bilan reaksiyaga kirib, hosil bo'ladi pirofillit (Al2Si4O10(OH)2):

Al2Si2O5(OH)4 + SiO2 → Al2Si4O10(OH)2 + H2O

Metamorfik darajaning oshishi bilan pirofilit reaksiyaga kirishib, kyanit va kvarts hosil qiladi:

Al2Si4O10(OH)2 → Al2SiO5 + 3 SiO2 + H2O

Shu bilan bir qatorda, mineral reaktsiya bermasdan harorat va bosim o'zgarishi natijasida kristal tuzilishini o'zgartirishi mumkin. Masalan, kvarts turli xil SiO ga aylanadi2 polimorflar, kabi tridimit va kristobalit yuqori haroratlarda va koesit yuqori bosimlarda.[50]

Jismoniy xususiyatlar

Minerallarni tasniflash oddiydan qiyingacha. Mineralni bir nechta fizikaviy xususiyatlar bo'yicha aniqlash mumkin, ularning ba'zilari ekvokatsiya qilinmasdan to'liq identifikatsiyalash uchun etarli. Boshqa hollarda, minerallarni faqat murakkabroq deb tasniflash mumkin optik, kimyoviy yoki Rentgen difraksiyasi tahlil; ammo bu usullar qimmatga tushishi va ko'p vaqt talab qilishi mumkin. Tasniflash uchun qo'llaniladigan fizik xususiyatlarga kristall tuzilishi va odati, qattiqligi, yorqinligi, diafanligi, rangi, chizig'i, dekolte va sinishi va o'ziga xos og'irligi kiradi. Boshqa kamroq umumiy testlarga quyidagilar kiradi lyuminestsentsiya, fosforesans, magnetizm, radioaktivlik, qat'iyatlilik (shakl yoki shaklning mexanik ta'sirida o'zgarishiga javob), piezoelektrik va suyultirish uchun reaktivlik kislotalar.[51]

Kristal tuzilishi va odati

Topaz xarakterli ortorombik cho'zilgan kristall shakliga ega.

Kristal tuzilishi mineralning ichki tuzilishidagi atomlarning tartibli geometrik fazoviy joylashuvidan kelib chiqadi. Ushbu kristalli tuzilish muntazam ichki atomik yoki ionli ko'pincha kristall oladigan geometrik shaklda ifodalanadigan tartib. Mineral donalari ko'rish uchun juda kichik bo'lsa ham yoki tartibsiz shaklga ega bo'lsa ham, uning tagida joylashgan kristal tuzilishi har doim davriy bo'lib, uni aniqlash mumkin. Rentgen difraktsiya.[13] Mineral moddalar odatda simmetriya tarkibi bilan tavsiflanadi. Kristallar cheklangan ga 32 ochko guruhi, ularning simmetriyasi bilan farq qiladi. Ushbu guruhlar o'z navbatida yanada keng toifalarga bo'linadi, ularning eng oltita kristalli oilalari.[52]

Ushbu oilalarni uchta kristalografik o'qning nisbiy uzunliklari va ular orasidagi burchaklar bilan tavsiflash mumkin; bu munosabatlar torroq nuqta guruhlarini belgilaydigan simmetriya amallariga to'g'ri keladi. Ular quyida umumlashtirilgan; a, b va c o'qlarni, a, b, γ esa tegishli kristallografik o'qga qarama-qarshi burchakni bildiradi (masalan, a - bu o'qga qarama-qarshi burchak, ya'ni. b va c o'qlari orasidagi burchak):[52]

Kristalli oilaUzunliklarBurchaklarUmumiy misollar
Izometrika = b = ca = β = γ = 90 °Garnet, halit, pirit
Tetragonala = b-ca = β = γ = 90 °Rutil, zirkon, andalusit
Ortorombika ≠ b ≠ ca = β = γ = 90 °Olivin, aragonit, ortofiroksenlar
Olti burchaklia = b-ca = ph = 90 °, ph = 120 °Kvarts, kaltsit, turmalin
Monoklinika ≠ b ≠ ca = γ = 90 °, β ≠ 90 °Klinikopiroksenlar, ortoklaz, gips
Triklinikaa ≠ b ≠ ca ≠ β ≠ ≠ ≠ 90 °Anortit, albit, kyanit

Olti burchakli kristallar oilasi ham ikkita kristallga bo'lingan tizimlar - the trigonal, bu uch barobar simmetriya o'qiga va olti burchakli simmetriya o'qiga ega olti burchakli.

Kimyo va kristall tuzilishi birgalikda mineralni aniqlaydi. 32 nuqta guruhiga cheklov qo'yilgan holda, turli xil kimyo minerallari bir xil kristalli tuzilishga ega bo'lishi mumkin. Masalan, halit (NaCl), galena (PbS) va periklaz (MgO) hammasi geksaoktaedral nuqta guruhiga (izometrik oila) tegishli, chunki ular o'xshash stexiometriya ularning turli xil tarkibiy elementlari o'rtasida. Farqli o'laroq, polimorflar kimyoviy formulani birlashtirgan, ammo boshqa tuzilishga ega bo'lgan minerallar guruhlari. Masalan, pirit va markazit, ikkala temir sulfidi ham FeS formulasiga ega2; ammo, birinchisi izometrik, ikkinchisi esa ortorombikdir. Ushbu polimorfizm umumiy AX bilan boshqa sulfidlarga tarqaladi2 formula; bu ikki guruh birgalikda pirit va markazit guruhlari deb nomlanadi.[53]

Polimorfizm sof simmetriya tarkibidan tashqariga chiqishi mumkin. Aluminosilikatlar uchta minerallardan iborat guruhdir - kyanit, andalusit va sillimanit - bu Al kimyoviy formulasini baham ko'radi2SiO5. Kyanit triklinik, andalusit va sillimanit esa ikkalasi ham ortorombik va dipiramidal nuqta guruhiga kiradi. Ushbu farqlar alyuminiyning kristalli strukturada qanday muvofiqlashtirilganligiga mos keladi. Barcha minerallarda bitta alyuminiy ioni doimo kislorod bilan olti marta koordinatsiyada bo'ladi. Silikon, odatda, barcha minerallarda to'rt barobar koordinatsiyada bo'ladi; istisno shunga o'xshash holat stishovit (SiO2, rutil tuzilishga ega ultra yuqori bosimli kvarts polimorf).[54] Kyanitda ikkinchi alyuminiy olti barobar koordinatsiyada; uning kimyoviy formulasini Al shaklida ifodalash mumkin[6]Al[6]SiO5, uning kristalli tuzilishini aks ettirish uchun. Andalusit besh karra koordinatsiyada ikkinchi alyuminiyga ega (Al[6]Al[5]SiO5) va sillimanit to'rt marta koordinatsiyada (Al[6]Al[4]SiO5).[55]

Kristalning tuzilishi va kimyodagi farqlar mineralning boshqa fizik xususiyatlariga katta ta'sir ko'rsatadi. Uglerod allotroplari olmos va grafit juda xilma-xil xususiyatlarga ega; olmos eng qattiq tabiiy moddadir, odamantin yorqinligiga ega va izometrik kristallar oilasiga mansub, grafit esa juda yumshoq, yog'li nashrida va olti burchakli oilada kristallangan. Ushbu farq bog'lashdagi farqlar bilan hisobga olinadi. Olmosda uglerodlar sp3 gibrid orbitallar, ya'ni ular har bir uglerod tetraedral tarzda to'rtta qo'shniga kovalent ravishda bog'langan ramka hosil qiladi; boshqa tomondan, grafit sp2 gibrid orbitallar, bu erda har bir uglerod faqat uchta kovalent ravishda bog'langan. Ushbu choyshabni juda zaifroq ushlab turadi van der Waals kuchlari va bu nomuvofiqlik katta makroskopik farqlarga aylanadi.[56]

Ko'rinib turganidek, egizaklar bilan bog'laning shpinel

Tvinnizatsiya - bu bitta mineral turining ikki yoki undan ortiq kristallarining o'zaro o'sishi. Egizish geometriyasi mineralning simmetriyasi bilan boshqariladi. Natijada, egizaklarning bir nechta turlari mavjud, ular orasida kontakt egizaklar, to'r egizaklar, genikulyatsiya qilingan egizaklar, penetratsion egizaklar, tsiklik egizaklar va polisintetik egizaklar mavjud. Kontakt yoki oddiy egizaklar tekislikda birlashtirilgan ikkita kristaldan iborat; bu juftlashish shpinelda keng tarqalgan. Rutilda keng tarqalgan to'rsimon egizaklar to'rga o'xshash bir-biriga bog'langan kristallardir. Genikulyatsiya qilingan egizaklar o'rtada egilishga ega, bu egizak boshlanishidan kelib chiqadi. Penetratsion egizaklar bir-biriga o'sib chiqqan ikkita bitta kristaldan iborat; Ushbu egizakning misollari o'zaro faoliyat shaklni o'z ichiga oladi staurolit ortoklazdagi egizaklar va Karlsbad egizaklik. Tsiklik egizaklar aylanish o'qi atrofida takroran egizaklanishidan kelib chiqadi. Ushbu turdagi egizak uch, to'rt, besh, olti yoki sakkiz qavatli o'qlar atrofida uchraydi va mos keladigan naqshlar uchburchak, to'rtburchak, beshta, oltita va sakkiztalik deb nomlanadi. Oltitalar aragonitda keng tarqalgan. Polisintetik egizaklar takroriy egizak borligi orqali tsiklik egizaklarga o'xshaydi; ammo, aylanish o'qi atrofida sodir bo'lish o'rniga, polisintetik egizak parallel tekisliklar bo'ylab, odatda mikroskopik miqyosda sodir bo'ladi.[57][58]

Kristall odat kristallning umumiy shakliga ishora qiladi. Ushbu xususiyatni tavsiflash uchun bir nechta atamalardan foydalaniladi. Odatiy odatlar qatoriga igna singari kristallarni tasvirlaydigan acikular kiradi natrolit, pichoqli, dendritik (daraxt naqshli, ichida keng tarqalgan mahalliy mis ) garantaga xos bo'lgan ekvant, prizmatik (bir yo'nalishda cho'zilgan) va jadvalli, bu pichoqli odatlardan farq qiladi, chunki avvalgisi platiy, ikkinchisi belgilangan cho'zilishga ega. Kristalli shakl bilan bog'liq holda, kristalli yuzlarning sifati ba'zi minerallarning diagnostikasi, ayniqsa petrografik mikroskop bilan. Evhedral kristallari aniqlangan tashqi shaklga ega, anhedral kristallari esa yo'q; ushbu oraliq shakllar subhedral deb nomlanadi.[59][60]

Qattiqlik

Olmos eng qattiq tabiiy materialdir va uning Mohs qattiqligi 10 ga teng.

Mineralning qattiqligi uning tirnalishiga qanchalik qarshilik ko'rsatishini belgilaydi. Ushbu fizik xususiyat mineralning kimyoviy tarkibi va kristalli tuzilishi bilan boshqariladi. Mineralning qattiqligi har tomondan doimiy bo'lishi shart emas, bu uning tuzilishidan kelib chiqadi; kristallografik zaiflik ba'zi yo'nalishlarni boshqalarga qaraganda yumshoq qiladi.[61] Ushbu xususiyatga misol kyanitda mavjud bo'lib, uning Mohs qattiqligi [001] ga 5½ ga teng, ammo [100] ga 7 ga parallel.[62]

O'lchashning eng keng tarqalgan o'lchovi tartibli Mohs qattiqligining o'lchovidir. O'nta ko'rsatkich bilan belgilanadigan, yuqori ko'rsatkichga ega bo'lgan mineral uning ostidagilarni tirnaydi. Miqyosi talkdan tortib, a fillosilikat, olmosga, eng qiyin tabiiy material bo'lgan uglerod polimorfiga. O'lchov quyida keltirilgan:[61]

Mohsning qattiqligiMineralKimyoviy formulalar
1TalkMg3Si4O10(OH)2
2GipsCaSO4· 2H2O
3KalsitCaCO3
4FloritCaF2
5ApatitCa5(PO4)3(OH, Cl, F)
6OrtoklazKAlSi3O8
7KvartsSiO2
8TopazAl2SiO4(OH, F)2
9KorundAl2O3
10OlmosC

Yaltiroqlik va diafaniklik

Pirit metall nashrida bor.

Yorqinlik, uning sifati va intensivligi bilan bog'liq holda, mineralning yuzasidan nurning qanday aks etishini ko'rsatadi. Ushbu xususiyatni tavsiflash uchun ko'plab sifatli atamalar mavjud, ular metall va metall bo'lmagan toifalarga bo'lingan. Metall va metall bo'lmagan minerallar metall kabi yuqori aks ettirish qobiliyatiga ega; bu yorqinlik bilan minerallarning namunalari galena va pirit. Metall bo'lmagan lazzatlarga quyidagilar kiradi: odamantin, masalan olmos; silikat minerallarida juda keng tarqalgan shishasimon porlash; kabi marvarid, masalan talk va apofillit; qatronlar, masalan, granat guruhi a'zolari; asbestiform kabi tolali minerallarda keng tarqalgan ipak xrizotil.[63]

The diaflik mineral nurning u orqali o'tish qobiliyatini tavsiflaydi. Shaffof minerallar ular orqali o'tadigan yorug'lik intensivligini kamaytirmaydi. Shaffof mineralga misol muskovit (kaliy slyuda); ba'zi navlari derazalar uchun ishlatilishi uchun etarlicha aniq. Shaffof minerallar ozgina yorug'lik o'tkazishiga imkon beradi, ammo shaffof bo'lganlardan kamroq. Jadeit va nefrit (ning mineral shakllari yashma bu xususiyatga ega minerallarning namunalari). Yorug'lik o'tishiga yo'l qo'ymaydigan minerallar shaffof emas deyiladi.[64][65]

Mineralning diafanligi namlikning qalinligiga bog'liq. Agar mineral etarli darajada ingichka bo'lsa (masalan, a ingichka qism uchun petrografiya ), bu xususiyat qo'l namunasida ko'rinmasa ham shaffof bo'lishi mumkin. Aksincha, ba'zi minerallar, masalan gematit yoki pirit, hatto ingichka bo'laklarda ham shaffof emas.[65]

Rang va chiziq

Rang odatda minerallarning diagnostik xususiyati emas. Yashil rang ko'rsatilgan uvarovit (chapda) va qizil-pushti yalpi (o'ngda), ikkalasi ham granatlar. Diagnostik xususiyatlarga dodekaedral kristallar, qatronlar porlashi va 7 atrofida qattiqlik kiradi.

Rang mineralning eng aniq xususiyatidir, ammo u ko'pincha diagnostik emas.[66] Bunga sabab bo'ladi elektromagnit nurlanish elektronlar bilan o'zaro ta'sirlashish (holatlardan tashqari) akkorlik, bu minerallarga taalluqli emas).[67] Elementlarning ikkita keng klassi (idioxromatik va alloxromatik) ularning mineral rangiga qo'shgan hissasiga qarab belgilanadi: Idioxromatik elementlar mineral tarkibida muhim ahamiyatga ega; ularning mineral rangiga qo'shgan hissasi diagnostikdir.[64][68] Bunday minerallarga misollar malakit (yashil) va azurit (ko'k). Aksincha, minerallar tarkibidagi alloxromatik elementlar izlar miqdorida aralashmalar sifatida mavjud. Bunday mineralga misol bo'lishi mumkin yoqut va safir mineral navlari korund.[68]Psevdromatik minerallarning ranglari natijasidir aralashish yorug'lik to'lqinlari. Bunga misollar kiradi labradorit va bornit.

Oddiy tana rangidan tashqari, minerallar turli xil o'ziga xos optik xususiyatlarga ega bo'lishi mumkin, masalan, ranglar o'ynashi, asterizm, suhbatdoshlik, iridescence, qoralangan va pleoxroizm. Ushbu xususiyatlarning bir nechtasi rangning o'zgaruvchanligini o'z ichiga oladi. Kabi ranglarni o'ynash opal, natijada namuna aylanayotganda turli xil ranglarni aks ettiradi, pleokroizm esa yorug'lik boshqa yo'nalishda minerallardan o'tayotganda rang o'zgarishini tavsiflaydi. Iridescence - bu yorug'lik kristall, dekolte tekisliklari yoki kimyo bo'yicha kichik gradatsiyalarga ega bo'lgan qatlamlar ustidagi qoplamani sochib yuboradigan ranglarning xilma-xilligi.[69] Aksincha, opaldagi ranglarning o'ynashi uning fizikaviy tuzilishi doirasidagi tartibga solingan mikroskopik silika sferalaridan nur sinishi natijasida yuzaga keladi.[70] Chatoyancy ("mushukning ko'zi") - bu namunani aylantirish paytida kuzatiladigan rangning to'lqinli tasmasi; asterizm, turli xil suhbatdoshlik mineral donada yulduz ko'rinishini beradi. Oxirgi xususiyat, ayniqsa, marvarid sifatli korundda keng tarqalgan.[69][70]

Mineralning chizig'i kukun shaklida mineral rangga ishora qiladi, bu uning tanasi rangiga o'xshash yoki bo'lmasligi mumkin.[68] Ushbu xususiyatni sinashning eng keng tarqalgan usuli chinni va oq yoki qora ranglardan yasalgan chiziqli plastinka bilan amalga oshiriladi. Mineralning chizig'i iz elementlariga bog'liq emas[64] yoki har qanday ob-havo yuzasi.[68] Ushbu xususiyatning keng tarqalgan misoli tasvirlangan gematit qo'lda qora, kumush yoki qizil ranglarga bo'yalgan, ammo gilos-qizil rangga ega[64] qizil-jigarrang chiziqqa.[68] Streak ko'pincha metall minerallar uchun ajralib turadi, ularning tanasi alloxromatik elementlar tomonidan yaratilgan metall bo'lmagan minerallardan farqli o'laroq.[64] Streak sinovi mineralning qattiqligi bilan cheklanadi, chunki 7 dan kattaroq kukun chiziqli plastinka o'rniga.[68]

Parchalanish, ajralish, sinish va chidamlilik

Ko'rinib turganidek, mukammal bazal dekolte biotit (qora) va matritsada yaxshi dekolte (pushti ortoklaz ).

Ta'rifga ko'ra minerallar xarakterli atom tartibiga ega. Ushbu kristalli tuzilishdagi zaiflik zaiflik tekisliklarini keltirib chiqaradi va mineralning bunday tekisliklar bo'ylab sinishi dekolte deb nomlanadi. Parchalanish sifatini minerallarning qanchalik toza va oson parchalanishiga qarab tavsiflash mumkin; umumiy tavsiflovchilar, sifatni pasaytirish tartibida, "mukammal", "yaxshi", "ajralib turadigan" va "yomon". Ayniqsa, shaffof minerallarda yoki ingichka bo'laklarda bo'linishni yon tomondan qaralganda tekis yuzalarni belgilaydigan qator parallel chiziqlar sifatida ko'rish mumkin. Parchalanish minerallar orasida universal xususiyat emas; Masalan, bir-biri bilan juda ko'p bog'liq bo'lgan silika tetraedradan tashkil topgan kvartsda uning ajralishiga imkon beradigan kristallografik kuchsizlik mavjud emas. Aksincha, mukammal bazal parchalanishga ega bo'lgan slyuda silika tetraedrasi varaqlaridan iborat bo'lib, ular juda zaif birlashtirilgan.[71][72]

Dekolte kristallografiyaning vazifasi ekan, dekolte turlari har xil. Ajralish odatda bitta, ikki, uch, to'rt yoki olti yo'nalishda sodir bo'ladi. Bazal yorilish bir yo'nalishda .ning o'ziga xos xususiyati slyuda. Ikki yo'nalishli bo'linish prizmatik deb ta'riflanadi va amfibol va piroksen kabi minerallarda uchraydi. Galena yoki halit kabi minerallar 90 ° da uch yo'nalishda kubik (yoki izometrik) bo'linishga ega; bo'linishning uchta yo'nalishi mavjud bo'lganda, lekin 90 ° da emas, masalan, kalsit yoki rodoxrozit, u rombohedral dekolte deb nomlanadi. Oktahedral dekolte (to'rt yo'nalish) mavjud florit va olmos va sfalerit olti yo'nalishli dodekaedral yorilishga ega.[71][72]

Ko'p parchalanadigan minerallar barcha yo'nalishlarda teng ravishda buzilmasligi mumkin; masalan, kalsit uch yo'nalishda yaxshi bo'linishga ega, ammo gips bir yo'nalishda mukammal bo'linishga ega, va boshqa ikki yo'nalishda zaif dekolte. Parchalanish tekisliklari orasidagi burchaklar minerallar orasida turlicha. Masalan, amfibollar ikki zanjirli silikatlar, piroksenlar esa bir zanjirli silikatlar bo'lgani uchun ularning bo'linish tekisliklari orasidagi burchak har xil. Piroksenlar taxminan 90 ° da ikki yo'nalishda, amfibollar esa taxminan 120 ° va 60 ° bilan ajratilgan ikki yo'nalishda ajralib turadi. Parchalanish burchaklarini o'lchash moslamasi protraktorga o'xshash kontakt goniometr bilan amalga oshiriladi.[71][72]

Ayriliq, ba'zida "soxta dekolte" deb nomlanadi, tashqi ko'rinishi dekoltega o'xshaydi, ammo uning o'rniga tizimli zaiflikdan farqli o'laroq mineral tarkibidagi nuqsonlar hosil bo'ladi. Ajratish mineralning kristallidan kristaligacha o'zgarib turadi, agar atom tuzilishi ushbu xususiyatga imkon bersa, berilgan mineralning barcha kristallari ajraladi. Umuman olganda, ajralish kristalga tushgan ba'zi bir stress tufayli yuzaga keladi. Stress manbalariga deformatsiya (masalan, bosimning oshishi), ekssoltsiya yoki egizak kiradi. Ayrilishni tez-tez ko'rsatadigan minerallarga piroksen, gematit, magnetit va korund kiradi.[71][73]

Agar mineral parchalanish tekisligiga mos kelmaydigan yo'nalishda buzilsa, u singan deb nomlanadi. Notekis sinishning bir necha turlari mavjud. Klassik misol kvarts singari konkoidal sinish; yumaloq yuzalar hosil bo'ladi, ular silliq egri chiziqlar bilan belgilanadi. Ushbu turdagi sinish faqat juda bir hil minerallarda uchraydi. Other types of fracture are fibrous, splintery, and hackly. The latter describes a break along a rough, jagged surface; an example of this property is found in mahalliy mis.[74]

Tenacity is related to both cleavage and fracture. Whereas fracture and cleavage describes the surfaces that are created when a mineral is broken, tenacity describes how resistant a mineral is to such breaking. Minerals can be described as brittle, ductile, malleable, sectile, flexible, or elastic.[75]

O'ziga xos tortishish kuchi

Galena, PbS, is a mineral with a high specific gravity.

O'ziga xos tortishish kuchi numerically describes the zichlik of a mineral. The dimensions of density are mass divided by volume with units: kg/m3 or g/cm3. Specific gravity measures how much water a mineral sample displaces. Defined as the quotient of the mass of the sample and difference between the weight of the sample in air and its corresponding weight in water, specific gravity is a unitless ratio. Among most minerals, this property is not diagnostic. Rock forming minerals – typically silicates or occasionally carbonates – have a specific gravity of 2.5–3.5.[76]

High specific gravity is a diagnostic property of a mineral. A variation in chemistry (and consequently, mineral class) correlates to a change in specific gravity. Among more common minerals, oxides and sulfides tend to have a higher specific gravity as they include elements with higher atomic mass. A generalization is that minerals with metallic or adamantine lustre tend to have higher specific gravities than those having a non-metallic to dull lustre. For example, hematite, Fe2O3, has a specific gravity of 5.26[77] esa galena, PbS, has a specific gravity of 7.2–7.6,[78] which is a result of their high iron and lead content, respectively. A very high specific gravity becomes very pronounced in native metals; kamatsit, an iron-nickel alloy common in temir meteoritlar has a specific gravity of 7.9,[79] and gold has an observed specific gravity between 15 and 19.3.[76][80]

Boshqa xususiyatlar

Carnotite (yellow) is a radioactive uranium-bearing mineral.

Other properties can be used to diagnose minerals. These are less general, and apply to specific minerals.

Dropping dilute acid (often 10% HCl ) onto a mineral aids in distinguishing carbonates from other mineral classes. The acid reacts with the carbonate ([CO3]2−) group, which causes the affected area to nafas olish, giving off karbonat angidrid gaz. This test can be further expanded to test the mineral in its original crystal form or powdered form. An example of this test is done when distinguishing calcite from dolomit, especially within the rocks (ohaktosh va dolomit tegishli ravishda). Calcite immediately effervesces in acid, whereas acid must be applied to powdered dolomite (often to a scratched surface in a rock), for it to effervesce.[81] Seolit minerals will not effervesce in acid; instead, they become frosted after 5–10 minutes, and if left in acid for a day, they dissolve or become a silica gel.[82]

When tested, magnetizm is a very conspicuous property of minerals. Among common minerals, magnetit exhibits this property strongly, and magnetism is also present, albeit not as strongly, in pirotit va ilmenit.[81] Some minerals exhibit electrical properties – for example, quartz is piezoelectric – but electrical properties are rarely used as diagnostic criteria for minerals because of incomplete data and natural variation.[83]

Minerals can also be tested for taste or smell. Halite, NaCl, is table salt; its potassium-bearing counterpart, silvit, has a pronounced bitter taste. Sulfides have a characteristic smell, especially as samples are fractured, reacting, or powdered.[81]

Radioaktivlik is a rare property; minerals may be composed of radioactive elements. They could be a defining constituent, such as uranium in uraninit, autunite va karnotit, or as trace impurities. In the latter case, the decay of a radioactive element damages the mineral crystal; the result, termed a radioactive halo yoki pleochroic halo, is observable with various techniques, such as thin-section petrography.[81]

Tasnifi

Earliest classifications

315 yilda Miloddan avvalgi, Teofrastus presented his classification of minerals in his treatise Toshlarda. His classification was influenced by the ideas of his teachers Aflotun va Aristotel. Theophrastus classified minerals as stones, earths or metals.[84]

Georgius Agricola 's classification of minerals in his book De Natura fotoalbomlari, published in 1546, divided minerals into three types of substance: simple (stones, earths, metals, and congealed juices), compound (intimately mixed) and composite (separable).[84]

Linney

An early classification of minerals was given by Karl Linney in his seminal 1735 book Systema Naturae. He divided the natural world into three kingdoms – plants, animals, and minerals – and classified each with the same hierarchy.[85] In descending order, these were Phylum, Class, Order, Family, Tribe, Genus, and Species.

However, while his system was justified by Charlz Darvin 's theory of species formation, and has been largely adopted and expanded by biologists in the following centuries, (who still even use his Greek- and Latin-based binomial naming scheme), it had little success among mineralogists.

Zamonaviy tasnif

Minerals are classified by variety, species, series and group, in order of increasing generality. The basic level of definition is that of mineral species, each of which is distinguished from the others by unique chemical and physical properties. For example, quartz is defined by its formula, SiO2, and a specific kristalli tuzilish that distinguishes it from other minerals with the same chemical formula (termed polimorflar ). When there exists a range of composition between two minerals species, a mineral series is defined. Masalan, biotit series is represented by variable amounts of the endmembers flogopit, siderofillit, annite va sharqiyit. In contrast, a mineral group is a grouping of mineral species with some common chemical properties that share a crystal structure. The piroksen group has a common formula of XY(Si,Al)2O6, where X and Y are both cations, with X typically kattaroq than Y; the pyroxenes are single-chain silicates that crystallize in either the ortorombik yoki monoklinik crystal systems. Finally, a mineral variety is a specific type of mineral species that differs by some physical characteristic, such as colour or crystal habit. Misol amethyst, which is a purple variety of quartz.[16]

Two common classifications, Dana and Strunz, are used for minerals; both rely on composition, specifically with regards to important chemical groups, and structure. Jeyms Duayt Dana, a leading geologist of his time, first published his Mineralogiya tizimi 1837 yilda; as of 1997, it is in its eighth edition. The Dana classification assigns a four-part number to a mineral species. Its class number is based on important compositional groups; the type gives the ratio of cations to anions in the mineral, and the last two numbers group minerals by structural similarity within a given type or class. The less commonly used Strunz tasnifi, named for German mineralogist Karl Hugo Strunz, is based on the Dana system, but combines both chemical and structural criteria, the latter with regards to distribution of chemical bonds.[86]

As the composition of the Earth's crust is dominated by silicon and oxygen, silicate elements are by far the most important class of minerals in terms of rock formation and diversity. However, non-silicate minerals are of great economic importance, especially as ores.[87][88]

Non-silicate minerals are subdivided into several other classes by their dominant chemistry, which includes native elements, sulfides, halides, oxides and hydroxides, carbonates and nitrates, borates, sulfates, phosphates, and organic compounds. Most non-silicate mineral species are rare (constituting in total 8% of the Earth's crust), although some are relatively common, such as calcite, pirit, magnetit va gematit. There are two major structural styles observed in non-silicates: close-packing and silicate-like linked tetrahedra. close-packed structures is a way to densely pack atoms while minimizing interstitial space. Hexagonal close-packing involves stacking layers where every other layer is the same ("ababab"), whereas cubic close-packing involves stacking groups of three layers ("abcabcabc"). Analogues to linked silica tetrahedra include SO4 (sulfate), PO4 (phosphate), AsO4 (arsenate), and VO4 (vanadate). The non-silicates have great economic importance, as they concentrate elements more than the silicate minerals do.[89]

The largest grouping of minerals by far are the silikatlar; most rocks are composed of greater than 95% silicate minerals, and over 90% of the Earth's crust is composed of these minerals.[90] The two main constituents of silicates are silicon and oxygen, which are the two most abundant elements in the Earth's crust. Other common elements in silicate minerals correspond to other common elements in the Earth's crust, such as aluminium, magnesium, iron, calcium, sodium, and potassium.[91] Some important rock-forming silicates include the dala shpatlari, kvarts, zaytun moylari, piroksenlar, amfibolalar, granatlar va micas.

Silikatlar

Aegirine, an iron-sodium clinopyroxene, is part of the inosilicate subclass.

The base unit of a silicate mineral is the [SiO4]4− tetraedr. In the vast majority of cases, silicon is in four-fold or tetrahedral coordination with oxygen. In very high-pressure situations, silicon will be in six-fold or octahedral coordination, such as in the perovskit tuzilishi or the quartz polymorph stishovite (SiO2). In the latter case, the mineral no longer has a silicate structure, but that of rutil (TiO2), and its associated group, which are simple oxides. These silica tetrahedra are then polymerized to some degree to create various structures, such as one-dimensional chains, two-dimensional sheets, and three-dimensional frameworks. The basic silicate mineral where no polymerization of the tetrahedra has occurred requires other elements to balance out the base 4- charge. In other silicate structures, different combinations of elements are required to balance out the resultant negative charge. It is common for the Si4+ to be substituted by Al3+ because of similarity in ionic radius and charge; in those cases, the [AlO4]5− tetrahedra form the same structures as do the unsubstituted tetrahedra, but their charge-balancing requirements are different.[92]

The degree of polymerization can be described by both the structure formed and how many tetrahedral corners (or coordinating oxygens) are shared (for aluminium and silicon in tetrahedral sites).[93] Orthosilicates (or nesosilicates) have no linking of polyhedra, thus tetrahedra share no corners. Disilicates (or sorosilicates) have two tetrahedra sharing one oxygen atom. Inosilicates are chain silicates; single-chain silicates have two shared corners, whereas double-chain silicates have two or three shared corners. In phyllosilicates, a sheet structure is formed which requires three shared oxygens; in the case of double-chain silicates, some tetrahedra must share two corners instead of three as otherwise a sheet structure would result. Framework silicates, or tectosilicates, have tetrahedra that share all four corners. The ring silicates, or cyclosilicates, only need tetrahedra to share two corners to form the cyclical structure.[94]

The silicate subclasses are described below in order of decreasing polymerization.

Tectosilicates

Natrolite is a mineral series in the zeolite group; this sample has a very prominent acicular crystal habit.

Tectosilicates, also known as framework silicates, have the highest degree of polymerization. With all corners of a tetrahedra shared, the silicon:oxygen ratio becomes 1:2. Examples are quartz, the dala shpatlari, feldspatoidlar, va seolitlar. Framework silicates tend to be particularly chemically stable as a result of strong covalent bonds.[95]

Forming 12% of the Earth's crust, kvarts (SiO2) is the most abundant mineral species. It is characterized by its high chemical and physical resistivity. Quartz has several polymorphs, including tridimit va kristobalit at high temperatures, high-pressure koesit, and ultra-high pressure stishovite. The latter mineral can only be formed on Earth by meteorite impacts, and its structure has been composed so much that it had changed from a silicate structure to that of rutil (TiO2). The silica polymorph that is most stable at the Earth's surface is α-quartz. Its counterpart, β-quartz, is present only at high temperatures and pressures (changes to α-quartz below 573 °C at 1 bar). These two polymorphs differ by a "kinking" of bonds; this change in structure gives β-quartz greater symmetry than α-quartz, and they are thus also called high quartz (β) and low quartz (α).[90][96]

Feldspars are the most abundant group in the Earth's crust, at about 50%. In the feldspars, Al3+ substitutes for Si4+, which creates a charge imbalance that must be accounted for by the addition of cations. The base structure becomes either [AlSi3O8] or [Al2Si2O8]2− There are 22 mineral species of feldspars, subdivided into two major subgroups – alkali and plagioclase – and two less common groups – celsian va banalsit. The alkali feldspars are most commonly in a series between potassium-rich orthoclase and sodium-rich albit; in the case of plagioclase, the most common series ranges from albite to calcium-rich anortit. Crystal twinning is common in feldspars, especially polysynthetic twins in plagioclase and Carlsbad twins in alkali feldspars. If the latter subgroup cools slowly from a melt, it forms exsolution lamellae because the two components – orthoclase and albite – are unstable in solid solution. Exsolution can be on a scale from microscopic to readily observable in hand-sample; perthitic texture forms when Na-rich feldspar exsolve in a K-rich host. The opposite texture (antiperthitic), where K-rich feldspar exsolves in a Na-rich host, is very rare.[97]

Feldspathoids are structurally similar to feldspar, but differ in that they form in Si-deficient conditions, which allows for further substitution by Al3+. As a result, feldspathoids cannot be associated with quartz. A common example of a feldspathoid is nefelin ((Na, K)AlSiO4); compared to alkali feldspar, nepheline has an Al2O3:SiO2 ratio of 1:2, as opposed to 1:6 in the feldspar.[98] Zeolites often have distinctive crystal habits, occurring in needles, plates, or blocky masses. They form in the presence of water at low temperatures and pressures, and have channels and voids in their structure. Zeolites have several industrial applications, especially in waste water treatment.[99]

Fillosilikatlar

Muscovite, a mineral species in the mica group, within the phyllosilicate subclass

Phyllosilicates consist of sheets of polymerized tetrahedra. They are bound at three oxygen sites, which gives a characteristic silicon:oxygen ratio of 2:5. Important examples include the slyuda, xlorit, va kaolinit -serpantin guruhlar. The sheets are weakly bound by van der Waals kuchlari yoki vodorod aloqalari, which causes a crystallographic weakness, in turn leading to a prominent basal cleavage among the phyllosilicates.[100] In addition to the tetrahedra, phyllosilicates have a sheet of octahedra (elements in six-fold coordination by oxygen) that balance out the basic tetrahedra, which have a negative charge (e.g. [Si4O10]4−) These tetrahedra (T) and octahedra (O) sheets are stacked in a variety of combinations to create phyllosilicate groups. Within an octahedral sheet, there are three octahedral sites in a unit structure; however, not all of the sites may be occupied. In that case, the mineral is termed dioctahedral, whereas in other case it is termed trioctahedral.[101]

The kaolinite-serpentine group consists of T-O stacks (the 1:1 clay minerals); their hardness ranges from 2 to 4, as the sheets are held by hydrogen bonds. The 2:1 clay minerals (pyrophyllite-talc) consist of T-O-T stacks, but they are softer (hardness from 1 to 2), as they are instead held together by van der Waals forces. These two groups of minerals are subgrouped by octahedral occupation; specifically, kaolinite and pyrophyllite are dioctahedral whereas serpentine and talc trioctahedral.[102]

Micas are also T-O-T-stacked phyllosilicates, but differ from the other T-O-T and T-O-stacked subclass members in that they incorporate aluminium into the tetrahedral sheets (clay minerals have Al3+ in octahedral sites). Common examples of micas are muskovit, va biotit seriyali. The chlorite group is related to mica group, but a brusit -like (Mg(OH)2) layer between the T-O-T stacks.[103]

Because of their chemical structure, phyllosilicates typically have flexible, elastic, transparent layers that are electrical insulators and can be split into very thin flakes. Micas can be used in electronics as insulators, in construction, as optical filler, or even cosmetics. Chrysotile, a species of serpentine, is the most common mineral species in industrial asbestos, as it is less dangerous in terms of health than the amphibole asbestos.[104]

Inosilikatlar

Asbestiform tremolite, part of the amphibole group in the inosilicate subclass

Inosilicates consist of tetrahedra repeatedly bonded in chains. These chains can be single, where a tetrahedron is bound to two others to form a continuous chain; alternatively, two chains can be merged to create double-chain silicates. Single-chain silicates have a silicon:oxygen ratio of 1:3 (e.g. [Si2O6]4−), whereas the double-chain variety has a ratio of 4:11, e.g. [Si8O22]12−. Inosilicates contain two important rock-forming mineral groups; single-chain silicates are most commonly piroksenlar, while double-chain silicates are often amfibolalar.[105] Higher-order chains exist (e.g. three-member, four-member, five-member chains, etc.) but they are rare.[106]

The pyroxene group consists of 21 mineral species.[107] Pyroxenes have a general structure formula of XY(Si2O6), where X is an octahedral site, while Y can vary in coordination number from six to eight. Most varieties of pyroxene consist of permutations of Ca2+, Fe2+ va Mg2+ to balance the negative charge on the backbone. Pyroxenes are common in the Earth's crust (about 10%) and are a key constituent of mafic igneous rocks.[108]

Amphiboles have great variability in chemistry, described variously as a "mineralogical garbage can" or a "mineralogical shark swimming a sea of elements". The backbone of the amphiboles is the [Si8O22]12−; it is balanced by cations in three possible positions, although the third position is not always used, and one element can occupy both remaining ones. Finally, the amphiboles are usually hydrated, that is, they have a hydroxyl group ([OH]), although it can be replaced by a fluoride, a chloride, or an oxide ion.[109] Because of the variable chemistry, there are over 80 species of amphibole, although variations, as in the pyroxenes, most commonly involve mixtures of Ca2+, Fe2+ va Mg2+.[107] Several amphibole mineral species can have an asbestiform crystal habit. These asbestos minerals form long, thin, flexible, and strong fibres, which are electrical insulators, chemically inert and heat-resistant; as such, they have several applications, especially in construction materials. However, asbestos are known carcinogens, and cause various other illnesses, such as asbestoz; amphibole asbestos (anthophyllite, tremolite, aktinolit, grunerit va riebeckite ) are considered more dangerous than chrysotile serpentine asbestos.[110]

Cyclosilicates

An example of elbaite, a species of tourmaline, with distinctive colour banding.

Cyclosilicates, or ring silicates, have a ratio of silicon to oxygen of 1:3. Six-member rings are most common, with a base structure of [Si6O18]12−; misollariga quyidagilar kiradi turmalin guruh va beril. Other ring structures exist, with 3, 4, 8, 9, 12 having been described.[111] Cyclosilicates tend to be strong, with elongated, striated crystals.[112]

Tourmalines have a very complex chemistry that can be described by a general formula XY3Z6(BO.)3)3T6O18V3W. The T6O18 is the basic ring structure, where T is usually Si4+, but substitutable by Al3+ yoki B3+. Tourmalines can be subgrouped by the occupancy of the X site, and from there further subdivided by the chemistry of the W site. The Y and Z sites can accommodate a variety of cations, especially various transition metals; this variability in structural transition metal content gives the tourmaline group greater variability in colour. Other cyclosilicates include beryl, Al2Bo'ling3Si6O18, whose varieties include the gemstones emerald (green) and aquamarine (bluish). Cordierite is structurally similar to beryl, and is a common metamorphic mineral.[113]

Sorosilicates

Epidote often has a distinctive pistachio-green colour.

Sorosilicates, also termed disilicates, have tetrahedron-tetrahedron bonding at one oxygen, which results in a 2:7 ratio of silicon to oxygen. The resultant common structural element is the [Si2O7]6− guruh. The most common disilicates by far are members of the epidot guruh. Epidotes are found in variety of geologic settings, ranging from mid-ocean ridge to granites to metapelitlar. Epidotes are built around the structure [(SiO4)(Si2O7)]10− tuzilish; for example, the mineral turlari epidote has calcium, aluminium, and ferric iron to charge balance: Ca2Al2(Fe3+, Al)(SiO4)(Si2O7) O (OH). The presence of iron as Fe3+ va Fe2+ helps understand oxygen qochoqlik, which in turn is a significant factor in petrogenesis.[114]

Other examples of sorosilicates include lawsonite, a metamorphic mineral forming in the blueshist facies (subduction zone setting with low temperature and high pressure), vesuvianite, which takes up a significant amount of calcium in its chemical structure.[114][115]

Orthosilicates

Black andradite, an end-member of the orthosilicate garnet group.

Orthosilicates consist of isolated tetrahedra that are charge-balanced by other cations.[116] Also termed nesosilicates, this type of silicate has a silicon:oxygen ratio of 1:4 (e.g. SiO4). Typical orthosilicates tend to form blocky equant crystals, and are fairly hard.[117] Several rock-forming minerals are part of this subclass, such as the aluminosilicates, the olivine group, and the garnet group.

The aluminosilicates –bkyanite, andalusite, and sillimanite, all Al2SiO5 – are structurally composed of one [SiO4]4− tetrahedron, and one Al3+ in octahedral coordination. The remaining Al3+ can be in six-fold coordination (kyanite), five-fold (andalusite) or four-fold (sillimanite); which mineral forms in a given environment is depend on pressure and temperature conditions. In the olivine structure, the main olivine series of (Mg, Fe)2SiO4 consist of magnesium-rich forsterite and iron-rich fayalite. Both iron and magnesium are in octahedral by oxygen. Other mineral species having this structure exist, such as tefroit, Mn2SiO4.[118] The garnet group has a general formula of X3Y2(SiO4)3, where X is a large eight-fold coordinated cation, and Y is a smaller six-fold coordinated cation. There are six ideal endmembers of garnet, split into two group. The pyralspite garnets have Al3+ in the Y position: pirop (Mg3Al2(SiO4)3), almandin (Fe3Al2(SiO4)3) va spessartin (Mn3Al2(SiO4)3). The ugrandite garnets have Ca2+ in the X position: uvarovit (Ca3Kr2(SiO4)3), grossular (Ca3Al2(SiO4)3) va andradit (Ca3Fe2(SiO4)3). While there are two subgroups of garnet, solid solutions exist between all six end-members.[116]

Other orthosilicates include zirkon, staurolit va topaz. Zircon (ZrSiO4) is useful in geochronology as the Zr4+ can be substituted by U6+; furthermore, because of its very resistant structure, it is difficult to reset it as a chronometer. Staurolite is a common metamorphic intermediate-grade index mineral. It has a particularly complicated crystal structure that was only fully described in 1986. Topaz (Al2SiO4(F, OH)2, often found in granitic pegmatites associated with turmalin, is a common gemstone mineral.[119]

Non-silicates

Native elements

Native gold. Rare specimen of stout crystals growing off of a central stalk, size 3.7 x 1.1 x 0.4 cm, from Venezuela.

Native elements are those that are not chemically bonded to other elements. This mineral group includes native metals, semi-metals, and non-metals, and various alloys and solid solutions. The metals are held together by metallic bonding, which confers distinctive physical properties such as their shiny metallic lustre, ductility and malleability, and electrical conductivity. Native elements are subdivided into groups by their structure or chemical attributes.

The gold group, with a cubic close-packed structure, includes metals such as gold, silver, and copper. The platinum group is similar in structure to the gold group. The iron-nickel group is characterized by several iron-nickel alloy species. Ikkita misol kamatsit va taenit, which are found in iron meteorites; these species differ by the amount of Ni in the alloy; kamacite has less than 5–7% nickel and is a variety of mahalliy temir, whereas the nickel content of taenite ranges from 7–37%. Arsenic group minerals consist of semi-metals, which have only some metallic traits; for example, they lack the malleability of metals. Native carbon occurs in two allotropes, graphite and diamond; the latter forms at very high pressure in the mantle, which gives it a much stronger structure than graphite.[120]

Sulfidlar

Red cinnabar (HgS), a mercury ore, on dolomite.
Sphalerite crystal partially encased in kaltsit dan Devoniy Miluokining shakllanishi ning Viskonsin

The sulfidli minerallar are chemical compounds of one or more metals or semimetals with a sulfur; tellurium, arsenic, or selenium can substitute for the sulfur. Sulfides tend to be soft, brittle minerals with a high specific gravity. Many powdered sulfides, such as pyrite, have a sulfurous smell when powdered. Sulfides are susceptible to weathering, and many readily dissolve in water; these dissolved minerals can be later redeposited, which creates enriched secondary ore deposits.[121] Sulfides are classified by the ratio of the metal or semimetal to the sulfur, such as M:S equal to 2:1, or 1:1.[122] Ko'pchilik sulfidli minerallar are economically important as metal rudalar; misollar kiradi sfalerit (ZnS), an ore of zinc, galena (PbS), an ore of lead, kinabar (HgS), an ore of mercury, and molibdenit (MoS2, an ore of molybdenum.[123] Pyrite (FeS2), is the most commonly occurring sulfide, and can be found in most geological environments. It is not, however, an ore of iron, but can be instead oxidized to produce sulfuric acid.[124] Related to the sulfides are the rare sulfosalts, in which a metallic element is bonded to sulfur and a semimetal such as surma, mishyak, yoki vismut. Like the sulfides, sulfosalts are typically soft, heavy, and brittle minerals.[125]

Oksidlar

Oksidli minerallar are divided into three categories: simple oxides, hydroxides, and multiple oxides. Simple oxides are characterized by O2− as the main anion and primarily ionic bonding. They can be further subdivided by the ratio of oxygen to the cations. The periclase group consists of minerals with a 1:1 ratio. Oxides with a 2:1 ratio include cuprite (Cu2O) and water ice. Corundum group minerals have a 2:3 ratio, and includes minerals such as korund (Al2O3) va gematit (Fe2O3). Rutile group minerals have a ratio of 1:2; the eponymous species, rutile (TiO2) is the chief ore of titanium; other examples include kassiterit (SnO2; ore of qalay ) va pirolusit (MnO2; ore of marganets ).[126][127] In hydroxides, the dominant anion is the hydroxyl ion, OH. Boksitlar are the chief aluminium ore, and are a heterogeneous mixture of the hydroxide minerals diaspor, gibbsite va bohmite; they form in areas with a very high rate of chemical weathering (mainly tropical conditions).[128] Finally, multiple oxides are compounds of two metals with oxygen. A major group within this class are the shpinellar, with a general formula of X2+Y3+2O4. Turlarning misollariga quyidagilar kiradi shpinel (MgAl2O4), xromit (FeCr2O4) va magnetit (Fe3O4). The latter is readily distinguishable by its strong magnetism, which occurs as it has iron in two oksidlanish darajasi (Fe2+Fe3+2O4), which makes it a multiple oxide instead of a single oxide.[129]

Halidlar

Pink cubic halit (NaCl; halide class) crystals on a naxolit matrix (NaHCO3; a carbonate, and mineral form of sodium bicarbonate, used as osh sodasi ).

The halide minerals are compounds in which a halogen (fluorine, chlorine, iodine, or bromine) is the main anion. These minerals tend to be soft, weak, brittle, and water-soluble. Common examples of halides include halite (NaCl, table salt), silvit (KCl), florit (CaF2). Halite and sylvite commonly form as evaporitlar, and can be dominant minerals in chemical sedimentary rocks. Kriyolit, Na3AlF6, is a key mineral in the extraction of aluminium from bauxites; however, as the only significant occurrence at Ivittuut, Grenlandiya, in a granitic pegmatite, was depleted, synthetic cryolite can be made from fluorite.[130]

Karbonatlar

The karbonat minerallari asosiy anion guruhi karbonat, [CO3]2−. Karbonatlar mo'rt bo'lishga moyildir, ko'pchiligida romboedral parchalanish mavjud va barchasi kislota bilan reaksiyaga kirishadi.[131] Oxirgi xarakteristikaga ko'ra, dala geologlari karbonatlarni karbonat bo'lmaganlardan ajratish uchun ko'pincha suyultirilgan xlorid kislotasini olib yuradilar. Kislotaning karbonatlar bilan reaktsiyasi, ko'pincha polimorf kaltsit va aragonit (CaCO3), ohaktosh g'orlarini hosil qilishda muhim ahamiyatga ega bo'lgan mineralning erishi va cho'kishi bilan bog'liq bo'lib, ular tarkibidagi stalaktit va stalagmitlar kabi xususiyatlar va karst relyef shakllari. Karbonatlar ko'pincha dengiz muhitida biogen yoki kimyoviy cho'kmalar sifatida hosil bo'ladi. Karbonat guruhi tizimli ravishda uchburchak bo'lib, bu erda markaziy S4+ kation uchta O bilan o'ralgan2− anionlar; minerallarning turli guruhlari ushbu uchburchaklarning har xil joylashishidan hosil bo'ladi.[132] Eng keng tarqalgan karbonatli mineral kalsit bo'lib, u cho'kindi ohaktosh va metamorfik marmarning asosiy tarkibiy qismidir. Kalsit, CaCO3, yuqori magniy nopokligiga ega bo'lishi mumkin. Yuqori Mg sharoitida uning o'rniga polimorf aragoniti hosil bo'ladi; dengiz geokimyosini bu borada ta'riflash mumkin aragonit yoki kaltsit dengizi, qaysi mineralning imtiyozli shakllanishiga qarab. Dolomit CaMg (CO) formulasi bilan qo'shaloq karbonatdir3)2. Ohaktoshning ikkilamchi dolomitlanishi keng tarqalgan bo'lib, unda kalsit yoki aragonit dolomitga aylanadi; bu reaksiya g'ovak maydonini ko'paytiradi (dolomitning hujayra birligi hajmi kalsitning 88 foizini tashkil qiladi), bu esa neft va gaz zaxirasini yaratishi mumkin. Ushbu ikki mineral tur nomga ega mineral guruhlarning a'zolari: kaltsit guruhiga umumiy formulasi XCO bo'lgan karbonatlar kiradi3va dolomit guruhi XY (CO) umumiy formulasi bilan minerallarni tashkil qiladi3)2.[133]

Sulfatlar

Gips cho'l ko'tarildi

The sulfat minerallari barchasi sulfat anionini o'z ichiga oladi, [SO4]2−. Ular shaffof, shaffof va yumshoq bo'lib, ko'plari mo'rt bo'ladi.[134] Sulfat minerallari odatda quyidagicha hosil bo'ladi evaporitlar, ular bug'lanib ketadigan sho'r suvlardan cho'kadi. Sulfatlar sulfidlar bilan bog'liq bo'lgan gidrotermal tomir tizimlarida ham bo'lishi mumkin,[135] yoki sulfidlarning oksidlanish mahsuloti sifatida.[136] Sulfatlarni suvsiz va gidroksidi minerallarga bo'lish mumkin. Hozirgacha eng keng tarqalgan gidroksidli sulfat gips, CaSO4⋅2H2O. u evaporit sifatida hosil bo'ladi va boshqa evaparitlar, masalan, kaltsit va halit bilan bog'lanadi; agar u kristallashganda qum donalarini birlashtirsa, gips hosil bo'lishi mumkin cho'l atirgullari. Gips juda past issiqlik o'tkazuvchanligiga ega va qizdirilganda past haroratni saqlaydi, chunki suvsizlantirish orqali bu issiqlikni yo'qotadi; gips, gips va gipsokarton kabi materiallarda izolyator sifatida ishlatiladi. Gipsning suvsiz ekvivalenti angidrit; u juda quruq sharoitda to'g'ridan-to'g'ri dengiz suvidan hosil bo'lishi mumkin. Barit guruhi XSO umumiy formulasiga ega4, bu erda X katta 12 koordinatali kationdir. Bunga misollar kiradi barit (BaSO4), selestin (SrSO4) va anglesit (PbSO4); angidrit barit guruhiga kirmaydi, chunki kichikroq Ca2+ faqat sakkiz barobar koordinatsiyada.[137]

Fosfatlar

The fosfat minerallari tetraedral [PO bilan xarakterlanadi4]3− tuzilishni umumlashtirish mumkin bo'lsa-da, fosfor surma, mishyak yoki vanadiy bilan almashtiriladi. Eng keng tarqalgan fosfat bu apatit guruh; Ushbu guruh tarkibidagi keng tarqalgan turlar florapatitdir (Ca5(PO4)3F), xlorapatit (Ca5(PO4)3Cl) va gidroksilapatit (Ca5(PO4)3(OH)). Ushbu guruhdagi minerallar umurtqali hayvonlardagi tish va suyaklarning asosiy kristalli tarkibiy qismidir. Nisbatan mo'l monazit guruh ATO ning umumiy tuzilishiga ega4, bu erda T fosfor yoki mishyak, A esa ko'pincha a noyob tuproq elementi (REE). Monazit ikki jihatdan muhimdir: birinchidan, REE "cho'kishi" sifatida, u ushbu elementlarni ma'danga aylanish uchun etarli darajada konsentratsiyalashi mumkin; ikkinchidan, monazit guruhi elementlari nisbatan katta miqdordagi uran va toriyni o'z ichiga olishi mumkin monazit geoxronologiyasi U va Th ning qo'rg'oshin parchalanishiga asoslangan toshni shu kungacha.[138]

Organik minerallar

Strunz tasnifi uchun sinf kiradi organik minerallar. Ushbu noyob birikmalar o'z ichiga oladi organik uglerod, lekin geologik jarayon orqali shakllanishi mumkin. Masalan, g'ildirak, CaC2O4⋅H2O - bu oksalat gidrotermal ruda tomirlariga yotqizilishi mumkin. Gidratlangan kaltsiy oksalatni ko'mir qatlamlarida va organik moddalar ishtirokidagi boshqa cho'kindi yotqiziqlarda topish mumkin bo'lsa, gidrotermal hodisalar biologik faollik bilan bog'liq emas.[88]

So'nggi yutuqlar

Minerallarni tasniflash sxemalari va ularning ta'riflari mineral fanning so'nggi yutuqlariga mos ravishda rivojlanib bormoqda. So'nggi o'zgarishlar, yangi Dana va ga organik sinf qo'shilishini o'z ichiga oladi Strunz tasnifi sxemalar.[139][140] Organik sinfga juda kam uchraydigan minerallar guruhi kiradi uglevodorodlar. IMA-ning yangi minerallar va minerallar nomlari bo'yicha komissiyasi 2009 yilda mineral guruhlar va guruh nomlarini nomlash va tasniflash bo'yicha ierarxik sxemani qabul qildi va minerallarni ko'rib chiqish va ularning e'lon qilingan ismlarining rasmiy ro'yxatiga kiritish uchun ettita komissiya va to'rtta ishchi guruh tuzdi.[141][142] Ushbu yangi qoidalarga ko'ra, "mineral turlarni kimyo, kristal tuzilishi, paydo bo'lishi, assotsiatsiyasi, genetik tarixi yoki manbai asosida, masalan, xizmat ko'rsatadigan maqsadga qarab, turli xil yo'llar bilan guruhlash mumkin. tasniflash. "[141]

Astrobiologiya

Taklif qilingan biominerallar ning muhim ko'rsatkichlari bo'lishi mumkin g'ayritabiiy hayot va shu tariqa sayyoradagi o'tmish yoki hozirgi hayotni qidirishda muhim rol o'ynashi mumkin Mars. Bundan tashqari, organik komponentlar (biosignature ) biomineral moddalar bilan tez-tez bog'lanib turadigan biotikgacha ham, ham hal qiluvchi rol o'ynaydi biotik reaktsiyalar.[143]

2014 yil 24-yanvar kuni NASA tomonidan hozirgi tadqiqotlar Qiziqish va Imkoniyat rovers endi Marsda qadimiy hayotga oid dalillarni qidirish, shu jumladan a biosfera asoslangan avtotrofik, kimyoviy va / yoki xemolitoautotrofik mikroorganizmlar, shuningdek, qadimiy suv, shu jumladan fluvio-lakustrin muhitlari (tekisliklar qadimiy bilan bog'liq daryolar yoki ko'llar ) bo'lishi mumkin edi yashashga yaroqli.[144][145][146][147] Dalillarni qidirish yashashga yaroqlilik, taponomiya (bog'liq bo'lgan fotoalbomlar ) va organik uglerod sayyorada Mars endi asosiy hisoblanadi NASA ob'ektiv.[144][145]

Shuningdek qarang

Izohlar

Adabiyotlar

  1. ^ Jon P. Rafferti, tahrir. (2011): Mineral moddalar; p. 1. Seriyada Geologiya: er shakllari, minerallar va toshlar. Rosen Publishing Group. ISBN  978-1615304899
  2. ^ Venk, Xans-Rudolf; Bulax, Andrey (2004). Mineral moddalar: ularning konstitutsiyasi va kelib chiqishi. Kembrij universiteti matbuoti. p. 10. ISBN  978-0-521-52958-7.
  3. ^ Stivenson, Tim; Stivenson, Kerolin. "Toshlar va minerallar". Gem tosh. Kritaun toshlar muzeyi. Olingan 18 iyul 2019.
  4. ^ Ostin Flint Rojers va Pol Frensis Kerr (1942): Optik mineralogiya, 2-nashr, p. 374. McGraw-Hill; ISBN  978-1114108523
  5. ^ a b Pasero, Marko; va boshq. (Yanvar 2020). "IMA-ning yangi minerallar ro'yxati - amalga oshirilayotgan ish" (PDF). Minerallarning yangi IMA ro'yxati. IMA - CNMNC (Yangi minerallar nomenklaturasi va tasnifi bo'yicha komissiya). Arxivlandi (PDF) asl nusxasidan 2020 yil 12 yanvarda. Olingan 1 mart 2020.
  6. ^ "Mineral resurslarning IMA ma'lumotlar bazasi / RRUFF loyihasi". Arizona universiteti geologiya bo'limi. Olingan 1 mart 2020.
  7. ^ "Mineral navlarining ta'rifi". mindat.org. Olingan 1 mart 2018.
  8. ^ "Mineral - silikatlar".
  9. ^ a b E. H. Nikel va J. D. Gris (1998): "Yangi minerallar va minerallarning nomlari bo'yicha IMA komissiyasi: minerallar nomenklaturasi bo'yicha protseduralar va ko'rsatmalar". Mineralogiya va petrologiya, 64-jild, 1-son, 237–263-betlar. doi:10.1007 / BF01226571
  10. ^ a b v Nikel, Ernest H. (1995). "Mineralning ta'rifi". Kanadalik mineralogist. 33 (3): 689–90.
  11. ^ "Merkuriy". Mindat.org. Olingan 3 aprel 2018.
  12. ^ "Muz". Mindat.org. Olingan 3 aprel 2018.
  13. ^ a b v d e Dyar, Gunter va Tasa (2007). Mineralogiya va optik mineralogiya. Amerikaning mineralogiya jamiyati. 2-4 betlar. ISBN  978-0-939950-81-2.CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  14. ^ Chesterman va Lowe 2008 yil, 13-14 betlar
  15. ^ "Makinavit". Mindat.org. Olingan 3 aprel 2018.
  16. ^ a b Dyar va Gunter 2008 yil, 20-22 betlar
  17. ^ Dyar va Gunter 2008 yil, p. 556
  18. ^ a b XA, Lowenstam (1981). "Organizmlar tomonidan hosil bo'lgan minerallar". Ilm-fan. 211 (4487): 1126–31. Bibcode:1981 yil ... 211.1126L. doi:10.1126 / science.7008198. JSTOR  1685216. PMID  7008198.
  19. ^ a b v d e Skinner, H.C.W. (2005). "Biominerals". Mineralogik jurnali. 69 (5): 621–41. Bibcode:2005MINM ... 69..621S. doi:10.1180/0026461056950275.
  20. ^ "Atrof-muhit mineralogiyasi va geokimyosi bo'yicha ishchi guruh". Komissiyalar, ishchi guruhlar va qo'mitalar. Xalqaro mineralogiya assotsiatsiyasi. 2011 yil 3-avgust. Olingan 4 aprel 2018.
  21. ^ Takai, K. (2010). "Hayot va biosferaning chegaralari: dengizning tubida va Yerning tubida mikroorganizmlarni aniqlashdan saboq.". Gargaudda M.; Lopez-Garsiya, P .; Martin, H. (tahrir). Hayotning kelib chiqishi va evolyutsiyasi: astrobiologik istiqbol. Kembrij: Kembrij universiteti matbuoti. 469–86 betlar. ISBN  978-1-139-49459-5.
  22. ^ Russel, E.G .; Kambon Bonavita, M.; Kerello, J .; Kreyg, B.A .; Prieur, D.; Parkes, R.J .; Parkes, R.J. (2008). "Dengiz osti qavatining biosferasini kengaytirish". Ilm-fan. 320 (5879): 1046. Bibcode:2008 yil ... 320.1046R. doi:10.1126 / science.1154545. PMID  18497290. S2CID  23374807.
  23. ^ Pirs, D.A .; Bridge, P.D .; Xyuz, K.A .; Sattler, B .; Psenner, R .; Rassel, NJ (2009). "Antarktida ustidagi atmosferadagi mikroorganizmlar". FEMS Mikrobiologiya Ekologiyasi. 69 (2): 143–57. doi:10.1111 / j.1574-6941.2009.00706.x. PMID  19527292.
  24. ^ Nyuman, D.K .; Banfild, JF (2002). "Geomikrobiologiya: Molekulyar masshtabdagi o'zaro ta'sirlar biogeokimyoviy tizimlarning asosini tashkil etadi". Ilm-fan. 296 (5570): 1071–77. Bibcode:2002 yil ... 296.1071N. doi:10.1126 / science.1010716. PMID  12004119. S2CID  1235688.
  25. ^ Uorren, L.A .; Kauffman, ME (2003). "Mikrobial geoinjinlar". Ilm-fan. 299 (5609): 1027–29. doi:10.1126 / science.1072076. JSTOR  3833546. PMID  12586932. S2CID  19993145.
  26. ^ Gonsales-Münoz, M.T .; Rodriguez-Navarro, S .; Martines-Ruis, F.; Arias, JM .; Merroun, M.L .; Rodriguez-Gallego, M. (2010). "Bakteriyalarni biomineralizatsiya qilish: Mikoksok bilan bog'liq mineral yog'inlarning yangi tushunchalari". Geologik Jamiyat, London, Maxsus nashrlar. 336 (1): 31–50. Bibcode:2010GSLSP.336 ... 31G. doi:10.1144 / SP336.3. S2CID  130343033.
  27. ^ Veis, A. (1990). "Biomineralizatsiya. Hujayra biologiyasi va mineral qatlami. Kennet Simkiss; Karl M. Uilbur Biomineralizatsiya to'g'risida. Heinz A. Lowenstam; Stiven Vayner". Ilm-fan. 247 (4946): 1129–30. Bibcode:1990Sci ... 247.1129S. doi:10.1126 / science.247.4946.1129. JSTOR  2874281. PMID  17800080.
  28. ^ Rasmiy IMA ro'yxati (2009 yil martidan yangilangan) Arxivlandi 2011-07-06 da Orqaga qaytish mashinasi. uws.edu.au
  29. ^ K., Xeferan; J., O'Brayen (2010). Yer materiallari. Villi-Blekvell. ISBN  978-1-4443-3460-9.
  30. ^ Bindi, L.; Pol J. Shtaynxardt; Nan Yao; Piter J. Lu (2011). "Ikosahedrit, Al63Cu24Fe13, birinchi tabiiy kvazikristal ". Amerikalik mineralogist. 96 (5–6): 928–31. Bibcode:2011 yil AmMin..96..928B. doi:10.2138 / am.2013.3758. S2CID  101152220.
  31. ^ Yangi minerallar va minerallar nomlari bo'yicha komissiya, Yangi mineral sifatida tasdiqlangan Arxivlandi 2012-03-20 da Orqaga qaytish mashinasi
  32. ^ a b Chesterman va Lowe 2008 yil, 15-16 betlar
  33. ^ Chesterman va Lowe 2008 yil, 719-21 betlar
  34. ^ Chesterman va Lowe 2008 yil, 747-48 betlar
  35. ^ Chesterman va Lowe 2008 yil, 694-96 betlar
  36. ^ Chesterman va Lowe 2008 yil, 728-30 betlar
  37. ^ Dyar va Gunter 2008 yil, p. 15
  38. ^ Chesterman va Lowe 2008 yil, p. 14
  39. ^ Chesterman va Koul, 531-32 betlar
  40. ^ Chesterman va Lowe 2008 yil, 14-15 betlar
  41. ^ "mineral "Merriam-Webster onlayn lug'atiga kirish. Kirish 2020-08-28.
  42. ^ Xarper, Duglas. "Onlayn etimologiya lug'ati". etimonlin. Olingan 28 mart 2018.
  43. ^ a b Dyar va Gunter 2008 yil, 4-7 betlar
  44. ^ Dyar va Gunter 2008 yil, p. 586
  45. ^ Dyar va Gunter 2008 yil, p. 141
  46. ^ Dyar va Gunter 2008 yil, p. 14
  47. ^ Dyar va Gunter 2008 yil, p. 585
  48. ^ Dyar va Gunter 2008 yil, 12-17 betlar
  49. ^ Dyar va Gunter 2008 yil, p. 549
  50. ^ Dyar va Gunter 2008 yil, p. 579
  51. ^ Dyar va Gunter 2008 yil, 22-23 betlar
  52. ^ a b Dyar va Gunter 2008 yil, 69-80 betlar
  53. ^ Dyar va Gunter 2008 yil, 654-55 betlar
  54. ^ Dyar va Gunter 2008 yil, p. 581
  55. ^ Dyar va Gunter 2008 yil, 631-32-betlar
  56. ^ Dyar va Gunter 2008 yil, p. 166
  57. ^ Dyar va Gunter 2008 yil, 41-43 betlar
  58. ^ Chesterman va Lowe 2008 yil, p. 39
  59. ^ Dyar va Gunter 2008 yil, 32-39 betlar
  60. ^ Chesterman va Lowe 2008 yil, p. 38
  61. ^ a b Dyar va Gunter 2008 yil, 28-29 betlar
  62. ^ "Kyanit". Mindat.org. Olingan 3 aprel 2018.
  63. ^ Dyar va Darbi, 26-28 betlar
  64. ^ a b v d e Busbey va boshq. 2007 yil, p. 72
  65. ^ a b Dyar va Gunter 2008 yil, p. 25
  66. ^ Dyar va Gunter 2008 yil, p. 23
  67. ^ Dyar va Gunter 2008 yil, 131-44 betlar
  68. ^ a b v d e f Dyar va Gunter 2008 yil, p. 24
  69. ^ a b Dyar va Gunter 2008 yil, 24-26 bet
  70. ^ a b Busbey va boshq. 2007 yil, p. 73
  71. ^ a b v d Dyar va Gunter 2008 yil, 39-40 betlar
  72. ^ a b v Chesterman va Lowe 2008 yil, 29-30 betlar
  73. ^ Chesterman va Lowe 2008 yil, 30-31 betlar
  74. ^ Dyar va Gunter 2008 yil, 31-33 betlar
  75. ^ Dyar va Gunter 2008 yil, 30-31 betlar
  76. ^ a b Dyar va Gunter 2008 yil, 43-44-betlar
  77. ^ "Gematit". Mindat.org. Olingan 3 aprel 2018.
  78. ^ "Galena". Mindat.org. Olingan 3 aprel 2018.
  79. ^ "Kamatsit". Vebmineral.com. Olingan 3 aprel 2018.
  80. ^ "Oltin". Mindat.org. Olingan 3 aprel 2018.
  81. ^ a b v d Dyar va Gunter 2008 yil, 44-45 betlar
  82. ^ "Minerallarni aniqlash kaliti: radioaktivlik, magnetizm, kislota reaktsiyalari". Amerikaning mineralogiya jamiyati. Arxivlandi asl nusxasidan 2012-09-22. Olingan 2012-08-15.
  83. ^ Helman, Daniel S. (2016). "Mineral va tog 'jinslaridagi simmetriyaga asoslangan elektr energiyasi: piro va piezoelektrni namoyish etadigan sentrosimmetrik minerallar misollari bilan mavjud ma'lumotlarning qisqacha mazmuni". Periodico di Mineralogia. 85 (3). doi:10.2451 / 2016PM590.
  84. ^ a b Staples, L.V. (1983). "Minerallarning tasnifi: tarix". Mineralogiya ensiklopediyasi (Yer haqidagi ensiklopediya turkumining bir qismi). Yer haqidagi entsiklopediya. Boston: Springer. 247-249 betlar. doi:10.1007/0-387-30720-6_76. ISBN  978-0-87933-184-9.
  85. ^ Uilk, H (1986). "Minerallarning tizimli tasnifi" (Qattiq qopqoqli). Uilkda H (tahrir). Minerallarning sehri. Berlin: Springer. p. 154. doi:10.1007/978-3-642-61304-3_7. ISBN  978-3-642-64783-3.
  86. ^ Dyar va Gunter 2008 yil, 558-59 betlar
  87. ^ Dyar va Gunter 2008 yil, p. 641
  88. ^ a b Dyar va Gunter 2008 yil, p. 681
  89. ^ Dyar va Gunter 2008 yil, 641-43 betlar
  90. ^ a b Dyar va Gunter 2008 yil, p. 104
  91. ^ Dyar va Gunter 2008 yil, p. 5
  92. ^ Dyar va Gunter 2008 yil, 104-20 betlar
  93. ^ Dyar va Gunter 2008 yil, p. 105
  94. ^ Dyar va Gunter 2008 yil, 104–17-betlar
  95. ^ Chesterman va Koul, p. 502
  96. ^ Dyar va Gunter 2008 yil, 578-83 betlar
  97. ^ Dyar va Gunter 2008 yil, 583-88 betlar
  98. ^ Dyar va Gunter 2008 yil, p. 588
  99. ^ Dyar va Gunter 2008 yil, 589-93 betlar
  100. ^ Chesterman va Lowe 2008 yil, p. 525
  101. ^ Dyar va Gunter 2008 yil, p. 110
  102. ^ Dyar va Gunter 2008 yil, 110-13 betlar
  103. ^ Dyar va Gunter 2008 yil, 602-05 betlar
  104. ^ Dyar va Gunter 2008 yil, 593-95 betlar
  105. ^ Chesterman va Lowe 2008 yil, p. 537
  106. ^ "09.D Inosilikatlar". Vebmineral.com. Olingan 2012-08-20.
  107. ^ a b Dyar va Gunter 2008 yil, p. 112
  108. ^ Dyar va Gunter 2008 yil 612-13 betlar
  109. ^ Dyar va Gunter 2008 yil, 606–12-betlar
  110. ^ Dyar va Gunter 2008 yil, 611–12-betlar
  111. ^ Dyar va Gunter 2008 yil, 113-15 betlar
  112. ^ Chesterman va Lowe 2008 yil, p. 558
  113. ^ Dyar va Gunter 2008 yil, 617-21 betlar
  114. ^ a b Dyar va Gunter 2008 yil, 612-27 betlar
  115. ^ Chesterman va Lowe 2008 yil, 565-73-betlar
  116. ^ a b Dyar va Gunter 2008 yil, 116–17 betlar
  117. ^ Chesterman va Lowe 2008 yil, p. 573
  118. ^ Chesterman va Lowe 2008 yil, 574-75-betlar
  119. ^ Dyar va Gunter 2008 yil, 627-34-betlar
  120. ^ Dyar va Gunter 2008 yil, 644-48 betlar
  121. ^ Chesterman va Lowe 2008 yil, p. 357
  122. ^ Dyar va Gunter 2008 yil, p. 649
  123. ^ Dyar va Gunter 2008 yil, 651-54 betlar
  124. ^ Dyar va Gunter 2008 yil, p. 654
  125. ^ Chesterman va Lowe 2008 yil, p. 383
  126. ^ Chesterman va Lowe 2008 yil, 400-03 betlar
  127. ^ Dyar va Gunter 2008 yil, 657–60-betlar
  128. ^ Dyar va Gunter 2008 yil, 663-64 betlar
  129. ^ Dyar va Gunter 2008 yil, 660-63 betlar
  130. ^ Chesterman va Lowe 2008 yil, 425-30 betlar
  131. ^ Chesterman va Lowe 2008 yil, p. 431
  132. ^ Dyar va Gunter 2008 yil, p. 667
  133. ^ Dyar va Gunter 2008 yil, 668-69 betlar
  134. ^ Chesterman va Lowe 2008 yil, p. 453
  135. ^ Chesterman va Lowe 2008 yil, 456-57 betlar
  136. ^ Dyar va Gunter 2008 yil, p. 674
  137. ^ Dyar va Gunter 2008 yil, 672-73-betlar
  138. ^ Dyar va Gunter 2008 yil, 675-80-betlar
  139. ^ "Dana Classification 8-nashr - Organik birikmalar". mindat.org. Olingan 3 aprel 2018.
  140. ^ "Nikel-Strunz tasnifi - silikatlar (nematlar) 10-nashr".. mindat.org. Olingan 3 aprel 2018.
  141. ^ a b Mills, J.S .; Xatert, F.; Nikel, E.H .; Ferraris, G. (2009). "Mineral guruhlar iyerarxiyalarini standartlashtirish: so'nggi nomenklatura takliflariga qo'llanilishi". Evropa mineralogiya jurnali. 21 (5): 1073–80. Bibcode:2009 yil EJMin..21.1073M. doi:10.1127/0935-1221/2009/0021-1994.
  142. ^ IMA bo'limlari Arxivlandi 2011-08-10 da Orqaga qaytish mashinasi. Ima-mineralogy.org (2011-01-12). 2011-10-20 da olingan.
  143. ^ Stil, Endryu; Beaty, Devid, nashr. (2006 yil 26 sentyabr). "MEPAG Astrobiology Field Laboratory Science Steering Group (AFL-SSG) ning yakuniy hisoboti". Astrobiologiya dala laboratoriyasi (.doc) format = talab qiladi | url = (Yordam bering). Mars tadqiqot dasturini tahlil qilish guruhi (MEPAG) - NASA. p. 72. Olingan 2009-07-22.
  144. ^ a b Grotzinger, Jon P. (2014 yil 24-yanvar). "Maxsus nashrga kirish - yashash uchun qulaylik, taponomiya va Marsda organik uglerodni qidirish". Ilm-fan. 343 (6169): 386–87. Bibcode:2014Sci ... 343..386G. doi:10.1126 / science.1249944. PMID  24458635.
  145. ^ a b Turli xil (2014 yil 24-yanvar). "Marsning yashash qobiliyatini o'rganish". Ilm-fan. 343 (6169): 345–452.CS1 maint: mualliflar parametridan foydalanadi (havola)
  146. ^ Turli xil (2014 yil 24-yanvar). "Maxsus to'plam - qiziqish - Marsning yashash qobiliyatini o'rganish". Ilm-fan. Olingan 24 yanvar, 2014.CS1 maint: mualliflar parametridan foydalanadi (havola)
  147. ^ Grotzinger, JP .; va boshq. (2014 yil 24-yanvar). "Yellounayf ko'rfazidagi feys-lakustrin muhiti, Geyl krateri, Mars". Ilm-fan. 343 (6169): 1242777. Bibcode:2014Sci ... 343A.386G. CiteSeerX  10.1.1.455.3973. doi:10.1126 / science.1242777. PMID  24324272. S2CID  52836398.

Umumiy ma'lumotnomalar

  • Busbey, A.B.; Coenraads, RE .; Ildizlar, D .; Willis, P. (2007). Toshlar va toshqotganliklar. San-Fransisko: tuman shaharlari uchun matbuot. ISBN  978-1-74089-632-0.
  • Chesterman, CW; Lou, K.E. (2008). Shimoliy Amerika tog 'jinslari va minerallari bo'yicha dala qo'llanmasi. Toronto: Kanadaning tasodifiy uyi. ISBN  978-0394502694.CS1 maint: ref = harv (havola)
  • Dyar, MD; Gunter, ME (2008). Mineralogiya va optik mineralogiya. Chantilly, VA: Amerikaning mineralogiya jamiyati. ISBN  978-0939950812.CS1 maint: ref = harv (havola)

Qo'shimcha o'qish

Tashqi havolalar