Termoyadro quroli - Thermonuclear weapon

Silindrli termoyadroviy pog'onali 1950-yilgi termoyadroviy bomba dizayni
(zamonaviy dizaynlarda sferik sekonderlardan foydalaniladi)
A) bo'linishning dastlabki bosqichi
B) termoyadroviy ikkilamchi bosqich
1) Yuqori portlovchi linzalar
2) Uran-238 ("buzish") berilyum reflektor bilan qoplangan
3) Vakuum ("yig'ilgan yadro")
4) Tritiy ichidagi "boost" (ko'k) plutonyum yoki uran ichi bo'sh yadro
5) to'ldirilgan radiatsiya kanali polistirol ko'pik
6) Uran ("itarish / buzish")
7) Lityum-6 deuterid (termoyadroviy yoqilg'i)
8) Plutoniy (""sham ")
9) Radiatsiya qutisi (termal bilan chegaralanadi X-nurlari aks ettirish orqali)

A termoyadro quroli, termoyadroviy qurol yoki vodorod bombasi (H bombasi), ikkinchi avlod yadro quroli dizayni. Uning buyuk nafosati unga birinchi avlodga qaraganda ancha katta halokatli kuch beradi atom bombalari, yanada ixcham o'lcham, past massa yoki ushbu afzalliklarning kombinatsiyasi. Xususiyatlari yadro sintezi reaktsiyalar bo'linmaydigan qismdan foydalanishga imkon beradi tugagan uran qurolning asosiy yoqilg'isi sifatida, shu sababli kam bo'linadigan materiallardan yanada samarali foydalanishga imkon beradi uran-235 (235U) yoki plutoniy-239 (239Pu).

Zamonaviy termoyadroviy qurollar asosan ikkita asosiy komponentdan iborat: a yadro bo'linishi birlamchi bosqich (yonilg'i bilan ta'minlangan 235U yoki 239Pu) va termoyadro yoqilg'isini o'z ichiga olgan alohida yadro sintezining ikkinchi darajali bosqichi: og'ir vodorod izotoplari deyteriy va tritiy yoki zamonaviy qurollarda lityum deuterid. Shu sababli, termoyadro qurollari ko'pincha og'zaki so'zlar bilan ataladi vodorod bombalari yoki H-bombalar.[1]

Sintez portlashi bo'linishning dastlabki bosqichini portlatish bilan boshlanadi. Uning harorati taxminan 100 milliondan oshadi kelvin, uning termal rentgen nurlanishi bilan qizg'in porlashiga olib keladi. Ushbu rentgen nurlari bo'sh joyni to'ldiradi (ko'pincha "radiatsiya kanali" bilan to'ldiriladi) polistirol ko'pik ) nurlanish energiyasi bilan chegaralanadigan va uning tashqi bosimiga qarshilik ko'rsatadigan radiatsion kassa deb nomlangan korpusga joylashtirilgan birlamchi va ikkilamchi birikmalar o'rtasida. Ikkala to'plamni ajratib turadigan masofa, sintez portlashi tugashidan oldin parchalanish birlamchi qismidan (rentgen fotonlariga qaraganda ancha sekin harakatlanadigan) qoldiq parchalarini ikkilamchi qismlarga ajratib bo'lmasligini ta'minlaydi.

Ikkinchi darajali termoyadroviy bosqich - tashqi itaruvchi / buzg'unchilik, termoyadroviy yoqilg'ini to'ldiruvchisi va markazdan iborat plutonyum buji - rentgen energiyasi yordamida uning itaruvchisiga ta'sir qiladi. Bu butun ikkilamchi bosqichni siqib chiqaradi va plutonyum shamining zichligini oshiradi. Plutonyum yoqilg'isining zichligi shu qadar ko'tariladiki, sham superkritik holatga keltiriladi va u yadroviy bo'linish zanjiri reaktsiyasini boshlaydi. Ushbu zanjirli reaktsiyaning bo'linish mahsulotlari yuqori darajada siqilgan va shu tariqa o'ta kuchli, uchqun shamini 300 million kelvinga qadar qizdirib, termoyadroviy yoqilg'isi yadrolari orasidagi termoyadroviy reaktsiyalarni yoqadi. Lityum deuterid bilan ta'minlangan zamonaviy qurollarda bo'linadigan plutonyum buji ham litiy yadrolari bilan to'qnashib, termoyadro yoqilg'isining tritiy komponentini ta'minlovchi erkin neytronlarni chiqaradi.

Ikkilamchi nisbatan katta buzilish (portlash davom etganda tashqi kengayishga qarshi), termoyadroviy vazifasini bajaradi, bu termoyadroviy yoqilg'isini to'ldirishini juda qizib ketishiga yo'l qo'ymaydi, bu esa siqishni buzadi. Agar qilingan bo'lsa uran, boyitilgan uran yoki plutoniy, buzg'unchilik tezda ushlaydi termoyadroviy neytronlar va bo'linishni o'zi boshdan kechiradi va umumiy portlovchi hosilni oshiradi. Bundan tashqari, ko'pgina dizaynlarda radiatsiya qutisi ham a dan tuzilgan bo'linadigan material tez termoyadro neytronlari ta'sirida bo'linishga uchraydi. Bunday bombalar uch bosqichli qurol sifatida tasniflanadi va hozirgi Teller-Ulam konstruktsiyalarining ko'pchiligi shunday bo'linadigan-termoyadroviy qurollardir. Buzilish va radiatsiya ishining tez bo'linishi umumiy hosilga asosiy hissa bo'lib, uni ishlab chiqaruvchi dominant jarayondir radioaktiv bo'linish mahsuloti qatordan chiqib ketish.[2][3]

The birinchi to'liq o'lchamli termoyadroviy sinovi 1952 yilda AQSh tomonidan amalga oshirildi; kontseptsiya shundan beri dunyoning aksariyat qismida ishlatilgan yadro kuchlari ularning qurollarini loyihalashda.[4] Qo'shma Shtatlardagi barcha zamonaviy termoyadroviy qurollarning dizayni Teller-Ulam konfiguratsiyasi uning ikkita asosiy hissasi uchun, Edvard Telller va Stanislav Ulam, uni 1951 yilda ishlab chiqqan[5] fizikning hissasi bilan ishlab chiqilgan ma'lum tushunchalar bilan Amerika Qo'shma Shtatlari uchun Jon fon Neyman. Shunga o'xshash qurilmalar Sovet Ittifoqi, Buyuk Britaniya, Frantsiya va Xitoy tomonidan ishlab chiqilgan.

Chunki termoyadro qurollari eng samarali dizaynni namoyish etadi qurolning energiya samaradorligi unumdorligi 50 dan yuqori bo'lgan qurollarda kiloton trotil (210 TJ) ga teng, ushbu o'lchamdagi deyarli barcha yadro qurollari Yadro qurolini tarqatmaslik to'g'risidagi shartnomaga binoan beshta yadro quroliga ega davlat bugungi kunda Teller-Ulam dizaynidan foydalangan holda termoyadro qurollari mavjud.[6]

Yadro qurolini loyihalash bo'yicha jamoat ma'lumotlari

Edvard Telller 1958 yilda

Bo'linish va termoyadroviy qurollar haqida batafsil ma'lumot tasniflangan deyarli har bir sanoati rivojlangan davlatlarda ma'lum darajada. Qo'shma Shtatlarda bunday bilimlarni sukut bo'yicha "deb tasniflash mumkin.Cheklangan ma'lumotlar ", hatto davlat xizmatchilari bo'lmagan yoki qurol-yarog 'dasturlari bilan bog'liq bo'lmagan shaxslar tomonidan yaratilgan bo'lsa ham," deb nomlanuvchi huquqiy doktrinada "tug'ma sir "(garchi doktrinaning konstitutsiyaviy mavqei ba'zan shubha ostiga qo'yilgan bo'lsa ham; qarang Amerika Qo'shma Shtatlari va Progressive, Inc. ). Maxsus spekülasyonlar uchun tug'ma sir kamdan-kam hollarda chaqiriladi. Ning rasmiy siyosati Amerika Qo'shma Shtatlari Energetika vazirligi dizayn ma'lumotlari sizib chiqqanligini tan olmagan, chunki bunday tan olish ma'lumotlarning aniqligini tasdiqlashi mumkin. Bir necha oldingi holatlarda AQSh hukumati bunga urinib ko'rdi ommaviy matbuotda qurol-yarog 'haqidagi ma'lumotni tsenzura qilish, cheklangan muvaffaqiyat bilan.[7] Ga ko'ra Nyu-York Tayms, fizik Kennet V. Ford olib tashlash to'g'risidagi hukumat buyrug'iga bo'ysunmadi maxfiy ma'lumotlar uning kitobidan, H bombasini qurish: shaxsiy tarix. Fordning ta'kidlashicha, u faqat oldindan mavjud bo'lgan ma'lumotlardan foydalangan va hatto hukumatga qo'lyozma taqdim etgan, ular chet el xalqlari ushbu ma'lumotlardan foydalanishlari mumkinligi sababli kitobning barcha bo'limlarini olib tashlamoqchi bo'lgan.[8]

Garchi katta miqdordagi noaniq ma'lumotlar rasmiy ravishda e'lon qilingan bo'lsa va katta miqdordagi noaniq ma'lumotlar sobiq bomba dizaynerlari tomonidan norasmiy ravishda oshkor qilingan bo'lsa-da, yadro quroli dizayni tafsilotlarining aksariyat ommaviy tavsiflari ma'lum darajada taxminlarga asoslanadi, teskari muhandislik ma'lum bo'lgan ma'lumotlardan yoki shunga o'xshash maydonlar bilan taqqoslashdan fizika (inertial qamoqdagi birlashma asosiy misol). Bunday jarayonlar yadroviy bombalar haqida, odatda rasmiy tasniflanmagan ma'lumotlarga, tegishli fizikaga mos keladigan va ichki izchil deb hisoblanadigan tasniflanmagan bilimlar to'plamiga olib keldi, ammo ba'zi bir izohlash nuqtalari hali ham ochiq deb hisoblanadi. Teller-Ulam dizayni haqida jamoat ma'lumotlarining holati asosan quyida keltirilgan bir nechta aniq hodisalardan kelib chiqqan.

Asosiy printsip

Teller-Ulam konfiguratsiyasining asosiy printsipi - bu termoyadroviy qurolning turli qismlarini "bosqichlarda" zanjir bilan bog'lash mumkin, har bir bosqichning portlashi keyingi bosqichni yoqish uchun energiya beradi. Hech bo'lmaganda, bu a degan ma'noni anglatadi birlamchi implosion tipidan tashkil topgan bo'lim bo'linish bomba ("qo'zg'atuvchi") va a ikkilamchi iborat bo'lgan qism termoyadroviy yoqilg'i. Tomonidan chiqarilgan energiya birlamchi siqadi ikkilamchi "deb nomlangan jarayon orqaliradiatsiya implosiyasi ", bu vaqtda u isitiladi va o'tadi yadro sintezi. Ushbu jarayon davom etishi mumkin edi, ikkilamchi yoqish energiyasi uchinchi termoyadroviy bosqichini yoqadi; Rossiyaning AN602 "Tsar Bomba "uch bosqichli bo'linish-termoyadroviy-termoyadroviy qurilmasi bo'lgan deb o'ylashadi. Nazariy jihatdan ushbu jarayonni o'zboshimchalik bilan yuqori darajadagi termoyadro qurollari bilan davom ettirish Yo'l bering qurilishi mumkin edi.[iqtibos kerak ] Bu bilan qarama-qarshi bo'linadigan qurollar unumdorligi cheklangan, chunki shunchaki bo'linadigan yoqilg'ining tasodifan paydo bo'lish xavfidan oldin bir joyda to'planishi mumkin superkritik juda katta bo'ladi.

Teller-Ulam konfiguratsiyasining mumkin bo'lgan variantlaridan biri

Boshqa tarkibiy qismlarni o'rab olish a hohlraum yoki nurlanish holati, birinchi bosqichni yoki birlamchi energiyani vaqtincha ichkarida ushlab turadigan idish. Odatda bu bomba tashqi korpusi bo'lgan ushbu radiatsion korpusning tashqi tomoni har qanday termoyadro bomba tarkibiy qismlarining konfiguratsiyasi to'g'risida ochiq bo'lgan yagona to'g'ridan-to'g'ri ingl. Har xil termoyadroviy bomba tashqi qismlarining ko'plab fotosuratlari maxfiylashtirilmagan.[9]

Birlamchi standart deb o'ylashadi implosion usuli bo'linish bombasi, ehtimol a yadro kuchaytirildi oz miqdordagi termoyadroviy yoqilg'isi bilan (odatda 50/50%) deyteriy /tritiy gaz) qo'shimcha samaradorlik uchun; termoyadroviy yoqilg'isi ortiqcha miqdorni chiqaradi neytronlar qizdirilganda va siqilganda, qo'shimcha bo'linishni keltirib chiqaradi. Ishdan bo'shatilganda 239Pu yoki 235U yadrosi odatdagi maxsus qatlamlar tomonidan kichikroq sohaga siqilgan bo'lar edi yuqori portlovchi moddalar atrofida joylashgan portlovchi ob'ektiv naqsh, boshlash yadro zanjiri reaktsiyasi odatdagi "atom bombasi" ga quvvat beradi.

Ikkilamchi odatda a sifatida ko'rsatiladi ustun ko'p qatlamlarga o'ralgan termoyadroviy yoqilg'isi va boshqa komponentlar. Ustun atrofida dastlab "itaruvchi-tamper", og'ir qatlam uran-238 (238U) yoki qo'rg'oshin bu termoyadroviy yoqilg'ini siqishga yordam beradi (va agar uran bo'lsa, oxir-oqibat bo'linishga olib kelishi mumkin). Buning ichida termoyadroviy yoqilg'ining o'zi, odatda lityum deuterid, bu suyultirilgan tritiy / deyteriy gaziga qaraganda qurollanish osonroq bo'lgani uchun ishlatiladi. Bu quruq yoqilg'i, bombardimon qilinganida neytronlar ishlab chiqaradi tritiy, og'ir izotop ning vodorod o'tishi mumkin yadro sintezi bilan birga deyteriy aralashmada mavjud. (Maqolaga qarang yadro sintezi sintez reaktsiyalarini batafsilroq texnik muhokama qilish uchun.) Yoqilg'i qatlami ichida "sham ", bo'linadigan materialning ichi bo'sh ustun (239Pu yoki 235U) ko'pincha deyteriy gazi bilan kuchayadi. Buji, siqilgan holda, o'zi yadro bo'linishiga olib kelishi mumkin (shakli tufayli u a emas tanqidiy massa siqilmasdan). Uchinchi daraja, agar u mavjud bo'lsa, ikkilamchi ostiga qo'yilishi va ehtimol bir xil materiallardan iborat bo'lishi kerak.[10][11]

Ikkilamchini asosiydan ajratish bu sahnalararo. Bo'linadigan birlamchi to'rt turdagi energiya ishlab chiqaradi: 1) birlamchi moddaga ta'sir qiladigan yuqori portlovchi zaryadlardan issiq gazlarni kengaytirishi; 2) juda qizib ketgan plazma dastlab bomba bo'linadigan material va uni buzish; 3) elektromagnit nurlanish; va 4) neytronlar primerning yadro portlashidan. Interstage energiya birlamchi va ikkilamchi uzatishni aniq modulyatsiya qilish uchun javobgardir. U issiq gazlarni, plazmani, elektromagnit nurlanishni va neytronlarni o'z vaqtida kerakli joyga yo'naltirishi kerak. Sahnalararo maqbul dizaynlardan kamligi, ikkilamchi bir nechta tortishishlarda to'liq ishlamay qolishiga olib keldi, bu "bo'linadigan fizzle" deb nomlanadi. The Koon qal'asi o'q Qal'a operatsiyasi yaxshi misoldir; kichik bir nuqson neytron oqimi birlamchi moddadan erta ikkilamchi isitishni boshlashiga imkon berdi va har qanday sintezni oldini olish uchun siqishni susaytirdi.

1951 yil 9 martda Teller va Ulam tomonidan tasniflangan qog'oz: Geterokatalitik detonatsiyalar bo'yicha I: gidrodinamik linzalar va radiatsiya oynalari, ular o'zlarining inqilobiy bosqichli implosion g'oyalarini taklif qildilar. Ushbu deklaratsiya qilingan versiya keng ko'lamda qayta ko'rib chiqilgan.

Ochiq adabiyotlarda sahnalararo mexanizm haqida juda kam batafsil ma'lumotlar mavjud. Eng yaxshi manbalardan biri bu amerikalikka o'xshash ingliz termoyadro qurolining soddalashtirilgan diagrammasi W80 jangovar kallak. Tomonidan chiqarilgan Greenpeace nomli hisobotda "Ikki marta ishlatiladigan yadro texnologiyasi".[12] Asosiy komponentlar va ularning joylashuvi diagrammada mavjud, ammo tafsilotlar deyarli yo'q; unda qanday tarqalgan tafsilotlar qasddan qilingan kamchiliklar yoki noaniqliklar bo'lishi mumkin. Ular "Oxirgi qopqoq va neytronli fokusli ob'ektiv" va "Reflektorli o'rash" yorlig'i bilan; oldingi neytron kanallari 235U /239Pu Spark Plug, ikkinchisi esa an ga ishora qiladi Rentgen reflektor; odatda uran singari rentgen nurlari o'tkazmaydigan materialdan yasalgan silindr, uning uchi birlamchi va ikkilamchi. Bu a kabi aks etmaydi oyna; o'rniga, u birlamchi rentgen oqimi bilan yuqori haroratgacha qiziydi, keyin u chiqaradi Ikkilamchi darajaga etib boradigan rentgen nurlari teng ravishda tarqalib, ma'lum bo'lgan narsalarni keltirib chiqaradi radiatsiya implosiyasi. Ayvi Maykda oltin uranni kuchaytirish uchun uran ustiga qoplama sifatida ishlatilgan qora tanli effekt.[13] Keyinchalik "Reflektor / neytron qurol tashish" keladi. Reflektor neytronli fokus linzalari (markazda) va birlamchi yonidagi tashqi korpus orasidagi bo'shliqni yopadi. U birlamchi va ikkilamchi ajratadi va oldingi reflektor bilan bir xil vazifani bajaradi. Taxminan oltita neytron qurol bor (bu erda Sandia milliy laboratoriyalari[14]) har birida har bir uchastkada reflektorning tashqi chetidan o'tib ketish; hammasi aravachaga mahkamlangan va korpus aylanasi atrofida ozroq yoki teng ravishda joylashtirilgan. Neytron qurollari qiyshaygan, shuning uchun har bir qurol uchining neytron chiqaruvchi uchi bomba markaziy o'qiga yo'naltirilgan. Har bir neytron quroldan neytronlar o'tadi va neytron fokus ob'ektivida plutonyumning dastlabki bo'linishini kuchaytirish uchun asosiy markazga yo'naltirilgan. A "polistirol Polarizator / plazma manbai "(shuningdek, pastga qarang) ko'rsatilgan.

Intersteyni eslatib o'tgan birinchi AQSh hukumati hujjati yaqinda 2004 yilgi tashabbusni targ'ib qiluvchi jamoatchilikka e'lon qilindi Ishonchli zaxira kallagi Dastur. Grafika RRW-ning potentsial afzalliklarini qism darajasida tavsiflovchi xiralashuvlarni o'z ichiga oladi, sahnalararo xiralashuv yangi dizayn "toksik, mo'rt material" va "qimmat" maxsus "materiallarning o'rnini bosishini aytadi ... ".[15] "Zaharli, mo'rt material" keng tarqalgan deb taxmin qilinadi berilyum bu tavsifga mos keladigan va shuningdek neytron oqimi birlamchi bosqichdan. X-nurlarini o'ziga xos tarzda singdirish va qaytadan nurlantirish uchun ba'zi materiallardan ham foydalanish mumkin.[16]

"Maxsus material" ga nomzodlar polistirol va "deb nomlangan moddaFOGBANK ", tasniflanmagan kod nomi. FOGBANK tarkibi tasniflangan bo'lsa-da aerogel imkoniyat sifatida taklif qilingan. Dastlab u termoyadro qurollarida ishlatilgan V-76 termoyadro kallagi va zavoddagi ishlab chiqarilgan Y-12 Murakkab at Eman tizmasi, Tennessi, W-76da foydalanish uchun. WOG-76 ishlab chiqarish tugagandan so'ng FOGBANK ishlab chiqarilishi to'xtatildi. W-76 hayotni kengaytirish dasturi ko'proq FOGBANK tuzilishini talab qildi. Bu FOGBANK-ning asl xususiyatlari to'liq hujjatlashtirilmaganligi sababli murakkablashdi, shuning uchun bu jarayonni qayta ixtiro qilish uchun katta kuch sarflandi. Eski FOGBANKning xususiyatlari uchun juda muhim bo'lgan nopoklik yangi jarayonda chiqarib tashlandi. Faqatgina yangi va eski partiyalarni yaqindan tahlil qilishgina o'sha nopoklikning mohiyatini ochib berdi. Amaldagi ishlab chiqarish jarayoni asetonitril kabi hal qiluvchi 2006 yilda FOGBANK zavodining kamida uchta evakuatsiyasiga olib keldi. Neft va farmatsevtika sanoatida keng qo'llaniladigan asetonitril yonuvchan va zaharli hisoblanadi. Y-12 FOGBANKning yagona ishlab chiqaruvchisi.[17]

Xulosa

Yuqoridagi tushuntirishning soddalashtirilgan xulosasi:

  1. An implosion yig'ish bo'linadigan bomba portlaydi. Bu asosiy bosqich. Agar oz miqdordagi bo'lsa deyteriy /tritiy gaz birlamchi yadro ichiga joylashtirilgan, u portlash paytida siqiladi va a yadro sintezi reaktsiya paydo bo'ladi; bu termoyadroviy reaktsiyadan bo'shatilgan neytronlar yana bo'linishni keltirib chiqaradi 239Pu yoki 235U boshlang'ich bosqichda ishlatilgan. Parchalanish reaktsiyasi samaradorligini oshirish uchun termoyadroviy yoqilg'idan foydalanish deyiladi kuchaytirish. Kuchaytirmasdan, bo'linadigan materialning katta qismi reaktsiz qoladi; The Kichkina bola va Semiz erkak bomba bor edi samaradorlik mos ravishda faqat 1,4% va 17%, chunki ular kuchaytirilmagan.
  2. Birlamchi bosqichda chiqarilgan energiya ikkilamchi (yoki termoyadroviy) bosqichga o'tkaziladi. Buning aniq mexanizmi yuqori darajada tasniflangan. Ushbu energiya termoyadroviy yoqilg'isini va uchqun vilkasini siqadi; siqilgan uchqun juda muhim bo'lib, bo'linish zanjiri reaktsiyasiga kirishadi va siqilgan termoyadroviy yoqilg'ini termoyadroviyni keltirib chiqaradigan darajada yuqori haroratgacha qizdiradi, shuningdek reaktiv neytronlarni etkazib beradi. lityum termoyadroviy uchun tritiy yaratish.
  3. Ikkilamchi bosqichning termoyadroviy yoqilg'isi uran bilan o'ralgan bo'lishi mumkin boyitilgan uran yoki plutonyum. Sintez natijasida hosil bo'lgan tezkor neytronlar, odatda, unga moyil bo'lmagan materiallarda ham bo'linishni keltirib chiqarishi mumkin, masalan 238U emas bo'linadigan va qo'llab-quvvatlay olmaydi a zanjir reaktsiyasi, lekin bu shunday bo'linadigan tomonidan bombardimon qilinganida yuqori energiyali neytronlar ikkilamchi bosqichda sintez bilan ajralib chiqadi. Ushbu jarayon sezilarli darajada energiya unumdorligini ta'minlaydi (katta qurilmalardagi hosilning yarmigacha). Garchi ba'zida bu alohida bosqich deb qaralsa ham, uni haqiqiy uchinchi bosqich bilan aralashtirib yubormaslik kerak. Uchlamchi bosqichlar bu qo'shimcha sintez bosqichlari (quyida ko'rib chiqing), ular atigi bir nechta bomba ichiga solingan, ularning hech biri keng ko'lamli ishlab chiqarishda.

Termoyadro qurollari kuchaytirilgan asosiy bosqichdan foydalanishi yoki ishlatmasligi mumkin, har xil termoyadroviy yoqilg'idan foydalanishi va termoyadroviy yoqilg'ini berilyum (yoki boshqasi) neytron aks ettiruvchi material ) ikkilamchi maqbul siqilishdan oldin erta erta bo'linish paydo bo'lishining oldini olish uchun tükenmiş uran o'rniga.

Ikkilamchi siqilish

Teller-Ulam konfiguratsiyasining asosiy g'oyasi shundan iboratki, har bir "bosqich" bo'linish yoki termoyadroviy jarayonga (yoki ikkalasiga) kiradi va energiyani chiqarib yuboradi, aksariyati uni ishga tushirish uchun boshqa bosqichga o'tkaziladi. Energiya "dan" qanday qilib aniq "ko'chiriladi" birlamchi uchun ikkilamchi ochiq matbuotda ba'zi kelishmovchiliklarga sabab bo'lgan, ammo orqali uzatilishi mumkin deb o'ylashadi X-nurlari va Gamma nurlari bo'linishidan chiqadigan birlamchi. Ushbu energiya keyinchalik siqishni uchun ishlatiladi ikkilamchi. Ning hal qiluvchi tafsilotlari Qanaqasiga rentgen nurlari bosimni tasniflanmagan pressdagi qolgan asosiy bahsli nuqta hisoblanadi. Uchta nazariya mavjud:

Radiatsiya bosimi

The radiatsiya bosimi katta miqdordagi rentgen nurlari ta'sirida fotonlar yopiq korpus ichida ikkilamchi siqish uchun etarli bo'lishi mumkin. X-nurlari yoki yorug'lik kabi elektromagnit nurlanish impuls va u urgan har qanday yuzaga kuch ta'sir qiladi. Kundalik hayotda kuzatiladigan intensivlikdagi nurlanish bosimi, masalan, quyosh nurlari yuzaga tushishi, sezilmaydi, ammo termoyadro bombasida bo'lgan o'ta zichlikda bosim juda katta.

Umumiy o'lchamlari va asosiy xususiyatlari yaxshi tushunilgan ikkita Ivaki Mayk sinov bombasi va W-61 dizaynidagi zamonaviy W-80 qanotli raketa jangovar kallak varianti uchun radiatsiya bosimi 73 mln. bar (atmosfera) (7.3 T Pa ) Ayvi Mayk dizayni uchun va W-80 uchun 1400 million bar (140 TPa).[18]

Ko'pikli plazma bosimi

Ko'pik plazma bosimi - bu Chak Xansenning "Progressive case" paytida kiritgan kontseptsiyasi, maxsus ko'piklarni termoyadro qurollarining nurlanish qobig'i tarkibidagi layner komponentlari ro'yxatiga kiritilgan deklaratsiyadan chiqarilgan hujjatlar joylashgan.

Qurolni otish ketma-ketligi (ko'pik bilan) quyidagicha bo'ladi:

  1. Ajratuvchi materialni siqib, asosiy olovning yadrosini o'rab turgan yuqori portlovchi moddalar superkritik davlat va bo'linishni boshlash zanjir reaktsiyasi.
  2. Bo'linadigan birlamchi issiqlik chiqaradi X-nurlari, bu polistirol ko'pikini nurlantiruvchi korpusning ichki tomoni bo'ylab "aks ettiradi".
  3. Nurlangan ko'pik issiq bo'ladi plazma, ikkilamchi buzg'unchilikka itaring, mahkam siqib oling va shamda bo'linish zanjiri reaktsiyasini boshlang.
  4. Lityum deuterid yoqilg'isi ikki tomondan (birlamchi va shamdan) itarilib, yuqori darajada siqilib, termoyadro haroratiga qadar isitiladi. Bundan tashqari, har biri neytronlar bilan bombardimon qilingan lityum -6 atom bittaga bo'linadi tritiy atom va bitta alfa zarrachasi. Keyinchalik tritiy va deyteriy o'rtasida termoyadroviy reaksiya boshlanadi, undan ham ko'proq neytronlar va juda katta miqdordagi energiya ajralib chiqadi.
  5. Sintez reaktsiyasidan o'tgan yoqilg'i katta miqdorda ajralib chiqadi yuqori energiya oqimi (17,6 MeV) neytronlar nurlanishini keltirib chiqaradi 238U buzilgan (yoki 238U tezkor bo'linish reaktsiyasini keltirib chiqaradigan umumiy energiyaning taxminan yarmini ta'minlaydigan U).

Bu bo'linish-sintez-bo'linish ketma-ketligini to'ldiradi. Füzyon, bo'linishdan farqli o'laroq, nisbatan "toza" - energiya chiqaradi, ammo zararli emas radioaktiv mahsulotlar yoki katta miqdorda yadro qulashi. Bo'linish reaktsiyalari, ayniqsa, oxirgi bo'linish reaktsiyalari juda katta miqdordagi bo'linish mahsulotlarini chiqaradi va tushadi. Agar oxirgi bo'linish bosqichi o'tkazib yuborilgan bo'lsa, uranni buzilishini yasalgan bilan almashtirish qo'rg'oshin Masalan, umumiy portlovchi kuch taxminan yarimga kamayadi, ammo yiqilish miqdori nisbatan past. The neytron bombasi qasddan ingichka tuzatishga ega bo'lgan vodorod bombasi bo'lib, tezkor termoyadroviy neytronlarning ko'pini iloji boricha qochishga imkon beradi.

Ko'pikli plazma mexanizmini yoqish ketma-ketligi.
  1. Otishdan oldin jangovar kallak; yuqori qismida birlamchi (bo'linadigan bomba), pastda ikkilamchi (termoyadroviy yoqilg'i), barchasi polistirol ko'pikda to'xtatilgan.
  2. Plutonyum yadrosini superkritiklik darajasiga siqib chiqaradigan va bo'linish reaktsiyasini boshlaydigan birlamchi, yuqori portlovchi yong'inlar.
  3. Bo'linish birlamchi korpusning ichki tomoniga tarqalib, polistirol ko'pikni nurlantiruvchi rentgen nurlarini chiqaradi.
  4. Polistirol ko'pik plazma bo'lib, ikkilamchi siqadi va plutonyum uchquni ajrala boshlaydi.
  5. Siqilgan va isitiladigan, lityum-6 deuterid yoqilg'isi ishlab chiqaradi tritiy va termoyadroviy reaktsiyasini boshlaydi. Ishlab chiqarilgan neytron oqimi sabab bo'ladi 238U bo'linishni buzadi. Olovli to'p shakllana boshlaydi.

"Ko'pikli plazmadagi bosim" g'oyasining amaldagi texnik tanqidlari shunga o'xshash yuqori energiya fizikasi sohalari bo'yicha tasniflanmagan tahlillarga qaratilgan bo'lib, ular bunday plazma tomonidan ishlab chiqarilgan bosim faqat kichik multiplikator nurlanish holatidagi asosiy foton bosimining, shuningdek ma'lum bo'lgan ko'pikli materiallarning ichki singdirish samaradorligi juda past gamma nurlari va Rentgen birlamchi nurlanish. Ishlab chiqarilgan energiyaning aksariyati radiatsiya qutisi devorlari yoki ikkilamchi atrofdagi buzilishlar tomonidan so'riladi. Ushbu so'rilgan energiya ta'sirini tahlil qilish uchinchi mexanizmga olib keldi: ablasyon.

Tamper-itaruvchi ablasyon

Ikkilamchi yig'ilishning tashqi korpusi "buzish-itaruvchi" deb nomlanadi. Portlash bombaidagi buzg'unchilikning maqsadi reaktiv yonilg'i ta'minotining kengayishini (bu juda zich zich plazma) yoqilg'i to'liq sarflanguniga qadar va portlash tugagunga qadar davom ettirishdir. Xuddi shu buzish materiali tashqi bosimni (ikkilamchi sirt maydoniga ta'sir qiluvchi kuch) termoyadroviy yoqilg'ining massasiga o'tkazadigan vosita bo'lganligi uchun itaruvchi vazifasini ham bajaradi.

Taklif etilayotgan qurg'oqchilikni yumshatish mexanizmi shuni anglatadiki, termoyadro ikkilamchi buzg'unchining tashqi qatlamlari birlamchi rentgen oqimi bilan shunchalik qiziydiki, ular shiddat bilan kengayib, uchib ketishadi (uchib ketishadi). Umumiy impuls saqlanib qolganligi sababli, bu yuqori tezlikli ejekaning massasi buzg'unchining qolgan qismini ulkan kuch bilan ichkariga orqaga qaytishga majbur qiladi, shu bilan termoyadroviy yoqilg'isi va shamni ezadi. Qurg'oqchini siqib chiqaruvchi termoyadroviy yoqilg'isini tashqaridagi haddan tashqari issiqdan izolyatsiya qilish uchun mustahkam tarzda qurilgan; aks holda siqishni buziladi.

Ablatsiya mexanizmining otish ketma-ketligi.
  1. Otishdan oldin urush boshi. Yuqorida joylashgan ichki sharlar bo'linishning birlamchi qismidir; quyida joylashgan tsilindrlar termoyadroviy ikkilamchi moslamadir.
  2. Fission primerining portlovchi moddalari portlagan va primer qulagan bo'linadigan chuqur.
  3. Boshlang'ichning bo'linish reaktsiyasi tugadi va boshlang'ich endi bir necha million daraja va gamma va qattiq rentgen nurlarini tarqatib, ichki qismini isitadi. hohlraum qalqon va ikkilamchi buzish.
  4. Birlamchi reaktsiya tugadi va u kengaydi. Ikkilamchi uchun itaruvchining yuzasi endi shunchalik qizib ketganki, u ham pasayib yoki kengayib, ikkilamchi qolgan qismni (buzish, termoyadroviy yoqilg'i va ajraladigan uchqun) ichkariga itaradi. Uchqun ajratila boshlaydi. Tasvirlanmagan: nurlanish holati ham pasayib, tashqi tomonga kengayib bormoqda (diagrammaning ravshanligi uchun chiqarib tashlangan).
  5. Ikkilamchi yoqilg'i sintez reaktsiyasini boshladi va tez orada yonib ketadi. Olovli to'p shakllana boshlaydi.

Asosiy ablasyon effekti uchun taxminiy hisob-kitoblar nisbatan sodda: birlamchi energiya tashqi nurlanish doirasidagi barcha sirtlarga bir tekis taqsimlanadi, komponentlar esa issiqlik muvozanati va keyinchalik bu issiqlik energiyasining ta'siri tahlil qilinadi. Energiya asosan bir rentgen nurida saqlanadi optik qalinligi buzish / itarish tashqi yuzasi va keyinchalik bu qatlamning harorati hisoblanishi mumkin. Keyinchalik sirtning tashqi tomonga kengayish tezligi hisoblanadi va asosiy Nyutondan impuls muvozanat, buzg'unchilikning qolgan qismi ichkariga kirib boradigan tezlik.

Ushbu hisob-kitoblarning batafsil shaklini Ayvi Mayk Qurilma bug'langan gazni kengaytirish tezligini soniyasiga 290 kilometrni tashkil qiladi va agar buzilish / itarish massasining 3/4 qismi o'chirilsa, energiya tejaydigan eng katta nisbati bo'lsa, portlash tezligi 400 km / s ni tashkil qiladi. Uchun V-80 gazning kengayish tezligi taxminan 410 km / s va portlash tezligi 570 km / s ni tashkil qiladi. Yumshatuvchi material tufayli bosim 5,3 milliard bar (530) deb hisoblanadi T Pa ) Ivy Mayk qurilmasida va 64 milliard bar (6.4 P Pa ) W-80 qurilmasida.[18]

Implosion mexanizmlarni taqqoslash

Taklif etilgan uchta mexanizmni taqqoslashda quyidagilarni ko'rish mumkin:

MexanizmBosim (TPa )
Ayvi MaykW80
Radiatsiya bosimi7.3140
Plazma bosimi35 750
Ablasyon bosimi530 6400

Hisoblangan ablasyon bosimi kattaroq kattalikdagi plazma bosimidan kattaroq bir daraja va hisoblangan radiatsiya bosimidan deyarli ikki daraja kattaroqdir. Energiyani nurlanish devoriga singdirish va ikkilamchi buzg'unchilikka yo'l qo'ymaslik uchun hech qanday mexanizm taklif qilinmagan, shuning uchun ablasyonni oldini olish mumkin emas. Boshqa mexanizmlar keraksiz bo'lib ko'rinadi.

Amerika Qo'shma Shtatlari Mudofaa vazirligi Rasmiy deklaratsiyadan chiqarish to'g'risidagi hisobotlarda ko'pikli plastmassa materiallari radiatsiya plyonkalarida ishlatilishi yoki ishlatilishi mumkinligi va to'g'ridan-to'g'ri plazma bosimi past bo'lishiga qaramay, ular kechikishda ishlatilishi mumkinligi ko'rsatilgan. ablasyon energiya teng ravishda taqsimlanmaguncha va etarli miqdordagi qism ikkilamchi buzg'unchiga yetguncha.[19]

Richard Rods "kitob To'q quyosh 1 dyuymli (25 mm) qalinlikdagi plastik ko'pikli qatlam ichki qismidagi qo'rg'oshin astariga mahkamlanganligini ta'kidladi Ayvi Mayk mis tirnoqlari yordamida po'lat korpus. Rods ushbu bombaning bir nechta dizaynerlaridan iqtibos keltirib, tashqi korpus ichidagi plastik ko'pikli qatlam ablatsiyani kechiktirish va shu bilan tashqi korpusni orqaga qaytarish kerakligini tushuntiradi: agar ko'pik u erda bo'lmaganida, metall tashqi korpusning ichki qismidan katta impuls bilan chiqib ketar edi. , korpusni tezda orqaga qaytarishga olib keladi. Kosonning maqsadi portlashni iloji boricha uzoq vaqt davomida ushlab turish, ikkilamchi pog'onaning metall yuzasini rentgen nurlanishida iloji boricha ko'paytirishga imkon berishdir, shu sababli u termoyadroviy rentabelligini maksimal darajada oshirib, ikkilamchini samarali ravishda siqib chiqaradi. Plastik ko'pik past zichlikka ega, shuning uchun u pasayganda metallga qaraganda kichikroq impulsni keltirib chiqaradi.[19]

Dizaynning o'zgarishi

Qurol dizayni uchun bir qator mumkin bo'lgan o'zgarishlar taklif qilingan:

  • Yoki buzish yoki mahfaza qilish taklif qilingan 235U (yuqori darajada boyitilgan uran ) oxirgi bo'linish ko'ylagi. Juda qimmat 235U xuddi shunday tez neytronlar bilan ajralib turadi 238U tugagan yoki tabiiy uran, lekin uning bo'linish samaradorligi yuqori. Buning sababi 235U yadrolari sekin neytronlar bilan bo'linishga ham uchraydi (238U yadrolari minimal energiyani taxminan 1 mega-elektron volt) talab qiladi) va bu sekinroq neytronlar boshqa parchalanish natijasida hosil bo'ladi 235U ko'ylagi yadrolari (boshqacha aytganda, 235U yadro zanjiri reaktsiyasini qo'llab-quvvatlaydi 238U qilmaydi). Bundan tashqari, a 235U ko'ylagi neytronlarni ko'paytirishga yordam beradi, aksincha 238U yadrolari tez bo'linish jarayonida termoyadroviy neytronlarni iste'mol qiladi. Oxirgi bo'linadigan / bo'linadigan ko'ylagi yordamida 235Shunday qilib, u Teller-Ulam bomba hosilini tükenmiş uran yoki tabiiy uran ko'ylagi ustida oshiradi. Bu uchun maxsus taklif qilingan W87 hozirda joylashtirilgan jangovar kallaklar LGM-30 Minuteman III ICBMlar.
  • Ba'zi tavsiflarda ikkilamchi moddalarni birlamchi moddadan ortiqcha neytronlar olishidan himoya qilish uchun qo'shimcha ichki tuzilmalar mavjud.
  • Kosonning ichki qismi rentgen nurlarini "aks ettirish" uchun maxsus ishlov berilishi mumkin yoki bo'lmasligi mumkin. Rentgen nurlari "aks ettirish" a nurlarini aks ettirishga o'xshamaydi oyna, aksincha aks ettiruvchi material rentgen nurlari bilan isitilib, materialning o'zi paydo bo'lishiga olib keladi rentgen nurlari chiqaradi, keyin ikkilamchi darajaga boring.

Keyingi bobda muhokama qilinadigan ikkita maxsus farq mavjud: kriyogen jihatdan uchun ishlatiladigan sovutilgan suyuq deyteriy qurilmasi Ayvi Mayk testi va taxminiy dizayni W88 yadro kallagi - kichik, MIRVed a bilan Teller-Ulam konfiguratsiyasining versiyasi prolat (tuxum yoki tarvuz shaklli) birlamchi va elliptik ikkilamchi.

Ko'pgina bombalarda, ehtimol, uchinchi darajali "bosqichlar" mavjud emas, ya'ni oldingi siqilish bosqichida siqilgan qo'shimcha sintez bosqichlari bo'lgan uchinchi siqish bosqichi (lar). (Katta bombalardagi hosilning taxminan yarmini ta'minlaydigan so'nggi uran ko'rpasining bo'linishi bu terminologiyaning "bosqichi" deb hisoblanmaydi.)

AQSh bir necha portlashlarda uch bosqichli bombalarni sinovdan o'tkazdi (qarang) Redwing operatsiyasi ), ammo faqat bitta uchinchi darajali modelni, ya'ni bo'linish bosqichi, so'ngra termoyadroviy bosqichi bo'lgan nihoyat, yana birlashma bosqichini siqib chiqargan bomba yaratgan deb o'ylashadi. Ushbu AQSh dizayni og'ir, ammo yuqori samaradorlikka ega edi (ya'ni, yadro qurolining chiqishi bomba og'irligi birligi uchun) 25 Mt B41 yadro bombasi.[20] Sovet Ittifoqi o'zlarining 50 megaton (bir vaqtning o'zida 100 Mt) da bir necha bosqichlarni (shu jumladan, bir nechta uchinchi sintez bosqichlarini) ishlatgan deb o'ylashadi. Tsar Bomba (ammo, boshqa bombalar singari, bo'linadigan ko'ylagi bunday bomba ichida qo'rg'oshin bilan almashtirilishi mumkin edi, va bu namoyish uchun namoyish uchun edi). Agar biron bir vodorod bombasi Telller-Ulam dizayni asosida tuzilgan bo'lsa, boshqa konfiguratsiyalardan tayyorlangan bo'lsa, uning haqiqati jamoatchilikka ma'lum emas. (Sovet Ittifoqi bundan istisno qilishi mumkin) Sloika dizayn).

Aslida, Teller-Ulam konfiguratsiyasi kamida ikkita imploslanish holatiga asoslanadi: birinchi navbatda, primer tarkibidagi an'anaviy (kimyoviy) portlovchi moddalar bo'linadigan yadroni siqib chiqaradi va natijada bo'linish portlashi kimyoviy portlovchi moddalarga qaraganda ancha kuchli bo'ladi. yolg'iz erishish (birinchi bosqich). Ikkinchidan, birinchi darajali parchalanish natijasida hosil bo'lgan nurlanish, ikkinchi darajali sintez bosqichini siqish va yoqish uchun ishlatilishi mumkin edi, natijada termoyadroviy portlash faqat bo'linish portlashidan ancha kuchli. Ushbu siqishni zanjiri o'zboshimchalik bilan uchinchi darajali termoyadroviy bosqichlar bilan davom ettirilishi mumkin, ularning har biri keyingi bosqichda ko'proq termoyadroviy yoqilg'ini yoqadi.[21][22][yaxshiroq manba kerak ] garchi bu munozarali bo'lsa-da (ko'proq ma'lumot: O'zboshimchalik bilan katta hosil haqida bahs ). Va nihoyat, samarali bombalar (lekin shunday deb nomlanmagan) neytron bombalari ) tabiiy uranni buzish jarayonining bo'linishi bilan tugaydi, odatda bu holda erishib bo'lmaydi neytron oqimi ikkilamchi yoki uchinchi bosqichlarda termoyadroviy reaktsiyalar bilan ta'minlanadi. Bunday dizaynlar o'zboshimchalik bilan katta rentabellikga ko'tarilishi mumkin (aftidan istalgancha termoyadroviy bosqichlari bilan),[21][22][yaxshiroq manba kerak ] potentsial "darajasigaqiyomat kuni qurilmasi. "Ammo, odatda, bunday qurollar o'nlab megatondan oshmas edi, bu odatda eng qattiqlashtirilgan maqsadlarni ham yo'q qilish uchun etarli deb hisoblangan (masalan," Shaynne tog 'majmuasi ). Hatto bunday yirik bomba o'rnini kichik rentabellikga almashtirdilar bunker avtoulovi yadro bombalari (ko'proq ko'rish: yadroviy bunker ).

Yuqorida muhokama qilinganidek, shaharlarni va qotib qolmagan maqsadlarni yo'q qilish uchun portlashlar energiyasini "pankek" maydoniga tarqatish uchun bitta raketa yukini kichikroq MIRV bombalariga tushirish, bu juda samaraliroq bomba energiyasining birligiga to'g'ri keladigan maydonni yo'q qilish. Bu, shuningdek, qanotli raketa yoki bombardimonchi kabi boshqa tizim orqali etkazib beriladigan bitta bomba uchun ham amal qiladi, natijada AQSh dasturidagi operatsion kallaklarning ko'pi 500 kilotondan kam hosilga ega.

Tarix

Qo'shma Shtatlar

Kichikroq bo'linadigan bomba tomonidan yoqilgan termoyadroviy termoyadroviy bomba g'oyasi birinchi marta taklif qilingan Enriko Fermi hamkasbiga Edvard Telller ular suhbatlashayotgan paytda Kolumbiya universiteti 1941 yil sentyabrda,[23] nima bo'lishining boshida Manxetten loyihasi.[5] Tell Manxetten loyihasining katta qismini dizayn ishlarini qanday amalga oshirishni bilishga sarflab, uni atom bombasi ustida ishlashni afzal ko'rdi va loyihaning so'nggi yilida faqat shu vazifaga topshirildi.[24] Ammo Ikkinchi Jahon urushi tugagandan so'ng, o'sha paytlarda ma'lum bo'lganidek, "Super" ga ko'plab resurslarni sarflashga undaydigan kuch yo'q edi.[25]

The Sovet Ittifoqi tomonidan birinchi atom bombasi sinovi 1949 yil avgust oyida amerikaliklar kutganidan oldinroq keldi va keyingi bir necha oy ichida AQSh hukumati, harbiy va ilmiy jamoalar o'rtasida juda kuchli Superni rivojlantirishga kirishish to'g'risida qizg'in bahslar bo'lib o'tdi.[26] The debate covered matters that were alternatively strategic, pragmatic, and moral.[27] On January 31, 1950, President Garri S. Truman made the decision to go forward with the development of the new weapon.[28]

Qal'a operatsiyasi thermonuclear test, Romeo qal'asi otilgan

But deciding to do it did not make it a reality, and Teller and other U.S. physicists struggled to find a workable design.[29] Stanislav Ulam, a co-worker of Teller, made the first key conceptual leaps towards a workable fusion design. Ulam's two innovations that rendered the fusion bomb practical were that compression of the thermonuclear fuel before extreme heating was a practical path towards the conditions needed for fusion, and the idea of staging or placing a separate thermonuclear component outside a fission primary component, and somehow using the primary to compress the secondary. Teller then realized that the gamma and X-ray radiation produced in the primary could transfer enough energy into the secondary to create a successful implosion and fusion burn, if the whole assembly was wrapped in a hohlraum or radiation case.[5] Teller and his various proponents and detractors later disputed the degree to which Ulam had contributed to the theories underlying this mechanism. Indeed, shortly before his death, and in a last-ditch effort to discredit Ulam's contributions, Teller claimed that one of his own "graduate students" had proposed the mechanism.[iqtibos kerak ]

The "George" shot of Issiqxona ishi of 9 May 1951 tested the basic concept for the first time on a very small scale. As the first successful (uncontrolled) release of nuclear fusion energy, which made up a small fraction of the 225 kt total yield,[30] it raised expectations to a near certainty that the concept would work.

On November 1, 1952, the Teller–Ulam configuration was tested at full scale in the "Ayvi Mayk " shot at an island in the Enewetak Atoll, with a yield of 10.4 megatonlar (over 450 times more powerful than the bomb dropped on Nagasaki during Ikkinchi jahon urushi ). The device, dubbed the Kolbasa, used an extra-large fission bomb as a "trigger" and liquid deyteriy —kept in its liquid state by 20 qisqa tonna (18 metrik tonna ) ning kriogen equipment—as its fusion fuel,[iqtibos kerak ] and weighed around 80 short tons (70 metric tons) altogether.

The liquid deuterium fuel of Ivy Mike was impractical for a deployable weapon, and the next advance was to use a solid lityum deuterid fusion fuel instead. In 1954 this was tested in the "Bravo qal'asi " shot (the device was code-named Mayda qisqichbaqa), which had a yield of 15 megatons (2.5 times expected) and is the largest U.S. bomb ever tested.

Efforts in the United States soon shifted towards developing miniaturized Teller–Ulam weapons that could fit into qit'alararo ballistik raketalar va dengiz osti kemalari tomonidan uchirilgan ballistik raketalar. By 1960, with the W47 jangovar kallak[31] joylashtirilgan Polaris ballistik raketa suvosti kemalari, megaton-class warheads were as small as 18 inches (0.5 m) in diameter and 720 pounds (320 kg) in weight. Further innovation in miniaturizing warheads was accomplished by the mid-1970s, when versions of the Teller–Ulam design were created that could fit ten or more warheads on the end of a small MIRVed missile (see the section on the W88 below).[9]

Sovet Ittifoqi

The first Soviet fusion design, developed by Andrey Saxarov va Vitaliy Ginzburg in 1949 (before the Soviets had a working fission bomb), was dubbed the Sloika, after a Russian qatlamli pirojnoe, and was not of the Teller–Ulam configuration. It used alternating layers of fissile material and lithium deuteride fusion fuel spiked with tritiy (this was later dubbed Sakharov's "First Idea"). Though nuclear fusion might have been technically achievable, it did not have the scaling property of a "staged" weapon. Thus, such a design could not produce thermonuclear weapons whose explosive yields could be made arbitrarily large (unlike U.S. designs at that time). The fusion layer wrapped around the fission core could only moderately multiply the fission energy (modern Teller–Ulam designs can multiply it 30-fold). Additionally, the whole fusion stage had to be imploded by conventional explosives, along with the fission core, substantially multiplying the amount of chemical explosives needed.

The first Sloika design test, RDS-6lar, was detonated in 1953 with a yield equivalent to 400 kiloton trotil (15–20% from fusion). Attempts to use a Sloika design to achieve megaton-range results proved unfeasible. After the United States tested the "Ayvi Mayk " thermonuclear device in November 1952, proving that a multimegaton bomb could be created, the Soviets searched for an additional design. The "Second Idea", as Sakharov referred to it in his memoirs, was a previous proposal by Ginzburg in November 1948 to use lithium deuteride in the bomb, which would, in the course of being bombarded by neutrons, produce tritiy and free deuterium.[32] In late 1953 physicist Viktor Davidenko achieved the first breakthrough, that of keeping the birlamchi va ikkilamchi parts of the bombs in separate pieces ("staging"). The next breakthrough was discovered and developed by Sakharov and Yakov Zel'dovich, that of using the X-nurlari from the fission bomb to compress the ikkilamchi before fusion ("radiation implosion"), in early 1954. Sakharov's "Third Idea", as the Teller–Ulam design was known in the USSR, was tested in the shot "RDS-37 " in November 1955 with a yield of 1.6 megatons.

The Soviets demonstrated the power of the "staging" concept in October 1961, when they detonated the massive and unwieldy Tsar Bomba, a 50 megaton hydrogen bomb that derived almost 97% of its energy from fusion. It was the largest nuclear weapon developed and tested by any country.

Birlashgan Qirollik

Grapple operatsiyasi kuni Rojdestvo oroli was the first British hydrogen bomb test.

In 1954 work began at Aldermaston to develop the British fusion bomb, with Sir William Penney in charge of the project. British knowledge on how to make a thermonuclear fusion bomb was rudimentary, and at the time the United States was not exchanging any nuclear knowledge because of the 1946 yildagi Atom energiyasi to'g'risidagi qonun. However, the British were allowed to observe the U.S. Castle tests and used sampling aircraft in the qo'ziqorin bulutlari, providing them with clear, direct evidence of the compression produced in the secondary stages by radiation implosion.[33]

Because of these difficulties, in 1955 British prime minister Entoni Eden agreed to a secret plan, whereby if the Aldermaston scientists failed or were greatly delayed in developing the fusion bomb, it would be replaced by an extremely large fission bomb.[33]

1957 yilda Grapple operatsiyasi tests were carried out. The first test, Green Granite was a prototype fusion bomb, but failed to produce equivalent yields compared to the U.S. and Soviets, achieving only approximately 300 kilotons. The second test Orange Herald was the modified fission bomb and produced 720 kilotons—making it the largest fission explosion ever. At the time almost everyone (including the pilots of the plane that dropped it) thought that this was a fusion bomb. This bomb was put into service in 1958. A second prototype fusion bomb Purple Granite was used in the third test, but only produced approximately 150 kilotons.[33]

A second set of tests was scheduled, with testing recommencing in September 1957. The first test was based on a "… new simpler design. A two stage thermonuclear bomb that had a much more powerful trigger". This test Grapple X Round C was exploded on November 8 and yielded approximately 1.8 megatons. On April 28, 1958 a bomb was dropped that yielded 3 megatons—Britain's most powerful test. Two final air burst tests on September 2 and September 11, 1958, dropped smaller bombs that yielded around 1 megaton each.[33]

American observers had been invited to these kinds of tests. After Britain's successful detonation of a megaton-range device (and thus demonstrating a practical understanding of the Teller–Ulam design "secret"), the United States agreed to exchange some of its nuclear designs with the United Kingdom, leading to the 1958 yil AQSh va Buyuk Britaniyaning o'zaro mudofaa shartnomasi. Instead of continuing with its own design, the British were given access to the design of the smaller American Mk 28 warhead and were able to manufacture copies.[33]

The United Kingdom had worked closely with the Americans on the Manhattan Project. British access to nuclear weapons information was cut-off by the United States at one point due to concerns about Soviet espionage. Full cooperation was not reestablished until an agreement governing the handling of secret information and other issues was signed.[33][ishonchli manba? ]

Xitoy

Mao Szedun decided to begin a Chinese nuclear-weapons program during the Birinchi Tayvan bo'g'ozidagi inqiroz of 1954–1955. The People's Republic of China detonated its first hydrogen (thermonuclear) bomb on June 17, 1967, 32 months after detonating its first fission weapon, with a yield of 3.31 Mt. It took place in the Lop Nor Test Site, in northwest China.[34] China had received extensive technical help from the Soviet Union to jump-start their nuclear program, but by 1960, the rift between the Soviet Union and China had become so great that the Soviet Union ceased all assistance to China.[35]

Bir hikoya The New York Times tomonidan Uilyam Brod[36] reported that in 1995, a supposed Chinese ikki tomonlama agent delivered information indicating that China knew secret details of the U.S. W88 warhead, supposedly through espionage.[37] (This line of investigation eventually resulted in the abortive trial of Ven Xo Li.)

Frantsiya

The French nuclear testing site was moved to the unpopulated French atolls in the Pacific Ocean. The first test conducted at these new sites was the "Canopus" test ichida Fangataufa atoll yilda Frantsiya Polineziyasi on 24 August 1968, the country's first multistage thermonuclear weapon test. The bomb was detonated from a balloon at a height of 520 metres. The result of this test was significant atmospheric contamination.[38] Very little is known about France's development of the Teller-Ulam dizayni, beyond the fact that France detonated a 2.6 Mt device in the "Canopus" test. France reportedly had great difficulty with its initial development of the Teller-Ulam design, but it later overcame these, and is believed to have nuclear weapons equal in sophistication to the other major nuclear powers.[33]

France and China did not sign or ratify the Yadro sinovlarini qisman taqiqlash to'g'risidagi shartnoma of 1963, which banned nuclear test explosions in the atmosphere, underwater, or in kosmik fazo. Between 1966 and 1996 France carried out more than 190 nuclear tests.[38] France's final nuclear test took place on January 27, 1996, and then the country dismantled its Polynesian test sites. France signed the Yadro sinovlarini har tomonlama taqiqlash to'g'risidagi shartnoma that same year, and then ratified the Treaty within two years.

France confirmed that its nuclear arsenal contains about 300 warheads, carried by dengiz osti kemalari tomonidan uchirilgan ballistik raketalar (SLBMs) and qiruvchi-bombardimonchilar in 2015. France has four Triomphant-sinf ballistic missile submarines. One ballistic missile submarine is deployed in the deep ocean, but a total of three must be in operational use at all times. The three older submarines are armed with 16 M45 missiles. The newest submarine, "Le Terrible", was commissioned in 2010, and it has M51 missiles capable of carrying TN 75 thermonuclear warheads. The air fleet is four squadrons at four different bases. In total, there are 23 Mirage 2000N aircraft and 20 Rafales capable of carrying nuclear warheads.[39] The M51.1 missiles are intended to be replaced with the new M51.2 warhead beginning in 2016, which has a 3,000 km greater range than the M51.1.[39]

France also has about 60 air-launched missiles tipped with TN 80 /TN 81 warheads with a yield of about 300 kilotons each. France's nuclear program has been carefully designed to ensure that these weapons remain usable decades into the future.[33][ishonchli manba? ] Currently, France is no longer deliberately producing critical mass materials such as plutonium and enriched uranium, but it still relies on nuclear energy for electricity, with 239Pu as a byproduct.[40]

Hindiston

Shakti-1

On May 11, 1998, India announced that it had detonated a thermonuclear bomb in its Shakti operatsiyasi tests ("Shakti-I", specifically).[41][42] Doktor Samar Mubarakmand, a Pakistani nuclear physicist, asserted that if Shakti-I had been a thermonuclear test, the device had failed to fire.[43] However, Dr. Garold M. Agnew, sobiq direktori Los Alamos milliy laboratoriyasi, said that India's assertion of having detonated a staged thermonuclear bomb was believable.[44] India says that their thermonuclear device was tested at a controlled yield of 45 kt because of the close proximity of the Khetolai village at about 5 km, to ensure that the houses in that village do not suffer significant damage.[45] Another cited reason was that radioactivity released from yields significantly more than 45 Kilotons might not have been contained fully.[45] Keyin Pokhran-II testlar, Dr. Rajagopal Chidambaram, sobiq raisi Hindistonning Atom energiyasi bo'yicha komissiyasi said that India has the capability to build thermonuclear bombs of any yield at will.[44]

The yield of India's hydrogen bomb test remains highly debatable among the Indian science community and the international scholars.[46] The question of politicisation and disputes between Indian scientists further complicated the matter.[47]

In an interview in August 2009, the director for the 1998 test site preparations, Dr. K. Santhanam claimed that the yield of the thermonuclear explosion was lower than expected and that India should therefore not rush into signing the CTBT. Other Indian scientists involved in the test have disputed Dr. K. Santhanam's claim,[48] arguing that Santhanam's claims are unscientific.[42] British seismologist Roger Clarke argued that the magnitudes suggested a combined yield of up to 60 kilotonnes, consistent with the Indian announced total yield of 56 kilotonnes.[49] U.S. seismologist Jack Evernden has argued that for correct estimation of yields, one should ‘account properly for geological and seismological differences between test sites’.[45]

India officially maintains that it can build thermonuclear weapons of various yields up to around 200 kilotons on the basis of the Shakti-1 termoyadro sinovi.[45][50]

Isroil

Israel is alleged to possess thermonuclear weapons of the Teller–Ulam design,[51] but it is not known to have tested any nuclear devices, although it is widely speculated that the Vela hodisasi of 1979 may have been a joint Israeli–South African nuclear test.[52][53][54]

Bu aniq tasdiqlangan Edvard Telller advised and guided the Israeli establishment on general nuclear matters for some twenty years.[55] Between 1964 and 1967, Teller made six visits to Israel where he lectured at the Tel-Aviv universiteti on general topics in theoretical physics.[56] It took him a year to convince the Markaziy razvedka boshqarmasi about Israel's capability and finally in 1976, Karl Duckett ning Markaziy razvedka boshqarmasi ga guvohlik bergan AQSh Kongressi, after receiving credible information from an "American scientist" (Teller), on Israel's nuclear capability.[54] During the 1990s, Teller eventually confirmed speculations in the media that it was during his visits in the 1960s that he concluded that Israel was in possession of nuclear weapons.[54] After he conveyed the matter to the higher level of the AQSh hukumati, Teller reportedly said: "They [Israel] have it, and they were clever enough to trust their research and not to test, they know that to test would get them into trouble."[54]

Pokiston

Ga ko'ra ilmiy ma'lumotlar received and published by PAEC, Muhandislar korpusi va Kahuta tadqiqot laboratoriyalari (KRL), in May 1998, Pakistan carried out six yer osti yadro sinovlari yilda Chagay tepaliklari va Xaron sahrosi yilda Balujiston viloyati (see the code-names of the tests, Chagay-I va Chagay-II ).[43] Bularning hech biri boosted fission devices was the thermonuclear weapon design, according to KRL and PAEC.[43]

Shimoliy Koreya

North Korea claimed to have tested its miniaturised thermonuclear bomb on 6 January 2016. North Korea's first three nuclear tests (2006, 2009 and 2013) were relatively low yield and do not appear to have been of a thermonuclear weapon design. 2013 yilda, South Korean Defense Ministry speculated that North Korea may be trying to develop a "hydrogen bomb" and such a device may be North Korea's next weapons test.[57][58] In January 2016, North Korea claimed to have successfully tested a hydrogen bomb,[59] although only a magnitude 5.1 seismic event was detected at the time of the test,[60] a similar magnitude to the 2013 test of a 6–9 kt atomic bomb. These seismic recordings cast doubt upon North Korea's claim that a hydrogen bomb was tested and suggest it was a non-fusion nuclear test.[61]

On 3 September 2017, the country's state media reported that a hydrogen bomb test was conducted which resulted in "perfect success". According to the U.S. Geological Survey (USGS), the blast resulted in an earthquake with a magnitude of 6.3, 10 times more powerful than previous nuclear tests conducted by North Korea.[62] AQSh razvedkasi released an early assessment that the yield estimate was 140 kilotons,[63] with an uncertainty range of 70 to 280 kilotons.[64]

12 sentyabr kuni, NORSAR revised its estimate of the earthquake magnitude upward to 6.1, matching that of the CTBTO, but less powerful than the USGS estimate of 6.3. Its yield estimate was revised to 250 kilotons, while noting the estimate had some uncertainty and an undisclosed margin of error.[65][66]

On 13 September, an analysis of before and after synthetic-aperture radar satellite imagery of the test site was published suggesting the test occurred under 900 metres (3,000 ft) of rock and the yield "could have been in excess of 300 kilotons".[67]

Public knowledge

The Teller–Ulam design was for many years considered one of the top nuclear secrets, and even today it is not discussed in any detail by official publications with origins "behind the fence" of tasnif. Amerika Qo'shma Shtatlari Energetika vazirligi (DOE) policy has been, and continues to be, that they do not acknowledge when "leaks" occur, because doing so would acknowledge the accuracy of the supposed leaked information. Aside from images of the warhead casing, most information in the public domain about this design is relegated to a few terse statements by the DOE and the work of a few individual investigators.

Photographs of warhead casings, such as this one of the W80 nuclear warhead, allow for some speculation as to the relative size and shapes of the boshlang'ich saylovlar va sekretarlar in U.S. thermonuclear weapons.

DOE statements

In 1972 the United States government declassified a document stating "[I]n thermonuclear (TN) weapons, a fission 'primary' is used to trigger a TN reaction in thermonuclear fuel referred to as a 'secondary'", and in 1979 added, "[I]n thermonuclear weapons, radiation from a fission explosive can be contained and used to transfer energy to compress and ignite a physically separate component containing thermonuclear fuel." To this latter sentence the US government specified that "Any elaboration of this statement will be classified."[68] The only information that may pertain to the sham was declassified in 1991: "Fact that fissile or fissionable materials are present in some secondaries, material unidentified, location unspecified, use unspecified, and weapons undesignated." In 1998 the DOE declassified the statement that "The fact that materials may be present in channels and the term 'channel filler,' with no elaboration", which may refer to the polystyrene foam (or an analogous substance).[69]

Whether these statements vindicate some or all of the models presented above is up for interpretation, and official U.S. government releases about the technical details of nuclear weapons have been purposely equivocating in the past (see, e.g., Smith hisoboti ). Other information, such as the types of fuel used in some of the early weapons, has been declassified, though precise technical information has not been.

Progressive ish

Most of the current ideas on the workings of the Teller–Ulam design came into public awareness after the Energetika bo'limi (DOE) attempted to tsenzura a magazine article by U.S. antiweapons activist Xovard Morland in 1979 on the "secret of the hydrogen bomb". In 1978, Morland had decided that discovering and exposing this "last remaining secret" would focus attention onto the qurollanish poygasi and allow citizens to feel empowered to question official statements on the importance of nuclear weapons and nuclear secrecy.[iqtibos kerak ] Most of Morland's ideas about how the weapon worked were compiled from highly accessible sources—the drawings that most inspired his approach came from none other than the Entsiklopediya Amerika.[iqtibos kerak ] Morland also interviewed (often informally) many former Los-Alamos scientists (including Teller and Ulam, though neither gave him any useful information), and used a variety of interpersonal strategies to encourage informative responses from them (i.e., asking questions such as "Do they still use spark plugs?" even if he was not aware what the latter term specifically referred to).[70]

Morland eventually concluded that the "secret" was that the birlamchi va ikkilamchi were kept separate and that radiatsiya bosimi dan birlamchi compressed the ikkilamchi before igniting it. When an early draft of the article, to be published in Progressive magazine, was sent to the DOE after falling into the hands of a professor who was opposed to Morland's goal, the DOE requested that the article not be published, and pressed for a temporary injunction. The DOE argued that Morland's information was (1) likely derived from classified sources, (2) if not derived from classified sources, itself counted as "secret" information under the "tug'ma sir " clause of the 1954 Atom energiyasi to'g'risidagi qonun, and (3) was dangerous and would encourage yadroviy tarqalish.

Morland and his lawyers disagreed on all points, but the injunction was granted, as the judge in the case felt that it was safer to grant the injunction and allow Morland, et al., to appeal, which they did in Amerika Qo'shma Shtatlari va Progressiv (1979).

Through a variety of more complicated circumstances, the DOE case began to wane as it became clear that some of the data they were attempting to claim as "secret" had been published in a students' encyclopedia a few years earlier. After another H-bomb speculator, Chak Xansen, had his own ideas about the "secret" (quite different from Morland's) published in a Wisconsin newspaper, the DOE claimed that Progressive case was moot, dropped its suit, and allowed the magazine to publish its article, which it did in November 1979. Morland had by then, however, changed his opinion of how the bomb worked, suggesting that a foam medium (the polystyrene) rather than radiation pressure was used to compress the ikkilamchi, and that in the ikkilamchi bor edi sham of fissile material as well. He published these changes, based in part on the proceedings of the appeals trial, as a short erratum in Progressive bir oydan keyin.[71] In 1981, Morland published a book about his experience, describing in detail the train of thought that led him to his conclusions about the "secret".[70][72]

Morland's work is interpreted as being at least partially correct because the DOE had sought to censor it, one of the few times they violated their usual approach of not acknowledging "secret" material that had been released; however, to what degree it lacks information, or has incorrect information, is not known with any confidence. The difficulty that a number of nations had in developing the Teller–Ulam design (even when they apparently understood the design, such as with the United Kingdom), makes it somewhat unlikely that this simple information alone is what provides the ability to manufacture thermonuclear weapons. Nevertheless, the ideas put forward by Morland in 1979 have been the basis for all the current speculation on the Teller–Ulam design.

Nuclear reduction

In January 1986, Soviet leader Mixail Gorbachyov publicly proposed a three-stage program for abolishing the world's nuclear weapons by the end of the 20th century.[73] Two years before his death in 1989, Andrei Sakharov's comments at a scientists’ forum helped begin the process for the elimination of thousands of nuclear ballistic missiles from the US and Soviet arsenals. Sakharov (1921–89) was recruited into the Soviet Union's nuclear weapons program in 1948, a year after he completed his doctorate. In 1949 the US detected the first Soviet test of a fission bomb, and the two countries embarked on a desperate race to design a thermonuclear hydrogen bomb that was a thousand times more powerful. Like his US counterparts, Sakharov justified his H-bomb work by pointing to the danger of the other country's achieving a monopoly. But also like some of the US scientists who had worked on the Manhattan Project, he felt a responsibility to inform his nation's leadership and then the world about the dangers from nuclear weapons.[74] Sakharov's first attempt to influence policy was brought about by his concern about possible genetic damage from long-lived radioactive carbon-14 created in the atmosphere from nitrogen-14 by the enormous fluxes of neutrons released in H-bomb tests.[75] In 1968, a friend suggested that Sakharov write an essay about the role of the intelligentsia in world affairs. Self-publishing was the method at the time for spreading unapproved manuscripts in the Soviet Union. Many readers would create multiple copies by typing with multiple sheets of paper interleaved with carbon paper. One copy of Sakharov's essay, "Reflections on Progress, Peaceful Coexistence, and Intellectual Freedom", was smuggled out of the Soviet Union and published by the New York Times. More than 18 million reprints were produced during 1968–69. After the essay was published, Sakharov was barred from returning to work in the nuclear weapons program and took a research position in Moscow.[74] In 1980, after an interview with the New York Times in which he denounced the Soviet invasion of Afghanistan, the government put him beyond the reach of Western media by exiling him and his wife to Gorky. In March 1985, Gorbachev became general secretary of the Soviet Communist Party. More than a year and a half later, he persuaded the Politburo, the party's executive committee, to allow Sakharov and Bonner to return to Moscow. Sakharov was elected as an opposition member to the Soviet Congress of People's Deputies in 1989. Later that year he had a yurak aritmi and died in his apartment. He left behind a draft of a new Soviet constitution that emphasized democracy and human rights.[76]

E'tiborli baxtsiz hodisalar

On 5 February 1958, during a training mission flown by a B-47, a 15 yadro bombasini belgilang, deb ham tanilgan Taybi Bomba, was lost off the coast of Tibi oroli yaqin Savanna, Gruziya. The bomb was thought by the Department of Energy to lie buried under several feet of silt at the bottom of Wassaw Sound.[77]

On 17 January 1966, halokatli to'qnashuv occurred between a B-52G and a KC-135 Stratotanker over Palomares, Ispaniya. The conventional explosives in two of the Mk28 -tip vodorod bombalari detonated upon impact with the ground, dispersing plutonium over nearby farms. A third bomb landed intact near Palomares while the fourth fell 12 miles (19 km) off the coast into the Mediterranean sea.[78]

On 21 January 1968, a B-52G, with four B28FI thermonuclear bombs aboard as part of Chrome Dome operatsiyasi, crashed on the ice of the North Star Bay while attempting an emergency landing at Thule aviabazasi Grenlandiyada.[79] The resulting fire caused extensive radioactive contamination.[80] One of the bombs remains lost.[81]

O'zgarishlar

Ayvi Mayk

Uning 1995 yilgi kitobida To'q quyosh: Vodorod bombasini yaratish, muallif Richard Rods describes in detail the internal components of the "Ayvi Mayk " Kolbasa device, based on information obtained from extensive interviews with the scientists and engineers who assembled it. According to Rhodes, the actual mechanism for the compression of the secondary was a combination of the radiation pressure, foam plasma pressure, and tamper-pusher ablation theories described above; the radiation from the primary heated the polyethylene foam lining the casing to a plasma, which then re-radiated radiation into the secondary's pusher, causing its surface to ablate and driving it inwards, compressing the secondary, igniting the sparkplug, and causing the fusion reaction. The general applicability of this principle is unclear.[13]

W88

In 1999 a reporter for the San-Xose Merkuriy yangiliklari reported that the U.S. W88 nuclear warhead, a small MIRVed ishlatiladigan kallak Trident II SLBM, bor edi prolat (tuxum yoki tarvuz shaped) birlamchi (kod bilan nomlangan Komodo) and a spherical ikkilamchi (kod bilan nomlangan Kursa) inside a specially shaped radiation case (known as the "peanut" for its shape).[82]

The qayta kirish konuslar for the W88 and W87 are the same size, 1.75 metres (69 in) long, with a maximum diameter of 55 cm. (22 in).[83] The higher yield of the W88 implies a larger secondary, which produces most of the yield. Putting the secondary, which is heavier than the primary, in the wider part of the cone allows it to be larger, but it also moves the massa markazi orqaga, potentially causing aerodynamic stability problems during reentry.[iqtibos kerak ] Dead-weight ballast must be added to the nose to move the center of mass forward.[iqtibos kerak ]

To make the primary small enough to fit into the narrow part of the cone, its bulky insensitive high explosive charges must be replaced with more compact "non-insensitive" yuqori portlovchi moddalar that are more hazardous to handle.[iqtibos kerak ] The higher yield of the W88, which is the last new warhead produced by the United States, thus comes at a price of higher warhead weight and higher workplace hazard. The W88 also contains tritiy, which has a half life of only 12.32 years and must be repeatedly replaced.[84] If these stories are true, it would explain the reported higher yield of the W88, 475 kilotons, compared with only 300 kilotons for the earlier W87 jangovar kallak.

Shuningdek qarang

Adabiyotlar

  1. ^ The misleading term "hydrogen bomb" was already in wide public use before fission product qatordan chiqib ketish dan Bravo qal'asi test in 1954 revealed the extent to which the design relies on fission as well.
  2. ^ Gsponer, Andre (2005). "Fourth Generation Nuclear Weapons: Military effectiveness and collateral effects". arXiv:physics/0510071.
  3. ^ Andre Gsponer (2008). "B61-ga asoslangan" Yerning kuchli yadro qurituvchisi: "To'rtinchi avlod yadroviy qurollarini aqlli ravishda kuchaytirish yoki oldinga siljishmi?". CiteSeerX  10.1.1.261.7309. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  4. ^ Kimdan Milliy jamoat radiosi Millat haqida suhbat, November 8, 2005, Siegfried Hecker of Los-Alamos, "the hydrogen bomb – that is, a two-stage thermonuclear device, as we referred to it – is indeed the principal part of the U.S. arsenal, as it is of the Russian arsenal."
  5. ^ a b v Teller, Edward; Ulam, Stanislaw (9 March 1951). "On Heterocatalytic Detonations I. Hydrodynamic Lenses and Radiation Mirrors" (PDF). LAMS-1225. Los Alamos ilmiy laboratoriyasi. Olingan 26 sentyabr 2014. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering) ustida Nuclear Non-Proliferation Institute veb-sayt. This is the original classified paper by Teller and Ulam proposing staged implosion. This declassified version is heavily redacted, leaving only a few paragraphs.
  6. ^ Carey Sublette (3 July 2007). "Nuclear Weapons FAQ Section 4.4.1.4 The Teller–Ulam Design". Nuclear Weapons FAQ. Olingan 17 iyul 2011. "So far as is known all high yield nuclear weapons today (>50 kt or so) use this design."
  7. ^ Broad, William J. (23 March 2015). "Hydrogen Bomb Physicist's Book Runs Afoul of Energy Department". Nyu-York Tayms. Olingan 20 noyabr 2015.
  8. ^ Greene, Jes (25 March 2015). "A physicist might be in trouble for what he revealed in his new book about the H bomb". Business Insider. Olingan 20 noyabr 2015.
  9. ^ a b "Complete List of All U.S. Nuclear Weapons". 1997 yil 1 oktyabr. Olingan 13 mart 2006.
  10. ^ Hansen, Chuck (1988). U.S. nuclear weapons: The secret history. Arlington, Texas: Aerofaks. ISBN  978-0-517-56740-1.
  11. ^ Xansen, Chak (2007). Swords of Armageddon: U.S. Nuclear Weapons Development Since 1945 (PDF) (CD-ROM va yuklab olish mumkin) (2 nashr). Sunnyvale, California: Chukelea Publications. ISBN  978-0-9791915-0-3. 2,600 pages.
  12. ^ "Figure 5 – Thermonuclear Warhead Components". Arxivlandi asl nusxasi 2010 yil 12 iyulda. Olingan 27 avgust 2010. A cleaned up version: "British H-bomb posted on the Internet by Greenpeace". Amerika olimlari federatsiyasi. Olingan 27 avgust 2010.
  13. ^ a b Rhodes, Richard (1995). To'q quyosh: Vodorod bombasini yaratish. Nyu York: Simon va Shuster. ISBN  978-0-684-80400-2.
  14. ^ http://nuclearweaponarchive.org/Usa/Weapons/W76NeutronTube1200c20.jpg
  15. ^ "Improved Security, Safety & Manufacturability of the Reliable Replacement Warhead" Arxivlandi 2008-12-17 da Orqaga qaytish mashinasi, NNSA March 2007.
  16. ^ A 1976 drawing that depicts an interstage that absorbs and re-radiates X-rays. From Howard Morland, "Maqola", Cardozo qonuni sharhi, March 2005, p 1374.
  17. ^ Speculation on Fogbank, Arms Control Wonk
  18. ^ a b "Nuclear Weapons Frequently Asked Questions 4.4.3.3 The Ablation Process". 2.04. 1999 yil 20 fevral. Olingan 13 mart 2006.
  19. ^ a b "Nuclear Weapons Frequently Asked Questions 4.4.4 Implosion Systems". 2.04. 1999 yil 20 fevral. Olingan 13 mart 2006.
  20. ^ "The B-41 (Mk-41) Bomb – High yield strategic thermonuclear bomb". 21 oktyabr 1997 yil. Olingan 13 mart 2006.
  21. ^ a b Winterberg, Friedwardt (2010). The Release of Thermonuclear Energy by Inertial Confinement: Ways Towards Ignition. Jahon ilmiy. 192-193 betlar. ISBN  978-9814295918.
  22. ^ a b Krodi, Erik A.; Virtz, Jeyms J .; Larsen, Jeffrey, Eds. (2005). Weapons of Mass Destruction: An Encyclopedia of Worldwide Policy, Technology, and History. ABC-CLIO, Inc. p. 376. ISBN  978-1851094905.
  23. ^ Rhodes, To'q quyosh, p. 207.
  24. ^ Rhodes, To'q quyosh, pp. 117, 248.
  25. ^ Bandi, Xavf va omon qolish, p. 202.
  26. ^ Young and Schilling, Super Bomb, 1-2 bet.
  27. ^ Young and Schilling, Super Bomb, p. 16.
  28. ^ Bandi, Xavf va omon qolish, 212–214-betlar.
  29. ^ Young and Schilling, Super Bomb, 91-92 betlar.
  30. ^ "The "George" shot, Comprehensive Test Ban Treaty Organisation website".
  31. ^ "Photograph of a W47 warhead" (JPG). Olingan 13 mart 2006.
  32. ^ Xollouey, Devid (1994). Stalin and the bomb: The Soviet Union and atomic energy, 1939–1956. Nyu-Xeyven, Konnektikut: Yel universiteti matbuoti. p. 299. ISBN  978-0-300-06056-0.
  33. ^ a b v d e f g h Younger, Stephen (2009). The Bomb: A New History. Nyu-York: Harper Kollinz. ISBN  978-0-06-173614-8.
  34. ^ "17 June 1967 – China's first thermonuclear test: CTBTO Preparatory Commission". www.ctbto.org. Olingan 3 oktyabr 2016.
  35. ^ "China's Nuclear Weapon Development, Modernization and Testing". Yadro tahdidi tashabbusi. 26 sentyabr 2003. Arxivlangan asl nusxasi 2011 yil 8 oktyabrda. Olingan 4 noyabr 2011.
  36. ^ "Spies versus sweat, the debate over China's nuclear advance". The New York Times. 1999 yil 7 sentyabr. Olingan 18 aprel 2011.
  37. ^ Christopher Cox, chairman (1999). Report of the United States House of Representatives Select Committee on U.S. National Security and Military/Commercial Concerns with the People's Republic of China. Arxivlandi asl nusxasi on 4 August 2005., esp. Ch. 2, "PRC Theft of U.S. Thermonuclear Warhead Design Information".
  38. ^ a b "24 August 1968 – French 'Canopus' test: CTBTO Preparatory Commission". www.ctbto.org. Olingan 15 aprel 2017.
  39. ^ a b "France | Countries | NTI". www.nti.org. Olingan 15 aprel 2017.
  40. ^ "Tekshirish rejimiga umumiy nuqtai: CTBTO tayyorgarlik komissiyasi". www.ctbto.org. Olingan 15 aprel 2017.
  41. ^ Burns, John F. (12 May 1998). "India Sets 3 Nuclear Blasts, Defying a Worldwide Ban; Tests Bring a Sharp Outcry". The New York Times. ISSN  0362-4331. Olingan 24 dekabr 2019.
  42. ^ a b "Pokhran – II tests were fully successful; given India capability to build nuclear deterrence: Dr. Kakodkar and Dr. Chidambaram". pib.nic.in. Olingan 26 iyul 2019.
  43. ^ a b v Khan, Kamran (30 May 1998). "Tit-for-Tat: Pakistan tested 6 nuclear devices in response to Indian's tests". Xalqaro yangiliklar. Olingan 10 avgust 2011. "None of these explosions were thermonuclear, we are doing research and can do a fusion test if asked, said by Abdulqodir Xon. "These boosted devices are like a half way stage towards a thermonuclear bomb. They use elements of the thermonuclear process, and are effectively stronger Atom bombs", quoted by Munir Ahmadxon.
  44. ^ a b Burns, John F. (18 May 1998). "Nuclear Anxiety: The Overview; India Detonated a Hydrogen Bomb, Experts Confirm". The New York Times. ISSN  0362-4331. Olingan 26 iyul 2019.
  45. ^ a b v d "Doktor Anil Kakodkar va doktor R. Chidambaramning" Pokhran-II "sinovlari bo'yicha press-bayonoti". Matbuot Axborot byurosi. 2009 yil 24 sentyabr.
  46. ^ PTI, Press Trust of India (25 September 2009). "AEC ex-chief backs Santhanam on Pokhran-II". The Hindu, 2009. Olingan 18 yanvar 2013.
  47. ^ Carey Sublette; va boshq. "What are the real yield of India's Test?". What Are the Real Yields of India's Test?. Olingan 18 yanvar 2013.
  48. ^ "Former NSA disagrees with scientist, says Pokhran II successful". The Times of India. 27 Avgust 2009. Arxivlangan asl nusxasi 2009 yil 30-avgustda. Olingan 20 noyabr 2015.
  49. ^ "Bizda ishonchli yadroviy to'siqni loyihalash uchun etarli ilmiy ma'lumotlar bazasi mavjud". Frontline. 2 January 1999.
  50. ^ "Nukes of 200kt yield possible: Architect of Pokhran-II". The Times of India. 2009 yil 25 sentyabr.
  51. ^ Samdani, Zafar (25 March 2000). "India, Pakistan can build hydrogen bomb: Scientist". Dawn News Interviews. Olingan 23 dekabr 2012.
  52. ^ "Ta'limot", Isroil, FAS.
  53. ^ Xers, Seymur (1991), Samson varianti: Isroilning yadroviy "Arsenal" i va Amerika tashqi siyosati, New York City: Random House, p. 271.
  54. ^ a b v d Cohen, Avner (15 October 1999). "The Battle over the NPT: America Learns the Truth" (google Book). Israel and the bomb. Nyu-York: Kolumbiya universiteti matbuoti. pp. 297–300. ISBN  978-0231104838.
  55. ^ Karpin, Michael (2005). The Bomb in the Basement. Nyu-York: Simon va Shuster Qog'ozli qog'ozlar. 289-293 betlar. ISBN  978-0-7432-6595-9.
  56. ^ Gábor Palló (2000). "The Hungarian Phenomenon in Israeli Science". Vengriya Fanlar akademiyasi. Olingan 11 dekabr 2012.
  57. ^ Kim Kyu-won (7 February 2013). "North Korea could be developing a hydrogen bomb". Hankyoreh. Olingan 8 fevral 2013.
  58. ^ Kang Seung-woo; Chung Min-uck (4 February 2013). "North Korea may detonate H-bomb". Korea Times. Olingan 8 fevral 2013.
  59. ^ "Shimoliy Koreya yadrosi: davlat birinchi vodorod bombasi sinovini da'vo qilmoqda". BBC yangiliklari. 2016 yil 6-yanvar.
  60. ^ M5.1 - Shimoliy Koreyaning Sungjibaegam shahridan 21 km (Hisobot). USGS. 2016 yil 6-yanvar. Olingan 6 yanvar 2016.
  61. ^ "Shimoliy Koreyaning H-bombasi bo'yicha yadroviy da'volari shubha bilan kutib olindi". BBC yangiliklari. 2016 yil 6-yanvar.
  62. ^ "Shimoliy Koreya oltinchi yadro sinovini o'tkazmoqda, deydi H-bombasi". Reuters. 3 sentyabr 2017 yil. Olingan 3 sentyabr 2017.
  63. ^ Panda, Ankit (2017 yil 6-sentyabr). "AQSh razvedkasi: Shimoliy Koreyaning oltinchi sinovi 140 kilotonlik" rivojlangan yadro "qurilmasi edi". Diplomat. Olingan 6 sentyabr 2017.
  64. ^ Mishel Ye Xi Li (2017 yil 13-sentyabr). "Shimoliy Koreyaning yadroviy sinovi birinchi fikrdan ikki baravar kuchliroq bo'lishi mumkin". Vashington Post. Olingan 28 sentyabr 2017.
  65. ^ "2017 yil 3 sentyabrda Shimoliy Koreyadagi yadroviy portlash: qayta ko'rib chiqilgan magnitudani baholash - NORSAR".
  66. ^ "Shimoliy Koreyaning Punggye-ri yadroviy sinov maydonchasi: sun'iy yo'ldosh tasvirlari alternativ tunnel portali hududlarida sinovdan keyingi effektlarni va yangi faoliyatni namoyish etadi | 38 shimol: Shimoliy Koreyaning ma'lumotli tahlili". 12 sentyabr 2017 yil.
  67. ^ "Punggye-rining SAR tasviri".
  68. ^ asl nusxada ta'kidlash
  69. ^ Ma'lumotlarni deklaratsiyalash bo'yicha cheklangan qarorlar, 1946 yildan hozirgi kungacha, 7-jild. Amerika Qo'shma Shtatlari Energetika vazirligi. 2001 yil yanvar.
  70. ^ a b Morland, Xovard (1981). Portlagan sir. Nyu-York: tasodifiy uy. ISBN  978-0-394-51297-6.
  71. ^ "H-Bomb siri: buni qanday qo'lga kiritdik va nega aytayapmiz". Progressive. 43 (11). 1979 yil noyabr.
  72. ^ Aleksandr De Volpi; Jerri Marsh; Ted Postol va Jorj Stenford (1981). Tug'ilgan sir: H-bombasi, Progressive case va milliy xavfsizlik. Nyu-York: Pergamon Press. ISBN  978-0-08-025995-6.
  73. ^ Taubman, Uilyam (2017). Gorbachyov: Uning hayoti va davri. Nyu-York shahri: Simon va Shuster. p. 291. ISBN  978-1471147968.
  74. ^ a b A. Saxarov, Xotiralar, R. Louri, tarjima, Knopf (1990) va Moskva va undan tashqarida, 1986–1989, A. Bouis, trans., Knopf (1991); Elena Bonnerning Gorkiyda o'tkazgan vaqtlari haqida E. Bonner, yolg'iz yolg'iz, A. Kuk, tarjima, Knopf (1986) ga qarang.
  75. ^ A. Saxarov, At. Energiya 4, 6 (1958), ilmiy nashrda qayta nashr etilgan. Global Secur. 1, 175 (1990)
  76. ^ A. Saxarov, Da. Energiya 4, 6 (1958), qayta nashr etilgan Ilmiy ish. Global Secur.1
  77. ^ "50 yil davomida yadro bombasi suvli qabrda yo'qolgan". Milliy radio. 3 fevral 2008 yil.
  78. ^ "AQSh Ispaniyaning radioaktiv uchastkasini samolyot halokatidan 49 yil o'tgach tozalaydi". Guardian. 19 oktyabr 2015 yil.
  79. ^ "Sovuq urushning yo'qolgan atom bombalari". Der Spiegel. 2008 yil 14-noyabr.
  80. ^ "51 yil oldin Grenlandiyada AQShning B-52 yadroviy bombardimonchisi halokatga uchragan daniyaliklar tovon puli talab qilmoqda". Fox News. 3 iyun 2019.
  81. ^ "AQSh Grenlandiyada muz ostida yadro qurolini qoldirdi". Daily Telegraph. 11 noyabr 2008 yil.
  82. ^ Dan Stober va Yan Xofman (2001). Qulay josus: Ven Xo Li va yadroviy josuslik siyosati. Nyu-York: Simon va Shuster. ISBN  978-0-7432-2378-2.
  83. ^ "W88 jangovar boshi - oraliq rentabellik strategik SLBM MIRV jangovar kallagi". 1997 yil 1 oktyabr. Olingan 13 mart 2006.
  84. ^ Morland, Xovard (2003 yil fevral). Xolokost bombasi: vaqt haqidagi savol.

Bibliografiya

Asosiy tamoyillar

Tarix

  • McGeorge Bandi, Xavf va omon qolish: birinchi ellik yil ichida bomba haqida tanlov (Nyu-York: Random House, 1988). ISBN  0-394-52278-8
  • DeGroot, Jerar, "Bomba: Yerdagi do'zax tarixi", London: Pimlico, 2005 y. ISBN  0-7126-7748-8
  • Piter Galison va Barton J. Bernshteyn, "Har qanday ma'noda: Olimlar va Superbomba qurish qarori, 1942–1954" Jismoniy va biologik fanlarda tarixiy tadqiqotlar Vol. 19, № 2 (1989): 267-347.
  • Germaniyalik A. Goncharov, "Amerika va Sovet H-bombasini rivojlantirish dasturlari: tarixiy ma'lumot" (tarjima A.V. Malyavkin), Fizika - Uspekhi Vol. 39, № 10 (1996): 1033–1044. Onlaynda mavjud (PDF)
  • Devid Xollouey, Stalin va bomba: Sovet Ittifoqi va atom energetikasi, 1939–1956 (Nyu-Xeyven, Konnektikut: Yel universiteti matbuoti, 1994). ISBN  0-300-06056-4
  • Richard Rods, To'q quyosh: Vodorod bombasining ishlab chiqarilishi (Nyu-York: Simon va Shuster, 1995). ISBN  0-684-80400-X
  • S.S. Shveber, Bomba soyasida: Bethe, Oppengeymer va olimning axloqiy javobgarligi (Princeton, NJ: Princeton University Press, 2000). ISBN  0-691-04989-0
  • Gari Stiks, "Atom kafesidagi sharmandalik va sharaf: Edvard Teller o'zining munozarali faoliyati uchun afsuslanmaydi", Ilmiy Amerika (1999 yil oktyabr): 42-43.
  • Ken Young va Warner R. Shilling, Super Bomba: Tashkiliy mojaro va vodorod bombasining rivojlanishi (Ithaka, Nyu-York: Cornell University Press, 2019). ISBN  978-1-5017-4516-4

Yiqilishni tahlil qilish

Tashqi havolalar

Printsiplar

Tarix