Atom energiyasining atrof-muhitga ta'siri - Environmental impact of nuclear power

Atrof-muhit bilan bog'liq bo'lgan atom energetikasi faoliyati; qazib olish, boyitish, hosil qilish va geologik utilizatsiya qilish.

The ning atrof-muhitga ta'siri atom energiyasi natijalari yadro yoqilg'isi aylanishi, ishlashi va ta'siri yadro hodisalari.

The issiqxona gazlari chiqindilari yadroviy bo'linish quvvati ko'mir, neft va gaz bilan taqqoslaganda ancha kichik, va sog'liq uchun odatdagi xavf ko'mir bilan taqqoslaganda ancha kichikdir. Ammo, agar cheklovlar bajarilmasa, "halokatli xavf" ehtimoli mavjud,[1] haddan tashqari qizib ketgan yoqilg'i eritishi va atrof-muhitga ko'p miqdorda bo'linish mahsulotlarini chiqarib yuborishi natijasida atom reaktorlarida paydo bo'lishi mumkin. Ushbu mumkin bo'lgan xavf foyda yo'qotishi mumkin. Eng uzoq umr ko'rgan radioaktiv chiqindilar, shu jumladan ishlatilgan yadro yoqilg'isi uzoq vaqt davomida saqlanib turishi va atrofdan ajratilishi kerak. Boshqa tomondan, ishlatilgan yadroviy yoqilg'ini qayta ishlatish, undan ham ko'proq energiya olish va chiqindilar miqdorini kamaytirish mumkin. Jamoatchilik ushbu xatarlarga nisbatan sezgir munosabatda bo'ldi va sezilarli darajada bo'ldi ommaviy atom energiyasiga qarshi chiqish.

1979 yil Uch Mile orolidagi avariya va 1986 yil Chernobil fojiasi Qurilishning yuqori xarajatlari bilan bir qatorda yadroga qarshi oppozitsiya sabab bo'lgan namoyishlar, buyruqlar va siyosiy harakatlar jadvali natijasida kelib chiqadigan kechikishlar ham murakkablashdi va global atom energetikasi salohiyatining tez o'sishini to'xtatdi.[1] 2011 yil Yaponiyada sodir bo'lgan tsunamidan keyin radioaktiv materiallar chiqarilib, zarar ko'rgan Fukusima I atom stansiyasi, ni natijasida vodorod gazining portlashi va qisman erishi a deb tasniflanadi 7-daraja tadbir. Radioaktivlikning keng miqyosda chiqarilishi natijasida odamlar elektr stantsiyasi atrofida o'rnatilgan 30 km radiusga o'xshash 20 km uzoqlik zonasidan evakuatsiya qilindi. Chernobilni istisno qilish zonasi hali ham amalda. Ammo nashr etilgan ishlarda radioaktivlik darajasi pasayib, yovvoyi tabiatga cheklangan ta'sir ko'rsatishi mumkin.[2] Yaponiyada, 2016 yil iyul oyida, Fukusima prefekturasi evakuatsiya qilinganlarning soni quyidagilarni e'lon qildi Buyuk Sharqiy Yaponiya zilzilasi voqealar, ba'zi munitsipalitetlarda chiqarilgan evakuatsiya buyruqlari bekor qilinganidan keyin qisman 90 mingdan pastga tushib ketgan.[3]

Chiqindilarni oqimlari

Atom energiyasi atrof-muhitga ta'sir qilishi mumkin bo'lgan kamida uchta chiqindi oqimiga ega:[4]

  1. Yadro yoqilg'isini sarf qildi reaktor maydonida (shu jumladan bo'linish mahsulotlari va plutonyum chiqindilar)
  2. Qoldiqlar va chiqindi jinslar uran konchilik korxonalari
  3. Davomida radioaktiv materiallarning noaniq miqdorda chiqarilishi baxtsiz hodisalar

Radioaktiv chiqindilar

Yuqori darajadagi chiqindilar

Texnik xodimlar transuranik chiqindilar da Chiqindilarni izolyatsiyalash tajriba zavodi, yaqin Karlsbad, Nyu-Meksiko. 2014 yilda ushbu zavodda yuz bergan turli xil baxtsiz hodisalar, hozirgi vaqtda reaktorning alohida maydonlarida saqlanayotgan tijorat yadro reaktorlaridan tortib, sarflangan yoqilg'ining yig'indisi bilan nima qilish kerakligi masalasiga e'tibor qaratdi. 2010 yilda USDOE rivojlanishni rejalashtirgan Yucca Mountain yadro chiqindilari ombori Nevada.[5]

Ishlatilgan yadro yoqilg'isi uran-235 va plutoniy-239 yadroviy bo'linish turli xillarni o'z ichiga oladi kanserogen radionuklid izotoplar kabi stronsiy-90, yod-131 va seziy-137, va eng uzoq umr ko'rganlarning ayrimlarini o'z ichiga oladi transuranik elementlar kabi Amerika-241 va izotoplari plutonyum.[6] Eng uzoq umr ko'rgan radioaktiv chiqindilar, shu jumladan ishlatilgan yadro yoqilg'isi, odatda uzoq vaqt davomida atrof muhitdan ajratib turilib, ajratib turiladi. Yadro yoqilg'isini saqlash uchun 1977 yildagi Prezidentdan keyin Qo'shma Shtatlarda muammo tug'diradi Jimmi Karter yadro yoqilg'isini qayta ishlashni taqiqlash. Frantsiya, Buyuk Britaniya va Yaponiya ombor echimini rad etgan ba'zi mamlakatlardir. Sarf qilingan yadro yoqilg'isi shunchaki chiqindilar emas, balki qimmatli boylikdir.[7]Ushbu chiqindilarni tegishli geologik tuzilmalarda chuqur er osti qismida joylashgan muhandislik inshootlarida yoki omborlarda yo'q qilish mos yozuvlar echimi sifatida qaraladi.[8] The Yorilish materiallari bo'yicha xalqaro panel dedi:

Ishlatilgan yadro yoqilg'isi va yuqori darajadagi qayta ishlash va plutoniy chiqindilari atrofdagi radioaktivlikni minimal darajada kamaytirish uchun uzoq vaqt davomida yaxshi mo'ljallangan saqlashni talab qiladi degan fikr keng tarqalgan. Shuningdek, plutoniy va yuqori darajada boyitilgan uranni qurol ishlatishga yo'naltirmaslik uchun xavfsizlik choralari talab qilinadi. Ishlatilgan yadro yoqilg'isini yuzadan yuzlab metr pastroqdagi omborlarga joylashtirish, ishlatilgan yoqilg'ining yuzasida cheksiz saqlashdan ko'ra xavfsizroq bo'lishi to'g'risida umumiy kelishuv mavjud.[9]

Omborlarning keng tarqalgan elementlari orasida radioaktiv chiqindilar, chiqindilarni o'rab turgan idishlar, konteynerlar atrofidagi boshqa to'siqlar yoki muhrlar, konteynerlar joylashgan tunnellar va atrofning geologik tarkibi mavjud.[10]

Tabiiy geologik to'siqlarning radioaktiv chiqindilarni ajratib olish qobiliyati tabiiy yadroviy bo'linish reaktorlari da Oklo, Afrika. Uzoq reaksiya davrida taxminan 5,4 tonna parchalanish mahsulotlari va 1,5 tonna plutonyum boshqalar bilan birgalikda transuranik elementlar uran rudasi tanasida hosil bo'lgan. Ushbu plutonyum va boshqa transuranika deyarli 2 milliard yil davom etgan holda, hozirgi kungacha harakatsiz bo'lib qoldi.[11] Bu haqiqatni hisobga olgan holda juda ajoyib er osti suvlari konlarga tayyor kirish imkoni bor edi va ular shisha kabi kimyoviy inert shaklda bo'lmagan.

Ko'pgina mutaxassislar orasida uzoq vaqtdan beri geologik chiqindilar xavfsiz, texnologik jihatdan qulay va ekologik jihatdan xavfsiz bo'lishi mumkin degan kelishuvga qaramay, ko'plab mamlakatlarda keng jamoatchilikning katta qismi shubhali bo'lib qolmoqda.[12] Ushbu sa'y-harakatlarni qo'llab-quvvatlovchilar oldida turgan muammolardan biri, omborda chiqindilar uzoq vaqt saqlanib qolishi va kelajakda chiqarilishi mumkin bo'lgan sog'liqqa zarar etkazmasligi uchun ishonch hosil qilishdir. atrof-muhit xavf.

Yadro qayta ishlash omborga bo'lgan ehtiyojni bartaraf etmaydi, lekin hajmini pasaytiradi, uzoq muddatli radiatsiya xavfini kamaytiradi va uzoq muddatli issiqlik tarqalish qobiliyatini talab qiladi. Qayta ishlash omborxonada joylashish uchun siyosiy va jamoatchilik muammolarini bartaraf etmaydi.[9]

Yuqori darajadagi radioaktiv chiqindilarni saqlash omboriga borishda eng katta yutuqlarga erishgan mamlakatlar odatda boshlaydilar jamoatchilik bilan maslahatlashuvlar va ixtiyoriy o'tirishni zarur shartga aylantirdi. Ushbu konsensusni izlash yondashuvi qaror qabul qilishning yuqoridan pastga qarab ishlash uslubiga qaraganda ko'proq muvaffaqiyatga erishish imkoniyatiga ega, deb hisoblashadi, ammo bu jarayon juda sust va butun dunyoda "mavjud va intilayotgan barcha yadroviy qurollarda muvaffaqiyat qozonishini bilish uchun etarli tajriba mavjud emas". millatlar ".[13] Bundan tashqari, aksariyat jamoalar xost qilishni xohlamaydilar yadroviy chiqindilar ombori, chunki ular "o'zlarining hamjamiyati minglab yillar davomida chiqindilarni yig'ish joyi bo'lishidan, baxtsiz hodisaning sog'lig'i va ekologik oqibatlaridan va mulkiy qadriyatlarning pastligidan xavotirda".[14]

2010 yilgi Prezidentlik memorandumida AQSh prezidenti Obama "Amerikaning yadro kelajagi bo'yicha ko'k tasma komissiyasini" tashkil etdi.[15] O'n besh a'zodan iborat Komissiya yadro chiqindilarini yo'q qilish bo'yicha ikki yillik keng tadqiqotlar o'tkazdi.[15] Komissiya o'z tadqiqotlari davomida Finlyandiya, Frantsiya, Yaponiya, Rossiya, Shvetsiya va Buyuk Britaniyada bo'lib, 2012 yilda Komissiya yakuniy hisobotini taqdim etdi.[16] Komissiya ma'lum bir sayt uchun tavsiyalar chiqarmadi, balki ularni yo'q qilish strategiyalari bo'yicha keng qamrovli tavsiyalar taqdim etdi.[17] Komissiya yakuniy hisobotida amalga oshirish uchun keng qamrovli strategiyani ishlab chiqish uchun ettita tavsiyalar berdi. Asosiy tavsiya "Qo'shma Shtatlar ishlatilgan yoqilg'i va yuqori darajadagi yadro chiqindilarini xavfsiz ravishda yo'q qilish uchun bir yoki bir nechta doimiy chuqur geologik inshootlarni o'z vaqtida ishlab chiqishga olib keladigan yadro chiqindilarini boshqarish bo'yicha kompleks dasturni amalga oshirishi kerak".[17]

Boshqa chiqindilar

O'rtacha miqdordagi past darajadagi chiqindilar kimyoviy va hajmni boshqarish tizimi (CVCS) orqali amalga oshiriladi. Bunga bug'lanish orqali suvni tozalash jarayoni natijasida hosil bo'lgan gaz, suyuqlik va qattiq chiqindilar kiradi. Suyuq chiqindilar doimiy ravishda qayta ishlanadi va gaz chiqindilari filtrlanadi, siqiladi, parchalanishi uchun saqlanadi, suyultiriladi va keyin tashlanadi. Bunga ruxsat berilgan stavka tartibga solinadi va tadqiqotlar shuni tasdiqlashi kerakki, bu bo'shatish jamoat a'zosi uchun dozani cheklamaydi (qarang. radioaktiv chiqindi suvlari ).

Qattiq chiqindilarni bir necha yil bezovta qilinmaydigan joyga qo'yish orqali yo'q qilish mumkin. Qo'shma Shtatlarda Janubiy Karolina, Yuta va Vashingtonda uchta past darajadagi chiqindilarni yo'q qilish joylari mavjud.[18] CVCS dan chiqadigan qattiq chiqindilar joyida ko'milmaguncha, ishlov berish materiallaridan kelib chiqadigan qattiq radioaktivlar bilan birlashtiriladi.[19]

Qo'shma Shtatlarda atrof-muhitni muhofaza qilish bo'yicha guruhlar uran qazib chiqaruvchi kompaniyalar foydalanilmayotgan uran konlari uchastkalarida tozalash xarajatlaridan qochishga harakat qilmoqdalar. Shaxsiy atrof-muhitni tiklash ko'plab davlatlar tomonidan minaning faol bo'lmagan holatidan keyin talab qilinadi. Ekologik guruhlar tog'-kon korxonalarini majburiy tozalashdan saqlanishiga yo'l qo'ymaslik uchun qonuniy e'tirozlar bilan murojaat qilishdi. Uran qazib oluvchi kompaniyalar vaqti-vaqti bilan o'z konlarini qayta faollashtirish orqali tozalash qonunlarini chetlab o'tdilar. O'nlab yillar davomida ma'dan konlari ifloslanishiga yo'l qo'yish, 2013 yil mart oyidan boshlab sud ishlarini boshlagan bir mas'ul qazib olish uchun axborot tarmog'i ekologik guruhiga ko'ra radioaktiv ifloslanishning erga sızması mumkin bo'lgan xavfini oshiradi. Bunday kamdan-kam ishlatiladigan konchilik kompaniyalariga ega bo'lgan korporatsiyalar orasida minalar Umumiy atom.[20]

Elektr stantsiyasining emissiyasi

Radioaktiv gazlar va chiqindi suvlar

The Grafenrheinfeld atom stansiyasi. Eng baland inshoot - bu chiqindi gazlarni chiqaradigan bacadir.

Tijorat atom elektr stantsiyalarining aksariyati AQShda EPA va NRC tomonidan kuzatiladigan kimyoviy hajmni boshqarish tizimining yon mahsuloti sifatida atrof muhitga gazli va suyuq radiologik chiqindi suvlarni chiqaradi. AESdan 80 milya uzoqlikda yashovchi fuqarolar odatda 0,1 ga egamSv yiliga.[21] Taqqoslash uchun, dengiz sathida yoki undan yuqori darajada yashovchi o'rtacha odam kamida 260 mSv oladi kosmik nurlanish.[21]

Qo'shma Shtatlardagi barcha reaktorlar qonunga binoan binolarni yopib qo'yishi shart. Izolyatsiya binolarining devorlari bir necha metr qalinlikda va betondan yasalgan va shu sababli atrof-muhitga reaktor chiqaradigan har qanday nurlanishni to'xtata oladi. Agar odam atrof-muhitga katta miqdordagi radiatsiya chiqaradigan energiya manbai haqida tashvishlansa, u ko'mir yoqadigan zavodlar haqida qayg'urishi kerak. "Ko'mir zavodlari tomonidan ishlab chiqarilayotgan chiqindilar, ularning yadroviy hamkasblari tomonidan ishlab chiqarilgan radioaktiv moddalardan ko'ra ko'proq radioaktivdir. Aslida, [ko'mir] elektrostansiyasi tomonidan chiqariladigan uchuvchi kul - ko'mirni elektr energiyasi uchun yoqib yuborish natijasida hosil bo'ladigan atrof-muhitga 100 bir xil miqdordagi energiya ishlab chiqaradigan atom elektrostansiyasidan bir necha barobar ko'proq radiatsiya. " Ko'mir bilan ishlaydigan zavodlar odamlar salomatligi uchun atom elektr stantsiyalariga qaraganda ancha xavflidir, chunki ular atrof-muhitga radioaktiv elementlarni ko'proq chiqaradi va keyinchalik odamlarga atom stansiyalariga qaraganda ko'proq radiatsiya ta'sir qiladi. "Ko'mir zavodlari yaqinida yashovchilar tomonidan qabul qilingan radiatsiya dozalari yadro inshootlari atrofida yashovchilar uchun dozalarga teng yoki undan yuqori edi. Biror darajada olimlar odamlarning suyaklaridagi uchuvchi kul nurlanishini taxminan 18 millirem (remning mingdan biri) atrofida taxmin qilishdi , yiliga ionlashtiruvchi nurlanish dozalarini o'lchash uchun bir birlik. Ikki yadro zavodi uchun dozalar, aksincha, xuddi shu davr uchun uch dan olti milliremgacha bo'lgan. Va shu hududda barcha oziq-ovqat mahsulotlari etishtirilganda radiatsiya dozalari 50 dan Ko'mir zavodlari atrofida 200 foiz balandroq. "[22]

Ushbu usul orqali chiqarilgan radioaktivlikning umumiy miqdori elektr stantsiyasiga, me'yoriy talablarga va stansiyaning ishlashiga bog'liq. Yo'l modellari bilan birlashtirilgan atmosfera dispersiyasi modellari chiqadigan chiqindi suvdan jamoat a'zosiga dozani aniq taxmin qilish uchun foydalaniladi. Oqova suvlarni monitoring qilish zavodda doimiy ravishda olib boriladi.

Tritiy

Tritiy oqimi chegaralari[iqtibos kerak ]
MamlakatCheklov (Bq / L)
Avstraliya76,103
Finlyandiya30,000
JSSV10,000
Shveytsariya10,000
Rossiya  7,700
Ontario, Kanada  7,000
Yevropa Ittifoqi1001
Qo'shma Shtatlar740
Kaliforniya sog'liqni saqlash maqsadi   14.8

Oqish radioaktiv suv Vermont Yanki So'nggi yillarda AQShning 20 dan ortiq yadro zavodlarida sodir bo'lgan shunga o'xshash hodisalar bilan bir qatorda 2010 yilda Qo'shma Shtatlardagi eskirgan yadro qurilmalarining ishonchliligi, chidamliligi va saqlanishi to'g'risida shubha tug'dirdi.[23]

Tritiy ning radioaktiv izotopidir vodorod past energiyali beta-zarrachani chiqaradi va odatda o'lchanadi beckerels (ya'ni soniyada parchalanadigan atomlar) litr uchun (Bq / L). Tritiy atom stansiyasidan chiqarilgan suvda bo'lishi mumkin. Tritiyni chiqarishda birinchi navbatda oziq-ovqat uchun iste'mol qilinadigan ekinlar va hayvonlarda biologik kattalashtirishga olib keladigan biologik kattalashtirishdan tashqari ichimlik suvidagi tarkib mavjud.[24]

Tritiy,[25] massasi 3 bo'lgan vodorod izotopi ataylab termoyadro qurolidan foydalanish uchun, Vatt Bar kabi hukumatga tegishli reaktorlarda, lityum 6 ni neytronlar bilan i1 bo'linishgacha nurlantirish orqali yaratiladi. AQShda odatiy turdagi engil suv reaktorlari suvda neytron tutilishi bilan oz miqdordagi deuterium hosil qiladi. Bu etarli miqdordagi neytronlarni iste'mol qiladi, tabiiy uran boyitishga muhtoj bo'lib, uning bo'linadigan U-235 tarkibini bosimli suv reaktorlari uchun 0,72% dan 3,6% gacha ko'taradi. Kanadaning CANDU dizayni "og'ir suv", deyteriy oksidi va boyitilmagan uranni ishlatishi mumkin, chunki deyteriy neytronlarning juda oz qismini ushlab turadi. Demak, AQSh reaktorlarida oz miqdordagi deyteriydan tritiy ishlab chiqarish darajasi juda past bo'lishi kerak.

Har bir joyda qonuniy kontsentratsiya chegaralari juda xilma-xil edi (jadvalning o'ng tomoniga qarang). Masalan, 2009 yil iyun oyida Ontario ichimlik suvi bo'yicha maslahat kengashi limitni 7000 Bq / L dan 20 Bq / L ga tushirishni tavsiya qildi.[26] NRC ma'lumotlariga ko'ra, tritiy eng kam xavfli radionuklid hisoblanadi, chunki u juda zaif nurlanish chiqaradi va tanani nisbatan tez tark etadi. Oddiy inson tanasida taxminan 3700 Bq kaliy-40. Har qanday atom stansiyasining chiqaradigan miqdori ham juda xilma-xildir; Qo'shma Shtatlardagi yadro zavodlari uchun 2003 yildagi umumiy chiqarilish 2080 kuryergacha (77 TBq) kuzatilmagan.[iqtibos kerak ]

Uran qazib olish

Sariq pishiriqning tamburi
Ressing ochiq uran koni, Namibiya

Uran qazib olish - bu qazib olish jarayoni uran erdan ruda. 2009 yilda dunyoda uran ishlab chiqarish 50572 ni tashkil etdi tonna. Qozog'iston, Kanada va Avstraliya eng yaxshi ishlab chiqaruvchilar uchligiga kiradi va birgalikda jahon uran ishlab chiqarishining 63% ini tashkil etadi.[27] Konni qazib olishda uranni taniqli ishlatish yoqilg'i hisoblanadi atom elektr stantsiyalari. Uranni qazib olish va maydalash atrof-muhit uchun katta xavf tug'diradi.[28]

"Ko'mirning issiqlik energiyasining o'rtacha qiymati taxminan 6150 kilovatt-soat (kVt soat) / tonnani tashkil etadi. .... Yadro bo'linishida chiqadigan issiqlik energiyasi taxminan 2 x 10E9 kVt / s ishlab chiqaradi."[29]

Bundan kelib chiqadiki, xuddi shu miqdordagi energiya uchun uran qazib olishning yadro energiyasini ishlab chiqarishga atrof-muhitga ta'sirini kamaytirib, ko'mirga qaraganda ancha kam uran qazib olinishi kerak.

2010 yilda dunyoda uran ishlab chiqarishning 41% ishlab chiqarilgan joyida eritish toshni joyida qoldirib, uranni eritish uchun eritmalardan foydalanadi.[30] Qolgan qismi odatdagi qazib olish yo'li bilan ishlab chiqarilgan bo'lib, unda qazib olinadigan uran rudasi bir xil zarracha kattaligiga qadar maydalanadi va undan keyin uran kimyoviy kimyoviy eritma bilan olinadi. Mahsulot - bu kukun boyitilmagan uran "sariq kek, "U uran bozorida U sifatida sotiladi3O8. Uran qazib olishda katta miqdordagi suv ishlatilishi mumkin - masalan Roksbi Downs Olimpiya to'g'oni Janubiy Avstraliyadagi kon har kuni 35000 m³ suv ishlatadi va uni kuniga 150.000 m³ ga etkazishni rejalashtirmoqda.[31]

The Cherkov Rokidagi uran tegirmonining to'kilishi sodir bo'lgan Nyu-Meksiko 1979 yil 16 iyulda United Nuclear Corporation kompaniyasida Cherkov qoyasi uran tegirmoni chiqindilar utilizatsiya havzasi to'g'onni buzgan.[32][33] 1000 tonnadan ortiq qattiq radioaktiv tegirmon chiqindilari va 93 million galon kislotali, radioaktiv qoldiq eritmasi quyilgan Puerko daryosi va ifloslantiruvchi moddalar quyi oqimgacha 130 km masofani bosib o'tdi Navajo okrugi, Arizona va ustiga Navajo millati.[33] Baxtsiz hodisa 93 million galon asosan suv va sulfat kislota bilan suyultirilgan bo'lsa-da, ko'proq radiatsiya chiqardi Uch Mile orolidagi avariya to'rt oy oldin sodir bo'lgan va AQSh tarixidagi eng yirik radioaktiv moddalarning chiqarilishi bo'lgan.[33][34][35][36] Er osti suvlari to'kilgan suv yaqinida ifloslangan va Puerko toksik xavfni darhol bilmagan mahalliy aholi tomonidan yaroqsiz holga kelgan.[37]

Sovuq urushni tozalashda qilingan sa'y-harakatlarga qaramay yadroviy qurollanish poygasi uran konlari, uran rivojlanish merosidan kelib chiqadigan muhim muammolar bugungi kunda ham Navajo Nation va Yuta, Kolorado, Nyu-Meksiko va Arizona shtatlarida mavjud. Birinchi navbatda AQSh uchun ishlatiladigan yuzlab tashlab qo'yilgan minalar qurollanish poygasi atom energiyasini ishlab chiqarish emas, balki tozalanmagan va ko'plab jamoalarda atrof-muhit va sog'liq uchun xavf tug'diradi.[38] Atrof-muhitni muhofaza qilish agentligi hisob-kitoblariga ko'ra uran ishlab chiqariladigan 4000 ta minalar va 14 ta g'arbiy shtatlarda yana 15000 ta uran paydo bo'lgan joylar mavjud,[39] eng ko'p to'rtta burchak va Vayomingda joylashgan.[40] The Uran tegirmonidagi chiqindilarni nurlanishni boshqarish to'g'risidagi qonun a Qo'shma Shtatlarning atrof-muhit to'g'risidagi qonuni o'zgartirilgan 1954 yildagi Atom energiyasi to'g'risidagi qonun va berdi Atrof muhitni muhofaza qilish agentligi barqarorlashtirish uchun sog'liqni saqlash va ekologik standartlarni o'rnatish vakolati, qayta tiklash va yo'q qilish uran tegirmoni chiqindilari.[41]

Saraton xavfi

Atom energiyasining saraton kasalligini keltirib chiqarishi mumkin bo'lgan ta'siri to'g'risida ko'plab tadqiqotlar o'tkazildi. Bunday tadqiqotlar ikkala zavod ishchilarida va uning atrofidagi populyatsiyada yadro stansiyalari va atom energetikasi sanoatining boshqa qismlarining normal ishlashi paytida chiqadigan chiqindilar, shuningdek, ishchilar va jamoatdagi tasodifiy chiqishlar tufayli ortiqcha saraton kasalligini qidirdi. Ikkala zavod ishchilarida va atrofdagi aholida ortiqcha saraton kasalligi Chernobil AESidagi avariya kabi tasodifiy chiqishlar tufayli kelib chiqqan degan kelishuv mavjud.[42] Bundan tashqari, yadro yoqilg'isi aylanishining boshqa qismlarida, xususan uran qazib olishda ishlaydigan ishchilarning - kamida so'nggi o'n yilliklarda - saraton kasalligi darajasi yuqori bo'lganligi to'g'risida kelishuv mavjud.[43] Biroq, atom elektr stantsiyalarining normal ishlashida yuzaga kelishi mumkin bo'lgan saraton kasalliklari bo'yicha ko'plab tadqiqotlar qarama-qarshi xulosalarga keldi va bu masala ilmiy tortishuvlar va doimiy o'rganish masalasidir.[44][45][46]

Yadro inshootlari yaqinida yashovchi odamlar orasida turli xil kasalliklar, ayniqsa, saraton kasalliklari xavfi ortishi haqida bir necha epidemiologik tadqiqotlar o'tkazildi. Keng tarqalgan 2007 yil meta-tahlil Beyker tomonidan va boshq. da 17 ta ilmiy maqolalar chop etilgan Saraton kasalligini davolash bo'yicha Evropa jurnali.[47] Unda Buyuk Britaniya, Kanada, Frantsiya, Qo'shma Shtatlar, Germaniya, Yaponiya va Ispaniyadagi 136 yadro inshootlari yaqinida yashovchi bolalar o'rtasida leykemiya darajasi ko'tarilganligi to'g'risida dalillar keltirilgan. Shu bilan birga, ushbu tadqiqot bir nechta asoslarda tanqid qilindi - masalan, heterojen ma'lumotlarni birlashtirish (turli yosh guruhlari, atom elektrostansiyalari bo'lmagan joylar, turli xil zonalar ta'riflari), 37 ta individual tadqiqotlardan 17 tasini o'zboshimchalik bilan tanlash, nol kuzatilgan holatlar bo'lgan saytlarni chiqarib tashlash. yoki o'lim va boshqalar.[48][49] Bolalar orasida leykemiya darajasining ko'tarilishi 2008 yilda Germaniyaning Kaatsch tomonidan olib borilgan tadqiqotida ham topilgan va boshq. Germaniyadagi 16 ta yirik atom elektr stantsiyalari yaqinida yashovchilarni tekshirgan.[47] Ushbu tadqiqot ham bir necha asoslarga ko'ra tanqid qilindi.[49][50] Ushbu 2007 va 2008 yilgi natijalar bunday assotsiatsiyalarni ko'rsatmaslikka intilgan ko'plab boshqa tadqiqotlar bilan mos kelmaydi.[51][52][53][54][55] Atrof-muhitdagi radiatsiyaning tibbiy aspektlari bo'yicha Britaniya qo'mitasi 2011 yilda 1969-2004 yillar davomida Buyuk Britaniyaning 13 atom elektr stantsiyalari yaqinida yashovchi besh yoshgacha bo'lgan bolalar o'rtasida tadqiqot o'tkazdi. Qo'mita Britaniyadagi elektr stantsiyalari yaqinida yashovchi bolalar boshqa joylarda yashovchilarga qaraganda leykemiya bilan kasallanish ehtimoli yuqori emasligini aniqladilar[49] Xuddi shunday, 1991 yilda Milliy Saraton Instituti tomonidan olib borilgan tadqiqotlar natijasida AQShning 107 ta atom elektr stantsiyalariga yaqinida saraton o'limi aniqlanmagan.[56] Biroq, davom etayotgan qarama-qarshiliklarni hisobga olgan holda, AQSh Yadro Tizimi Komissiyasi Milliy Fanlar Akademiyasidan NRC litsenziyalangan muassasalari yaqinidagi aholi saraton xastaligi bo'yicha zamonaviy tadqiqotlar o'tkazilishini nazorat qilishni so'radi.[44]

Tez-tez hujjatsiz ishlaydigan yadro ishchilarining submulturasi oddiy xodimlar tomonidan rad etilgan iflos, qiyin va potentsial xavfli ishlarni bajaradi. The Butunjahon yadro assotsiatsiyasi "yadroviy lo'lilar" ning vaqtinchalik ishchi kuchi - subpudratchilar tomonidan yollangan oddiy ishchilar "kamida qirq yil davomida yadro sahnasining bir qismi" bo'lganligini ta'kidlamoqda.[57] Ishchilarning sog'lig'iga oid huquqlarini himoya qiladigan amaldagi mehnat qonunchiligi to'g'ri bajarilmaydi.[58] 407.391 yadro sanoati ishchilarini jalb qilgan holda, past dozali ionlashtiruvchi nurlanish ta'siridan kelib chiqadigan saraton xatarlarini o'rganish bo'yicha 15 mamlakatning kohort tadqiqotlari saraton o'limining sezilarli darajada oshganligini ko'rsatdi. Tadqiqotda saratonning birlamchi va ikkinchi darajali 31 turi baholandi.[59]

Atom energiyasi reaktoridagi avariyalar turli xil holatlarga olib kelishi mumkin radioizotoplar atrof muhitga chiqarilmoqda. Har bir radioizotopning sog'liqqa ta'siri turli xil omillarga bog'liq. Yod-131 tarqalishi va erga joylashishi sababli tasodifiy chiqindilarda kasallikning muhim manbai bo'lishi mumkin. Yod-131 chiqarilganda, u oziq-ovqat zanjiriga kirgandan so'ng, nafas olish yoki iste'mol qilish, birinchi navbatda ifloslangan mevalar, sabzavotlar, sut va er osti suvlari orqali iste'mol qilinishi mumkin. Tanadagi yod-131 tezda qalqonsimon bezda to'planib, manbaiga aylanadi beta radiatsiya.[60]

2011 yilda dunyodagi eng dahshatli Fukusima Daiichi yadroviy halokati yadro halokati 1986 yildan beri 50 ming xonadon ko'chirildi nurlanish havoga, tuproqqa va dengizga singib ketgan.[61] Radiatsion tekshiruvlar ba'zi bir sabzavot va baliqlarni etkazib berishni taqiqlashga olib keldi.[62]

Atom energiyasini ishlab chiqarish yadro yoqilg'isi tsikliga bog'liq bo'lib, u uran qazib olish va frezalashni o'z ichiga oladi. Uran ishchilari muntazam ravishda past darajalarga duch kelishadi radon parchalanadigan mahsulotlar va gamma nurlanishi. Xatarlar leykemiya gamma nurlanishining o'tkir va yuqori dozalaridan ma'lum, ammo past dozalardan kelib chiqadigan xatarlar haqida munozaralar mavjud. Boshqalarning xatarlari gematologik saraton uran ishchilarida juda kam tadqiqotlarda tekshirilgan.[63]

Ko'mir bilan ishlaydigan avlod bilan taqqoslash

Sof radioaktiv tarqalish nuqtai nazaridan Radiatsiyadan himoya qilish va o'lchovlar bo'yicha milliy kengash (NCRP) qisqa tonna ko'mir uchun o'rtacha radioaktivlikni 17 100 millikur / 4 000 000 tonnani tashkil etdi. Qo'shma Shtatlarda 154 ko'mir zavodi mavjud bo'lib, bu bitta zavod uchun yiliga 0,6319 TBq chiqindilarni tashkil etadi.

Yaqin atrofda yashovchi odamga dozani hisobga oladigan bo'lsak, ba'zida ko'mir zavodlari yadro zavodlarining 100 marta radioaktivligini chiqaradi, deb ta'kidlashadi. Bu 1000 MWe ko'mir va atom stansiyalaridan aholiga dozani 4.9 ga baholagan 92 va 95-sonli NCRP hisobotlaridan kelib chiqadi. odam-Sv / yil va mos ravishda 0,048 kishi-Sv / yil (odatda Ko'krak qafasi rentgenogrammasi taqqoslash uchun taxminan 0,06 mSv dozani beradi).[64] The Atrof muhitni muhofaza qilish agentligi ko'mir zavodidan 80 milya (80 km) uzoqlikda yashash uchun yiliga 0,3 addedSv qo'shilgan dozani va yiliga radiatsiya dozasini baholash uchun yadro zavodi uchun 0,009 milliemni tashkil etadi.[65] Oddiy ishlaydigan atom elektr stantsiyalari ko'mir elektr stantsiyalariga qaraganda kamroq radioaktivlik chiqaradi.[64][65]

Ko'mirda yoki neftda ishlab chiqarilishidan farqli o'laroq, atom energiyasini ishlab chiqarish to'g'ridan-to'g'ri ishlab chiqarmaydi oltingugurt dioksidi, azot oksidlari, yoki simob (qazilma yoqilg'idan ifloslanish faqatgina AQShda har yili 24000 erta o'lim uchun aybdor[66]). Biroq, barcha energiya manbalarida bo'lgani kabi, tog'-kon, ishlab chiqarish va transport kabi qo'llab-quvvatlash faoliyati bilan bog'liq ba'zi ifloslanish mavjud.

Evropa Ittifoqi tomonidan moliyalashtiriladigan yirik tadqiqot tadqiqotlari ExternE yoki Tashqi xususiyatlar 1995 yildan 2005 yilgacha amalga oshirilgan Energiya energiyasi, etkazib beriladigan energiya birligi uchun atom energiyasining atrof-muhit va sog'liq uchun xarajatlari 0,0019 evro / kVt soatni tashkil etdi. Bu ko'pchiliknikidan past yangilanadigan manbalari, shu jumladan atrof muhitga ta'siri biomassa fotoelektrdan foydalanish va ishlab chiqarish quyosh panellari, 0,06 / kVt / soat yoki 6 sent / kVt / soat bo'lgan ko'mir ta'siridan o'ttiz baravar past edi. Biroq, u bilan bog'liq bo'lgan eng past tashqi xarajatlarning energiya manbai topildi shamol kuchi 0.0009 evro / kVt / soatni tashkil etadi, bu Atrof-muhit va sog'liq uchun Atom energiyasi narxining deyarli yarmi ostida.[67]

Radioaktiv avariya chiqindilarining sanoat chiqindilari bilan kontrasti

Himoyachilarning ta'kidlashicha, yadro chiqindilari muammolari qazilma yoqilg'i chiqindilari muammolariga yaqinlashishga "yaqinlashmaydi".[68][69] BBCning 2004 yildagi maqolasida shunday deyilgan: " Jahon Sog'liqni saqlash tashkiloti (JSST) dunyo bo'ylab har yili tashqi havo havosining transport vositalaridan va sanoat chiqindilaridan ifloslanishidan 3 million kishi, qattiq yoqilg'idan foydalangan holda esa 1,6 million kishi yopiq joylarda o'ldirilishini aytmoqda. "[70] Birgina AQShda qazilma yoqilg'i chiqindilari har yili 20000 kishini o'ldiradi.[71] Ko'mir elektr stantsiyasi xuddi shu quvvatga ega bo'lgan atom elektr stantsiyasidan 100 barobar ko'proq radiatsiya chiqaradi.[72] Hisob-kitoblarga ko'ra, 1982 yil davomida AQShda ko'mir yoqish atmosferaga atmosferaga nisbatan 155 baravar ko'p radioaktivlikni tarqatgan Uch Mile orolidagi avariya.[73] The Butunjahon yadro assotsiatsiyasi energiya ishlab chiqarishning turli shakllari orasida baxtsiz hodisalar tufayli o'limlarni taqqoslashni ta'minlaydi. Hayotiy tsiklni taqqoslashda 1970-1992 yillarda ishlab chiqarilgan har bir TW-yil elektr energiyasiga o'lim gidroenergetikada 885, ko'mirda 342, tabiiy gazda 85 va yadroda 8 ta deb qayd etilgan.[74] Raqamlar o'z ichiga oladi uran qazib olish, bu xavfli sanoat bo'lishi mumkin, ko'plab baxtsiz hodisalar va o'limga olib keladi.[75]

Issiqlikni isrof qiling

Shimoliy Anna zavodi sun'iy ko'lda to'g'ridan-to'g'ri almashinuv sovutishidan foydalanadi.

Barcha termoelektr qurilmalarida bo'lgani kabi, atom elektr stantsiyalarida ham sovutish tizimlari zarur. Issiqlik elektr stantsiyalari, shu jumladan yadro uchun eng keng tarqalgan tizimlar:

  • Bir marta sovutish, unda suv katta tanadan tortib olinadi, sovutish tizimidan o'tadi va keyin yana suv havzasiga oqib tushadi.
  • Maqsadga bag'ishlangan suv havzasidan suv olinadigan sovutish havzasi sovutish tizimidan o'tadi, so'ngra hovuzga qaytadi. Bunga misollar Janubiy Texas yadroviy ishlab chiqarish stantsiyasi. The Shimoliy Anna yadro ishlab chiqarish stantsiyasi o'simlikni oqizish kanalida ko'lning boshqa qismlariga yoki odatdagi ko'llarga qaraganda tez-tez taxminan 30 ° F iliqroq bo'lgan sovutadigan suv havzasi yoki sun'iy ko'ldan foydalanadi (bu ba'zi aholi tomonidan ushbu hududning diqqatga sazovor joylari sifatida keltirilgan).[76] Sun'iy ko'llarga atrof-muhitning ta'siri ko'pincha yangi zavodlar qurilishiga qarshi bahslarda og'irlik qiladi va qurg'oqchilik paytida OAV e'tiborini tortadi.[77] The Turkiya nuqtasi yadro ishlab chiqarish stantsiyasi ning tabiatni muhofaza qilish holatiga yordam berganligi uchun ishoniladi Amerika timsoh, asosan ishlab chiqarilgan chiqindi issiqligining ta'siri.[78]
  • Sovutish minoralari, unda suv sovutish tizimi orqali minoradan bug'langunga qadar aylanadi. Bunga misollar Shearon Xarris atom elektr stantsiyasi.

Qayta tiklanadigan energetika bo'yicha milliy laboratoriya tomonidan 2011 yilda o'tkazilgan tadqiqotlar shuni aniqladiki, sovutish minoralari bo'lgan o'rtacha yadro zavodi bir megavatt-soatiga 672 galon suv iste'mol qilgan, bu quyosh energiyasining kontsentratsiyalashgan o'rtacha sarfidan (865 gal / MVt soat, va 786 gal / soat). MW soat quvvatga ega), ko'mirdan biroz kamroq (687 gal / MVt), ammo tabiiy gazdan (198 gal / MVt) ko'proq. Bir marta sovutish tizimlari ko'proq suv ishlatadi, ammo bug'lanish uchun kamroq suv yo'qoladi. Bir martali sovutadigan AQShning o'rtacha yadro zavodida 44,350 gal / MVt / soat sovutish tizimidan o'tadi, ammo bug'lanish orqali atigi 269 gal / MVt (1 foizdan kam) iste'mol qilinadi.[79]

Yadro o'simliklari issiqlik energiyasining 60-70 foizini suv tanasi bilan velosipedda velosipedda aylanish orqali yoki sovutish minorasi. Ushbu issiqlik samaradorligi ko'mir yoqadigan elektr stantsiyalariga qaraganda bir oz pastroq,[80] shuning uchun ko'proq narsani yaratish chiqindi issiqlik.

Chiqindagi issiqlikni ishlatish mumkin kogeneratsiya kabi ilovalar markazlashtirilgan isitish. Kogeneratsiya va atom energiyasi bilan markaziy isitish tamoyillari boshqa har qanday shaklda bo'lgani kabi issiqlik energiyasini ishlab chiqarish. Yadroviy issiqlik ishlab chiqarishning bir usuli Ågesta atom stansiyasi Shvetsiyada. Shveytsariyada Beznau atom elektr stansiyasi taxminan 20000 kishini issiqlik bilan ta'minlaydi.[81] Biroq, atom elektr stantsiyalari bilan markaziy isitish boshqa chiqindilarni ishlab chiqarish rejimlariga qaraganda kamroq uchraydi: ikkalasi ham o'tirish qoidalari va / yoki NIMBY Natijada, yadro stantsiyalari odatda aholi zich joylashgan joylarda qurilmaydi. Issiqlik chiqindilari sanoat dasturlarida ko'proq qo'llaniladi.[82]

Evropa davrida 2003 va 2006 yil issiqlik to'lqinlari, Frantsiya, Ispaniya va Germaniya kommunal xizmatlari atrof-muhitga haddan tashqari qizib ketgan suvni chiqarish uchun qoidalardan ozod qilishni ta'minlashi kerak edi. Ba'zi yadroviy reaktorlar ishlamay qolmoqda.[83][84]

Bilan Iqlim o'zgarishi kabi ob-havo ob-havosini keltirib chiqaradi issiqlik to'lqinlari, yog'ingarchilik darajasining pasayishi va qurg'oqchilik barchaga sezilarli ta'sir ko'rsatishi mumkin issiqlik elektr stantsiyasi infratuzilma, shu jumladan yirik biomassa elektr va bo'linadigan elektr stantsiyalari, agar ushbu elektr stantsiyalarida sovutish bo'lsa, ya'ni bug 'kondensatori aniq tomonidan ta'minlanadi chuchuk suv manbalar.[85] Bir qator issiqlik stantsiyalari bilvosita dengiz suvini sovutish yoki sovutish minoralari taqqoslaganda chuchuk suvdan ozgina foydalanadi, issiqlik to'lqinlarida esa mo'ljallangan issiqlik almashinuvi daryolar va ko'llar bilan suv sathini va suv hayotini muhofaza qilish bo'yicha chiqindilarni kamaytirish yoki ishlarni to'xtatish to'g'risidagi qoidalarga muvofiqdir.

Hozirgi kunda barcha issiqlik elektr stantsiyalarida tez-tez uchrab turadigan bu muammo vaqt o'tishi bilan tobora muhim ahamiyat kasb etishi mumkin.[85] Agar global isish davom etsa, stantsiya operatorlarida boshqa sovutish vositalari bo'lmasa, elektr energiyasining uzilishi mumkin sovutish minoralari mavjud, bular yangi o'tiradigan mexanik qoralama loyihalaridan o'nlab yillar oldin tez-tez katta tuzilmalar bo'lgan va shuning uchun ba'zan jamoatchilikka yoqmagan.

Suv iste'moli va xatarlari

Atom energiyasini ishlab chiqarish jarayonida katta miqdordagi suv ishlatiladi. Reaktorlar ichidagi uran yoqilg'isi suvni isitish uchun sarflanadigan katta miqdordagi energiyani ajratib turadigan yadroviy bo'linishga uchraydi. Suv bug'ga aylanib, turbinani aylantirib, elektr energiyasini yaratadi.[86] Yadro zavodlari ushbu jarayon uchun taxminan 600 galon / MVt / soat to'plashlari kerak,[87] shuning uchun o'simliklar suv havzalari yaqinida qurilgan.

Qayta tiklanadigan energiya milliy laboratoriyasi tomonidan 2011 yilda o'tkazilgan tadqiqotlar shuni ko'rsatdiki, sovutish minoralari bo'lgan yadro zavodlari 672 gal / MVt / soat iste'mol qilgan. Yadro uchun suv iste'mol qilish intensivligi ko'mir elektr energiyasiga o'xshash (687 gal / MVt), quyosh energiyasini kontsentratsiyalash uchun sarf stavkasidan past (CSP truba uchun 865 gal / MVt, CSP minorasi uchun 786 gal / MVt) va undan yuqori tabiiy gaz ishlab chiqaradigan elektr energiyasi (198 gal / MVt).[79]

Sovutish uchun suv olayotganda, atom zavodlari, hamma kabi issiqlik elektr stantsiyalari shu jumladan ko'mir, geotermik va biomassa elektr stantsiyalari, maxsus tuzilmalardan foydalaning. Chiqindilarni kiritishni minimallashtirish uchun suv ko'pincha ekranlar orqali olinadi. Muammo shundaki, ko'plab suvda yashovchi organizmlar ekranga tutilib o'ldiriladi, bu jarayon impingment deb nomlanadi. Ekranlardan o'tib ketishi uchun etarlicha kichkina suv organizmlari zaharli stressga duchor bo'lish jarayoni deb nomlanadi. Sovutish tizimlariga milliardlab dengiz organizmlari so'riladi va yo'q qilinadi.[88][89]

Issiqxona gazlari chiqindilari

"Gidroenergiya xarajatlari va tashqi imtiyozlar"; Frans H. Koch; Xalqaro energetika agentligi (IEA) -Gidroenergetika texnologiyalari va dasturlari bo'yicha kelishuvni amalga oshirish; 2000. U tasvirlangan emissiya intensivligi ularning ustiga turli xil energiya manbalari umumiy hayot aylanishi. The iqlim o'zgarishi bo'yicha hukumatlararo panel (IPCC) muntazam ravishda eng keng tarqalgan energiya manbalarining hayot aylanishini baholaydi emissiya intensivligi va topildi 2014 yilda yadro kabi shamol energiyasidan chiqadigan chiqindilar.

Ning ko'p bosqichlari yadro yoqilg'isi zanjiri - qazib olish, frezalash, transport, yoqilg'ini ishlab chiqarish, boyitish, reaktor qurish, ishdan chiqarish va chiqindilarni boshqarish - qazilma yoqilg'idan foydalanish yoki erdan foydalanish o'zgarishi va shu sababli karbonat angidrid va odatdagi ifloslantiruvchi moddalarni chiqarish.[90][91][92] Atom energiyasi atmosferaga juda oz miqdordagi chiqindilarni qo'shadi, bu global isish kabi ko'plab ekologik muammolarni keltirib chiqarishi mumkin. Uran atom elektrostansiyasida yoqilmaydi, chunki ko'mir bo'lgani uchun undan chiqadigan chiqindilar yo'q. Uranning bo'linishidan kelib chiqadigan barcha chiqindilar o'simlik tarkibida qoladi va shuning uchun uran atrof-muhitdan tashqarida bo'lgan holda xavfsiz tarzda yo'q qilinadi.[93] "Qo'shma Shtatlardagi chiqindilarsiz elektr energiyasining taxminan 73 foizi atom stansiyalaridan kelib chiqadi". Yadro energiyasi ko'mirga qaraganda ancha kam karbonat angidrid ishlab chiqaradi, har kilovatt soatiga 9 gramm, ko'mir uchun kilovatt soatiga 790-1017 gramm. Shuningdek, yadro energiyasi qayta tiklanadigan manbalardan kam bo'lmagan miqdorda issiqxona gazlarini ishlab chiqaradi, har xil energiya manbalari singari hayot aylanishini tahlil qilish (LCA) tadqiqotlari bir qator taxminlarga olib keldi o'rtacha uglerod dioksidi chiqindilarining ko'p taqqoslanishi bilan atom energiyasining qiymati atom energiyasi bilan solishtirish mumkin qayta tiklanadigan energiya manbalar.[94][95]

Turli xil taxminlar va texnikalardan foydalangan holda tadqiqotchilar tomonidan bildirilgan issiqxona gazlari chiqindilarini yaxshiroq aniqlash va taqqoslash uchun AQSh Qayta tiklanadigan energiya milliy laboratoriyasi uyg'unlashuvdan foydalangan holda meta-tahlil ishlariga homiylik qiladi, bunda hisobot qilingan hayot tsikli chiqindilari izchil taxminlarga moslashtiriladi. Natijalar ma'lum bir energiya manbai uchun uglerod chiqindilari doirasini odatda toraytiradi.[96] Natijada 2012 yilda o'tkazilgan tadqiqot Sanoat ekologiyasi jurnali CO2 ni tahlil qilish hayot aylanishini baholash chiqindilari atom energiyasi "LCA jamoaviy adabiyotlarida hayotiy tsiklning atom energiyasidan chiqadigan gazlar chiqindilari an'anaviy qazilma manbalarining faqat bir qismi ekanligi va qayta tiklanadigan texnologiyalar bilan taqqoslanishi mumkinligi ko'rsatilgan".[97] Shuningdek, reaktorlarning eng keng tarqalgan toifasi uchun engil suvli reaktor (LWR): "Uyg'unlashuv pasaygan o'rtacha LWR texnologiyasining barcha toifalari uchun taxminiy baho medianlar ning BWRlar, Nogironlar, va barcha LWR o'xshash, taxminan 12 g CO2-ekv / kVt soat ".[98]

Ushbu ma'lumotlarning qo'lida bo'lganligi sababli, tarixiy jihatdan, atom energiyasi, asosan ~ 1970 yildan 2013 yilgacha, 64 atmosfera chiqindilarining oldini oldi gigatonnalar ning CO2 ga teng.[99]

Ko'plab sharhlovchilar atom energetikasini kengaytirish kurashga yordam beradi deb ta'kidlashmoqda Iqlim o'zgarishi. Boshqalar bu chiqindilarni kamaytirishning bir usuli deb ta'kidlashdi, ammo bu o'z muammolari bilan, masalan, jiddiy xavf bilan bog'liq yadro hodisalari, yadroviy maydonlarga qarshi urush hujumlari va yadroviy terrorizm. Advokatlar, shuningdek, iqlim o'zgarishiga qarshi kurashda atom energetikasiga sarmoya kiritishdan ko'ra, shu jumladan yaxshilanganidan ko'ra yaxshiroq usullar mavjud deb hisoblashadi energiya samaradorligi va markazlashmaganlarga ko'proq bog'liqlik qayta tiklanadigan energiya manbalar.[100]

Shuningdek, kelajak atrofida ba'zi bir noaniqliklar mavjud IG emissions of nuclear power, which has to do with the potential for a declining uranium ore grade without a corresponding increase in the efficiency of enrichment methods. In a scenario analysis of future global nuclear development, as it could be effected by a decreasing global uranium market of average ore grade, the analysis determined that depending on conditions, median life cycle nuclear power GHG emissions could be between 9 and 110 g CO2-eq/kWh by 2050, with the latter figure regarded as an unrealistic "worst-case scenario" by the authors of the study.[101]

Although this future analyses deals with extrapolations for present II avlod reaktori technology, the same paper also summarizes the literature on "FBRs"/Fast Breeder Reactors, of which two are in operation as of 2014 with the newest being the BN-800, for these reactors it states that the "median life cycle GHG emissions ... [are] similar to or lower than [present] LWRs and purports to consume little or no uranium ore.[101]

Environmental effects of accidents and attacks

The worst accidents at nuclear power plants have resulted in severe environmental contamination. However, the extent of the actual damage is still being debated.[iqtibos kerak ]

Fukusima fojiasi

Following the 2011 Japanese Fukusima yadroviy halokati, authorities shut down the nation's 54 nuclear power plants. As of 2013, the Fukushima site remains yuqori darajada radioaktiv, taxminan 160,000 evakuatsiya qilinganlar hanuzgacha vaqtinchalik uylarda yashaydilar va ba'zi erlar asrlar davomida yaroqsiz bo'lib qoladi. The qiyin tozalash ishi 40 va undan ortiq yil davom etadi va o'nlab milliard dollar turadi.[102][103]
Japan towns, villages, and cities around the Fukushima Daiichi nuclear plant. The 20km and 30km areas had evacuation and sheltering orders, and additional administrative districts that had an evacuation order are highlighted.

In March 2011 an earthquake and tsunami caused damage that led to portlashlar va qisman erishlar da Fukusima I atom stansiyasi Yaponiyada.

Radiation levels at the stricken Fukushima I power plant have varied spiking up to 1,000 mSv/h (millisievert per hour),[104] which is a level that can cause radiatsiya kasalligi to occur at a later time following a one-hour exposure.[105] Significant release in emissions of radioactive particles took place following hydrogen explosions at three reactors, as technicians tried to pump in seawater to keep the uranium fuel rods cool, and bled radioactive gas from the reactors in order to make room for the seawater.[106]

Concerns about the possibility of a large-scale release of radioactivity resulted in 20 km exclusion zone being set up around the power plant and people within the 20–30 km zone being advised to stay indoors. Later, the UK, France and some other countries told their nationals to consider leaving Tokyo, in response to fears of spreading nuclear contamination.[107] Yangi olim has reported that emissions of radioactive iodine and cesium from the crippled Fukushima I nuclear plant have approached levels evident after the Chernobil fojiasi 1986 yilda.[108] 2011 yil 24 martda Yaponiya rasmiylari "Tokio va boshqa beshta prefekturadagi 18 ta suv tozalash zavodlarida chaqaloqlar uchun xavfsizlik chegaralaridan yuqori bo'lgan radioaktiv yod-131 aniqlangani" haqida xabar berishdi. Rasmiylarning ta'kidlashicha, Dai-ichi zavodining qulashi "11 mart zilzilasi va tsunami qurbonlarini qidirish ishlariga to'sqinlik qilmoqda".[109]

Yaponiya elektr energetikasi kompaniyalari federatsiyasining ma'lumotlariga ko'ra "27 aprelga qadar 1-reaktor blokidagi yoqilg'ining taxminan 55 foizi, 2-blokdagi 35 foiz va 3-blokdagi 30 foiz yoqilg'i eritilgan; va 3 va 4-sonli omborxonalarda haddan tashqari qizib ketgan yoqilg'ilar ham zarar ko'rgan ".[110] As of April 2011, water is still being poured into the damaged reactors to cool melting fuel rods.[111] Voqea 1979 yildan oshib ketdi Uch Mile orolidagi avariya jiddiylik bilan va 1986 yil bilan taqqoslash mumkin Chernobil fojiasi.[110] Iqtisodchi reports that the Fukushima disaster is "a bit like three Three Mile Islands in a row, with added damage in the spent-fuel stores",[112] va doimiy ta'sir ko'rsatishi:

Tozalash yillari o'nlab yillarga cho'ziladi. Doimiy ravishda chiqarib yuborish zonasi o'simlik atrofidan tashqariga chiqishi mumkin. Jiddiy ta'sir ko'rsatadigan ishchilar umrining oxirigacha saraton kasalligi xavfini oshirishi mumkin ...[112]

Buyuk Britaniyaning Milliy yadroviy korporatsiyasining xavfsizlik siyosati bo'limining sobiq a'zosi Jon Prays "Yaponiyaning Fukusima atom zavodidan yonilg'i tayoqchalarini xavfsiz olib tashlashdan 100 yil oldin" bo'lishi mumkinligini aytdi.[111]

In the second half of August 2011, Japanese lawmakers announced that Prime Minister Naoto Kan would likely visit the Fukushima Prefecture to announce that the large contaminated area around the destroyed reactors would be declared uninhabitable, perhaps for decades. Some of the areas in the temporary 12 miles (19 km) radius evacuation zone around Fukushima were found to be heavily contaminated with radionuclides according to a new survey released by the Japanese Ministry of Science and Education. Shahar Okuma was reported as being over 25 times above the safe limit of 20 millisieverts yiliga.[113]

Instead, 5 years later, the government expects to gradually lift the designation of some “difficult-to-return- zones”, a total 337 square kilometres (130 sq mi) area, from around 2021. Rain, wind and natural dissipation have removed radioactive contaminants, lowering levels, like at the central district of Okuma town, to 9 mSv/year, one-fifth the level of five years ago.[114]

Chernobil fojiasi

Map showing Caesium-137 contamination in the Chernobyl area in 1996

As of 2013 the 1986 Chernobil fojiasi ichida Ukraina was and remains the world's worst nuclear power plant disaster. Estimates of its death toll are controversial and range from 62 to 25,000, with the high projections including deaths that have yet to happen. Peer reviewed publications have generally supported a projected total figure in the low tens of thousands; for example an estimate of 16,000 excess cancer deaths are predicted to occur due to the Chernobyl accident out to the year 2065, whereas, in the same period, several hundred million cancer cases are expected from other causes (from Xalqaro saraton tadqiqotlari agentligi nashr etilgan Xalqaro saraton jurnali 2006 yilda).[115] The IARC also released a press release stating "To put it in perspective, tobacco smoking will cause several thousand times more cancers in the same population", but also, referring to the numbers of different types of cancers, "The exception is qalqonsimon bez saratoni, which, over ten years ago, was already shown to be increased in the most contaminated regions around the site of the accident".[116] The full version of the Jahon Sog'liqni saqlash tashkiloti health effects report adopted by the Birlashgan Millatlar, also published in 2006, included the prediction of, in total, no more of 4,000 deaths from cancer.[117] A paper which the Union of concerned scientists took issue with the report, and they have, following the disputed chiziqli cheksiz model (LNT) model of cancer susceptibility,[118] instead estimated, for the broader population, that the legacy of Chernobyl would be a total of 25,000 excess cancer deaths worldwide.[119] That places the total Chernobyl death toll below that of the worst dam failure accident in history, the Banqiao to'g'oni disaster of 1975 in China.

Katta miqdorda radioaktiv ifloslanish were spread across Europe due to the Chernobyl disaster, and sezyum va stronsiyum contaminated many agricultural products, livestock and soil. The accident necessitated the evacuation of the entire city of Pripyat and of 300,000 people from Kiev, rendering an area of land unusable to humans for an indeterminate period.[120]

As radioactive materials decay, they release particles that can damage the body and lead to cancer, particularly seziy-137 va yod-131. In the Chernobyl disaster, releases of cesium-137 contaminated land. Some communities, including the entire city of Pripyat, were abandoned permanently. One news source reported that thousands of people who drank milk contaminated with radioactive iodine developed thyroid cancer.[121] The exclusion zone (approx. 30 km radius around Chernobyl) may have significantly elevated levels of radiation, which is now predominantly due to the decay of seziy-137, for around 10 half-lives of that isotope, which is approximately for 300 years.[122]

Tufayli bioakkumulyatsiya of cesium-137, some mushrooms as well as wild animals which eat them, e.g. Germaniyada ovlangan yovvoyi cho'chqalar va Avstriyada kiyiklar odam iste'mol qilish uchun xavfsiz deb hisoblanmaydigan darajalarga ega bo'lishi mumkin.[123] Mandatory radiation testing of sheep in parts of the UK that graze on lands with contaminated peat was lifted in 2012.[124]

In 2007 The Ukrainian government declared much of the Chernobilni istisno qilish zonasi, almost 490 square kilometres (190 sq mi), a zoological animal reserve.[125] With many species of animals experiencing a population increase since human influence has largely left the region, including an increase in moose, bison and wolf numbers.[126] However other species such as barn qaldirg'ochlar va ko'p umurtqasizlar, masalan. o'rgimchak numbers are below what is suspected.[127] With much controversy amongst biologists over the question of, if in fact Chernobyl is now a wildlife reserve.[128]

SL-1 meltdown

This image of the SL-1 core served as a sober reminder of the damage that a yadroviy eritma can cause.

The SL-1, or Stationary Low-Power Reactor Number One, was a Amerika Qo'shma Shtatlari armiyasi eksperimental atom reaktori which underwent a bug 'portlashi va erish on January 3, 1961, killing its three operators; John Byrnes, Richard McKinley, and Richard Legg.[129] The direct cause was the improper manual withdrawal of the central boshqaruv tayoqchasi, responsible for absorbing neutrons in the reactor core. This caused the reactor power to surge to about 20,000MW and in turn, an explosion occurred. The event is the only known fatal reactor accident in the United States and the first to occur in the world.[130][129] The accident released about 80 kurilar (3.0 TBq ) ning yod-131,[131] which was not considered significant due to its location in a remote desert of Aydaho. About 1,100 curies (41 TBq) of bo'linish mahsulotlari atmosferaga chiqarildi.[132]

Radiation exposure limits prior to the accident were 100 röntgenlar to save a life and 25 to save valuable property. During the response to the accident, 22 people received doses of 3 to 27 Röntgens full-body exposure.[133] Removal of radioactive waste and disposal of the three bodies eventually exposed 790 people to harmful levels of radiation.[134] The hands of the initial victims were buried separately from their bodies as a necessary measure in response to their radiation levels.[129]

Attacks and sabotage

Atom elektr stantsiyalari, uranni boyitish plants, fuel fabrication plants, and even potentially uranium mines are vulnerable to attacks which could lead to widespread radioaktiv ifloslanish. The attack threat is of several general types: commando-like ground-based attacks on equipment which if disabled could lead to a reactor yadro erishi or widespread dispersal of radioactivity; and external attacks such as an aircraft crash into a reactor complex, or cyber attacks.[135] Terrorists could target atom elektr stantsiyalari in an attempt to release radioaktiv ifloslanish into the environment and community.

Nuclear reactors become preferred targets during military conflict and have been repeatedly attacked by military air strikes:[136]

  • In September 1980, Iran bombed the incomplete Osirak reactor complex in Iraq.
  • In June 1981, an Israeli air strike completely destroyed Iraq's Osirak reactor.
  • Between 1984 and 1987, Iraq bombed Iran's incomplete Bushehr nuclear plant six times.
  • In Iraq in 1991, the U.S. bombed three nuclear reactors and an enrichment pilot facility.

The United States 9/11 Commission has said that nuclear power plants were potential targets originally considered for the 2001 yil 11 sentyabr hujumlar. If terrorist groups could sufficiently damage safety systems to cause a yadro erishi at a nuclear power plant, and/or sufficiently damage spent fuel pools, such an attack could lead to a widespread radioactive contamination. According to a 2004 report by the U.S. Kongressning byudjet idorasi, "The human, environmental, and economic costs from a successful attack on a nuclear power plant that results in the release of substantial quantities of radioactive material to the environment could be great."[137] An attack on a reactor's sarflangan yoqilg'i hovuzi could also be serious, as these pools are less protected than the reactor core. The release of radioactivity could lead to thousands of near-term deaths and greater numbers of long-term fatalities.[135]

Insider sabotage occurs because insiders can observe and work around security measures. In a study of insider crimes, the authors repeatedly said that successful insider crimes depended on the perpetrators’ observation and knowledge of security vulnerabilities. Beri atom asri boshlandi AQSh Energetika vazirligi ’s nuclear laboratories have been known for widespread violations of security rules. A better understanding of the reality of the insider threat will help to overcome complacency and is critical to getting countries to take stronger preventative measures.[138]

Researchers have emphasized the need to make nuclear facilities extremely safe from sabotage and attacks that could release massive quantities of radioactivity into the environment and community. New reactor designs have features of passiv xavfsizlik, such as the flooding of the reactor core without active intervention by reactor operators. But these safety measures have generally been developed and studied with respect to accidents, not to the deliberate reactor attack by a terrorist group. Biroq, AQSh Yadro nazorati bo'yicha komissiya does now requires new reactor license applications to consider security during the design stage.[135]

Tabiiy ofatlar

Ning joylashuvi Fessenxaym atom elektr stansiyasi ichida Reyn Rift vodiysi yaqinida ayb sabab bo'lgan 1356 yil Bazel zilzilasi is causing concern.

2011 yildan keyin Fukusima I yadro hodisalari there has been an increased focus on the risks associated with seysmik faollik and the potential for environmental radioactive release. Genpatsu-shinsai, ma'no nuclear power plant earthquake disaster is a term which was coined by Japanese seysmolog Professor Katsuhiko Ishibashi 1997 yilda.[139] Bu tasvirlaydi a domino effekti scenario in which a major zilzila causes a severe accident at a atom elektr stantsiyasi near a major population centre, resulting in an uncontrollable release of radiation in which the radiation levels make damage control and rescue impossible, and earthquake damage severely impedes the evacuation of the population. Ishibashi envisages that such an event would have a global impact seriously affecting future generations.[139][140]

The 1999 yil Blayais atom elektrostansiyasining toshqini edi a toshqin that took place on the evening of December 27, 1999. It was caused when a combination of the tide and high winds from the extratropical storm Martin ga olib keldi dengiz devorlari ning Blayais atom elektr stansiyasi yilda Frantsiya being overwhelmed.[141] The event resulted in the loss of the plant's off-site power supply and knocked out several safety-related systems, resulting in a 2-daraja tadbir Xalqaro yadroviy voqealar ko'lami.[142] The incident illustrated the potential for flooding to damage multiple items of equipment throughout a plant, with the potential for radioactive release.[141][143]

Barqarorlik

Ga binoan Joshua M. Pirs ning Michigan Texnologik Universiteti, on a global-scale a “sustainable nuclear power system” would entail: (i) dramatically improving energiyadan samarali foydalanish and greenhouse gas emissions intensity by updating technology and functionality through the entire life cycle; (ii) improving nuclear security to reduce nuclear power risks and making sure that the nuclear industry can operate without large public nuclear accident insurance subsidies; (iii) eliminating all radioactive waste at the end of life and minimizing the environmental impact during the nuclear fuel cycle; and (iv) the nuclear industry must regain public trust or face obsolescence, as a diverse range of qayta tiklanadigan energiya technologies are quickly commercialized. Pearce also believes that the nuclear industry must address the issue of equity, both in the present and for later generations.[144]

Ishdan chiqarish

Example of decommissioning work underway.
Reaktor bosimli idish being transported away from the site for burial. Images courtesy of the NRC.

Nuclear decommissioning is the process by which a atom elektr stantsiyasi site is dismantled so that it will no longer require measures for radiation protection. Mavjudligi radioaktiv material necessitates processes that are occupationally dangerous, and hazardous to the natural environment, expensive, and time-intensive.[145]

Ko'pchilik atom zavodlari currently operating in the US were originally designed for a life of about 30–40 years[146] and are licensed to operate for 40 years by the AQSh yadroviy tartibga solish komissiyasi.[147] The average age of these reactors is 32 years.[147] Therefore, many reactors are coming to the end of their licensing period. If their licenses are not renewed, the plants must go through a decontamination and decommissioning process.[146][148] Many experts and engineers have noted there is no danger in these aged facilities, and current plans are to allow nuclear reactors to run for much longer lifespans.

Decommissioning is an administrative and technical process. It includes clean-up of radioactivity and progressive demolition of the plant. Once a facility is fully decommissioned, no danger of a radiologic nature should persist. The costs of decommissioning are to be spread over the lifetime of a facility and saved in a decommissioning fund. After a facility has been completely decommissioned, it is released from regulatory control, and the licensee of the plant will no longer be responsible for its nuclear safety. With some plants the intent is to eventually return to "greenfield" status.

Shuningdek qarang

Adabiyotlar

  1. ^ a b International Panel on Fissile Materials (September 2010). "The Uncertain Future of Nuclear Energy" (PDF). Research Report 9. p. 1.
  2. ^ Barras, Colin (22 April 2016). "The Chernobyl exclusion zone is arguably a nature reserve". www.bbc.com. British Broadcasting Corporation. Arxivlandi asl nusxasidan 2016 yil 21 mayda. Olingan 18 iyul 2016. across most of the exclusion zone, the doses aren't really high enough
  3. ^ Ishii, Noriyuki (5 July 2016). "Number of Fukushima Evacuees Falls Below 90,000". www.jaif.or.jp. Yaponiya atom sanoat forumi. Arxivlandi asl nusxasidan 2016 yil 18 iyuldagi. Olingan 18 iyul 2016.
  4. ^ Benjamin K. Sovacool. Osiyoda atom energiyasi va qayta tiklanadigan elektr energiyasini tanqidiy baholash, Journal Contemporary Asia, Jild 40, No. 3, August 2010, pp. 376.
  5. ^ Jeff Tollefson (4 March 2014). "AQSh chiqindilarni qayta tiklashga intilmoqda: radioaktiv qochqin yadro omborlarini diqqat markaziga olib keladi". Tabiat. 507 (7490): 15–16. doi:10.1038/507015a. PMID  24598616.
  6. ^ Department of Energy Carlsbad Field Office (Jun 2002). "Chapter 1, "Introduction and Statement of Purpose and Need"" (PDF). Final Environmental Assessment for Actinide Chemistry and Repository Science Laboratory. DOE/EA-1404. AQSh Energetika vazirligi. Olingan 2011-03-21.
  7. ^ Shughart, William F. (1 October 2014). "Why Doesn't U.S. Recycle Nuclear Fuel?". www.forbes.com. Forbes Media MChJ. Arxivlandi asl nusxasidan 2016 yil 23 yanvarda. Olingan 18 iyul 2016. spent nuclear fuel is a valuable asset, not simply waste requiring disposal
  8. ^ NEA – Moving forward with geological disposal
  9. ^ a b Harold Feiveson, Zia Mian, M.V. Ramana va Frank fon Xippel (2011 yil 27-iyun). "Yadrodan foydalanilgan yoqilg'ini boshqarish: 10 ta mamlakatdan o'rganish bo'yicha siyosat darslari". Atom olimlari byulleteni.CS1 maint: bir nechta ism: mualliflar ro'yxati (havola)
  10. ^ US DOE – Radioactive waste: an international concern Arxivlandi 2006-09-24 da Orqaga qaytish mashinasi
  11. ^ R. Naudet. 1976 yil. The Oklos nuclear reactors: 1800 millions years ago. Interdisciplinary Science Reviews, 1(1) p.72-84.
  12. ^ Vandenbosch, Robert, and Susanne E. Vandenbosch. 2007 yil. Yadro chiqindilari to'xtab qoldi. Solt Leyk Siti: Yuta universiteti matbuoti.
  13. ^ M.V. Ramana. Nuclear Power: Economic, Safety, Health, and Environmental Issues of Near-Term Technologies, Atrof muhit va resurslarni yillik sharhi, 2009, 34, p. 145.
  14. ^ Benjamin K. Sovacool (2011). Yadro energetikasining kelajagi uchun bahslashish: Atom energiyasini tanqidiy global baholash, World Scientific, p. 144; Shuningdek qarang Yadro Nebraska.
  15. ^ a b "Komissiya to'g'risida". Arxivlandi asl nusxasi 2012 yil 1 aprelda. Olingan 1 yanvar 2016.
  16. ^ "Please Note". Arxivlandi asl nusxasi 2012 yil 17-avgustda. Olingan 1 yanvar 2016.
  17. ^ a b Blue Ribbon Commission on America’s Nuclear Future. "Disposal Subcommittee Report to the Full Commission" (PDF). Arxivlandi asl nusxasi (PDF) 2012 yil 1-iyunda. Olingan 1 yanvar 2016.
  18. ^ NRC. Radioactive Waste: Production, Storage, Disposal (NUREG/BR-0216, Rev. 2)
  19. ^ NRC. Radioaktiv chiqindilarni boshqarish
  20. ^ Frosch, Dan. A Fight in Colorado Over Uranium Mines, The New York Times, April 16, 2013, p. A15 in the New York edition. Published online April 16, 2013.
  21. ^ a b ANS dosechart [American Nuclear Society]
  22. ^ Xvistendahl, Mara. "Ko'mir kuli yadro chiqindilaridan ko'ra ko'proq radioaktivdir". Ilmiy Amerika. Olingan 28 iyun 2017.
  23. ^ Beth Daley. Leaks imperil nuclear industry: Vermont Yankee among troubled Boston Globe, 2010 yil 31 yanvar.
  24. ^ Yadro nazorati bo'yicha komissiya. Groundwater Contamination (Tritium) at Nuclear Plants.
  25. ^ EPA
  26. ^ "Tritium in drinking water". nuclearsafety.gc.ca. Kanada yadro xavfsizligi komissiyasi. Olingan 29 iyul 2017.
  27. ^ "Jahon uran qazib olish". Butunjahon yadro assotsiatsiyasi. Olingan 2010-06-11.
  28. ^ "Uranium resources sufficient to meet projected nuclear energy requirements long into the future". Yadro energetikasi agentligi (NEA). 3 iyun 2008. Arxivlangan asl nusxasi 2008 yil 5-dekabrda. Olingan 2008-06-16.
  29. ^ "Arxivlangan nusxa". Arxivlandi asl nusxasi 2014-09-13. Olingan 2014-09-09.CS1 maint: nom sifatida arxivlangan nusxa (havola)
  30. ^ "Continued growth in uranium production". World-nuclear-news.org. 2011-05-03. Olingan 2012-10-16.
  31. ^ Nuclear power and water scarcity, ScienceAlert, 28 October 2007, Retrieved 2008-08-08
  32. ^ "Navajos mark 20th anniversary of Church Rock spill", Daily Courier, Preskott, Arizona, July 18, 1999
  33. ^ a b v Pasternak, Judi (2010). Sariq ifloslik: zaharlangan er va xiyonat qilgan odamlar. Bepul matbuot. p. 149. ISBN  978-1416594826.
  34. ^ US Congress, House Committee on Interior and Insular Affairs, Subcommittee on Energy and the Environment. Mill Tailings Dam Break at Church Rock, New Mexico, 96th Cong, 1st Sess (October 22, 1979):19–24.
  35. ^ Brugge, D.; DeLemos, J.L.; Bui, C. (2007), "The Sequoyah Corporation Fuels Release and the Church Rock Spill: Unpublicized Nuclear Releases in American Indian Communities", Amerika sog'liqni saqlash jurnali, 97 (9): 1595–600, doi:10.2105 / ajph.2006.103044, PMC  1963288, PMID  17666688
  36. ^ Quinones, Manuel (December 13, 2011), "As Cold War abuses linger, Navajo Nation faces new mining push", E&E yangiliklari, olingan 28 dekabr, 2012
  37. ^ Pasternak 2010, p. 150.
  38. ^ Pasternak, Judy (2006-11-19). "A peril that dwelt among the Navajos". Los Anjeles Tayms.
  39. ^ U.S. EPA, Radiation Protection, "Uranium Mining Waste" 30 August 2012 Web.4 December 2012http://www.epa.gov/radiation/tenorm/uranium.html
  40. ^ Uranium Mining and Extraction Processes in the United States Figure 2.1. Mines and Other Locations with Uranium in the Western U.S.http://www.epa.gov/radiation/docs/tenorm/402-r-08-005-voli/402-r-08-005-v1-ch2.pdf
  41. ^ Laws We Use (Summaries):1978 – Uranium Mill Tailings Radiation Control Act(42 USC 2022 et seq.), EPA, olingan 16 dekabr, 2012
  42. ^ US National Cancer Institute, Accidents at Nuclear Power Plants and Cancer Risk, 19 Apr. 2011.
  43. ^ US Centers for Disease Control and Prevention, Uranium miners, 13 July 2012.
  44. ^ a b AQSh yadroviy tartibga solish komissiyasi, Fact Sheet on Analysis of Cancer Risk in Populations Near Nuclear Facilities—Phase 1 Feasibility Study, 29 Mar. 2012.
  45. ^ Giovanni Ghirga, "Cancer in children residing near nuclear power plants: an open question", Italian Journal of Pediatrics,
  46. ^ Canadian Nuclear Safety Commission, Mifbusters, 3 Feb. 2014
  47. ^ a b Beyker, P. J .; Hoel, D. G. (2007). "Meta-analysis of standardized incidence and mortality rates of childhood leukaemia in proximity to nuclear facilities". Saraton kasalligini davolash bo'yicha Evropa jurnali. 16 (4): 355–363. doi:10.1111/j.1365-2354.2007.00679.x. PMID  17587361.
  48. ^ Spix, C.; Blettner, M. (2009). "Re: BAKER P.J. & HOEL D.G. (2007)European Journal of Cancer Care16, 355–363. Meta-analysis of standardized incidence and mortality rates of childhood leukaemia in proximity to nuclear facilities". Saraton kasalligini davolash bo'yicha Evropa jurnali. 18 (4): 429–430. doi:10.1111/j.1365-2354.2008.01027.x. PMID  19594613.
  49. ^ a b v Elliott, A, Editor (2011) COMARE 14th Report: Further consideration of the incidence of childhood leukaemia around nuclear power plants in Great Britain 6 May 2011, Retrieved 6 May 2011
  50. ^ Kichkina, J .; McLaughlin, J.; Miller, A. (2008). "Leukaemia in young children living in the vicinity of nuclear power plants". Xalqaro saraton jurnali. 122 (4): x–xi. doi:10.1002/ijc.23347. PMID  18072253. S2CID  20727452.
  51. ^ M.V. Ramana. Nuclear Power: Economic, Safety, Health, and Environmental Issues of Near-Term Technologies, Atrof muhit va resurslarni yillik sharhi, 2009. 34, p.142.
  52. ^ Laurier, D.; Hémon, D.; Clavel, J. (2008). "Childhood leukaemia incidence below the age of 5 years near French nuclear power plants". Radiologik himoya jurnali. 28 (3): 401–403. doi:10.1088/0952-4746/28/3/N01. PMC  2738848. PMID  18714138.
  53. ^ Lopez-Abente, Gonzalo et al., (2009)Leukemia, Lymphomas, and Myeloma Mortality in the Vicinity of Nuclear Power Plants and Nuclear Fuel Facilities in Spain Arxivlandi 2011-08-26 da Orqaga qaytish mashinasi Cancer Epidemiology, Biomarkers & Prevention, Vol. 8, 925–934, October 1999
  54. ^ Jablon, S.; Hrubec, Z.; Boice Jr, J. (1991). "Cancer in populations living near nuclear facilities. A survey of mortality nationwide and incidence in two states". JAMA: Amerika tibbiyot assotsiatsiyasi jurnali. 265 (11): 1403–1408. doi:10.1001/jama.265.11.1403. PMID  1999880.
  55. ^ Yoshimoto, Y.; Yoshinaga, S.; Yamamoto, K .; Fijimoto, K.; Nishizawa, K.; Sasaki, Y. (2004). "Research on potential radiation risks in areas with nuclear power plants in Japan: Leukaemia and malignant lymphoma mortality between 1972 and 1997 in 100 selected municipalities". Radiologik himoya jurnali. 24 (4): 343–368. Bibcode:2004JRP....24..343Y. doi:10.1088/0952-4746/24/4/001. PMID  15682904.
  56. ^ US National Cancer Institute, No Excess Mortality Risk Found in Counties with Nuclear Facilities Arxivlandi 2009-02-06 da Orqaga qaytish mashinasi, accessed 22 Mar. 2014.
  57. ^ Butunjahon yadro assotsiatsiyasi. "Fukushima Accident". WNA. Olingan 23 avgust 2014.
  58. ^ Jeykob, P .; Ruh, L .; Blettner, M.; Hammer, G.; Zeeb, H. (2009 yil 30 mart). "Radiatsiya ishchilarining saraton xavfi kutilganidan kattami?". Kasbiy va atrof-muhit tibbiyoti. 66 (12): 789–796. doi:10.1136 / oem.2008.043265. PMC  2776242. PMID  19570756.
  59. ^ Kardis, E .; Vrixeyd, M .; Blettner, M.; Gilbert, E .; Xakama, M.; Tepalik, C .; Xau, G.; Kaldor, J .; Muirhead, C. R.; Shubauer-Berigan, M.; Yoshimura, T .; Bermann, F .; Kovper, G.; Fix, J .; Xaker, C .; Xaynmiller, B .; Marshall, M .; Thierry-Chef, I .; Utterback, D .; Ahn, Y-O .; Amoros, E .; Ashmore, P .; Ouvinen, A .; Bae, J-M .; Bernar, J .; Biau, A .; Kombalot, E .; Deboodt, P .; Sakristan, A. Diez; Eklöf, M .; Engels, H .; Engxolm, G.; Gulis, G.; Habib, R. R.; Xolan, K .; Xivonen, X .; Kerekes, A .; Kurtinayt, J .; Malker, H.; Martuzzi, M .; Mastauskas, A .; Monnet, A .; Mozer, M.; Pearce, M. S.; Richardson, D. B.; Rodriguez-Artalexo, F.; Rojel, A .; Tardi X.; Telle-Lamberton, M.; Turay, I .; Usel, M.; Veress, K. (2007 yil aprel). "Yadro sanoatida radiatsiya ishchilari o'rtasida saraton xastaligini 15 mamlakat bo'yicha birgalikda o'rganish: saraton xastaliklarining radiatsiyaviy xavfini baholash". Radiatsion tadqiqotlar. Xalqaro saraton tadqiqotlari agentligi. 167 (4): 396–416. Bibcode:2007RadR..167..396C. doi:10.1667 / RR0553.1. PMID  17388693. S2CID  36282894.
  60. ^ John P. Christodouleas (June 16, 2011). "Short-Term and Long-Term Health Risks of Nuclear-Power-Plant Accidents". Nyu-England tibbiyot jurnali. 364 (24): 2334–2341. doi:10.1056/NEJMra1103676. PMID  21506737.
  61. ^ Tomoko Yamazaki; Shunichi Ozasa (June 27, 2011). "Fukusima nafaqaxo'rlari Tepco yillik yig'ilishida yadroga qarshi aksiyadorlarni boshqaradi". Bloomberg.
  62. ^ Mari Saito (May 7, 2011). "Japan anti-nuclear protesters rally after PM call to close plant". Reuters.
  63. ^ Lydia B. Zablotska (April 2014). "Leukemis, lymphoma and multiple myeloma mortality". Atrof-muhit tadqiqotlari. 130: 43–50. doi:10.1016/j.envres.2014.01.002. PMC  4002578. PMID  24583244.
  64. ^ a b Coal Combustion – ORNL Review Vol. 26, No. 3&4, 1993 Arxivlandi 2007 yil 5 fevral, soat Orqaga qaytish mashinasi
  65. ^ a b The EPA. Calculate Your Radiation Dose
  66. ^ "Dirty Air, Dirty Power: Mortality and Health Damage Due to Air Pollution from Power Plants". Havoni tozalash bo'yicha maxsus guruh. 2004. Arxivlangan asl nusxasi 2006-09-23. Olingan 2006-11-10.
  67. ^ ExternE-Pol, External costs of current and advanced electricity systems, associated with emissions from the operation of power plants and with the rest of the energy chain, final technical report. See figure 9, 9b and figure 11
  68. ^ David Bodansky. "The Environmental Paradox of Nuclear Power". Amerika jismoniy jamiyati. Arxivlandi asl nusxasi 2008-01-27 da. Olingan 2008-01-31. (qayta nashr etilgan Ekologik amaliyot, vol. 3, yo'q. 2 (June 2001), pp.86–88 (Oxford University Press))
  69. ^ "Some Amazing Facts about Nuclear Power". 2002 yil avgust. Olingan 2008-01-31.
  70. ^ Alex Kirby (13 December 2004). "Pollution: A life and death issue". BBC yangiliklari. Olingan 2008-01-31.
  71. ^ Don Hopey (June 29, 2005). "State sues utility for U.S. pollution violations". Pitsburg Post-Gazette. Arxivlandi asl nusxasi 2007 yil 24 yanvarda. Olingan 2008-01-31.
  72. ^ Alex Gabbard. "Coal Combustion: Nuclear Resource or Danger". Oak Ridge milliy laboratoriyasi. Arxivlandi asl nusxasi 2007-02-05 da. Olingan 2008-01-31.
  73. ^ Nuclear proliferation through coal burning Arxivlandi 2009-03-27 da Orqaga qaytish mashinasi — Gordon J. Aubrecht, II, Ohio State University
  74. ^ "Safety of Nuclear Power Reactors".
  75. ^ Doug Brugge; Jamie L. deLemos; Cat Bui (September 2007). "Sequoyah korporatsiyasi yoqilg'ini chiqarish va cherkovdagi toshlar to'kilishi: amerikalik hind jamoalarida ommaviy bo'lmagan yadroviy chiqindilar". Am J sog'liqni saqlash. 97 (9): 1595–600. doi:10.2105/AJPH.2006.103044. PMC  1963288. PMID  17666688.
  76. ^ Vashington Post. Happy in Their Haven Beside the Nuclear Plant.
  77. ^ NBC. Dropping Lake Levels Affect Shearon Harris
  78. ^ "About Turkey Point". FPL.com. Florida Power & Light. Olingan 2007-07-25.
  79. ^ a b John Macknick and others, Elektr energiyasini ishlab chiqaruvchi texnologiyalar uchun operatsion suv sarfi va uni chiqarish omillarini ko'rib chiqish, National Renewable Energy Laboratory, Technical Report NREL/TP-6A20-50900.
  80. ^ Cooling power plants World Nuclear Association
  81. ^ SUGIYAMA KEN'ICHIRO (Hokkaido Univ.) et al. Nuclear District Heating: The Swiss Experience Arxivlandi 2007-12-02 da Orqaga qaytish mashinasi
  82. ^ IAEA, 1997: Nuclear power applications: Supplying heat for homes and industries Arxivlandi 2010-07-09 da Orqaga qaytish mashinasi
  83. ^ Kuzatuvchi. Heatwave shuts down nuclear power plants.
  84. ^ Susan Sachs (2006-08-10). "Nuclear power's green promise dulled by rising temps". Christian Science Monitor.
  85. ^ a b Dr. Frauke Urban and Dr. Tom Mitchell 2011. Climate change, disasters and electricity generation Arxivlandi 2012-09-20 da Orqaga qaytish mashinasi. London: Chet elda rivojlanish instituti va Rivojlanishni o'rganish instituti
  86. ^ Marshall, Brian; Robert Lamb (9 October 2000). "Atom energetikasi qanday ishlaydi". HowStuffWorks. Olingan 30 mart 2014.
  87. ^ Western Resource Advocates. "Water Use for Energy". Western Resource Advocates. Olingan 30 mart 2014.
  88. ^ Yadro energetikasining kelajagi uchun bahslashish, p. 149.
  89. ^ Klepper, Otto (1974). "Siting Considerations for future offshore nuclear energy stations". Yadro texnologiyasi. 22 (2): 160–169. doi:10.13182/NT74-A31399.
  90. ^ Kurt Kleiner. Nuclear energy: assessing the emissions Nature Reports, Jild 2, October 2008, pp. 130–131.
  91. ^ Mark Dizendorf (2007). Barqaror energiya bilan issiqxona echimlari, University of New South Wales Press, p. 252.
  92. ^ Mark Diesendorf. Is nuclear energy a possible solution to global warming? Arxivlandi 2012 yil 22-iyul, soat Orqaga qaytish mashinasi pdf
  93. ^ The Franklin Institute Science Museum 2014
  94. ^ "Hydropower-Internalised Costs and Externalised Benefits"; Frans H. Koch; Xalqaro energetika agentligi (IEA)-Implementing Agreement for Hydropower Technologies and Programmes; 2000 yil.
  95. ^ AEA Technology environment (May 2005). "Environmental Product Declaration of Electricity from Torness Nuclear Power Station" (PDF). Arxivlandi asl nusxasi 2008 yil 4-avgustda. Olingan 31 yanvar 2010.
  96. ^ US National Renewable Energy Laboratory, Life cycle assessment harmonization, 17 Oct. 2013.
  97. ^ Warner, Ethan S.; Heath, Garvin A. (2012). "Yadro elektr energiyasi ishlab chiqarishning hayot tsikli issiqxona gazlari chiqindilari". Sanoat ekologiyasi jurnali. 16: S73-S92. doi:10.1111 / j.1530-9290.2012.00472.x. S2CID  153286497.
  98. ^ US National Renewable Energy Laboratory, Nuclear power results – life cycle assessment harmonization Arxivlandi 2013-07-02 da Orqaga qaytish mashinasi, 17 Oct. 2013.
  99. ^ Kharecha, Pushker A. (2013). "Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power". Atrof-muhit fanlari. 47 (9): 4889–4895. Bibcode:2013EnST...47.4889K. doi:10.1021/es3051197. PMID  23495839.
  100. ^ Ramana, M.V. (2009). "Nuclear Power: Economic, Safety, Health, and Environmental Issues of Near-Term Technologies". Atrof muhit va resurslarni yillik sharhi. 34: 143. doi:10.1146/annurev.environ.033108.092057. S2CID  154613195.
  101. ^ a b Warner, E. S.; Heath, G. A. (2012). "Yadro elektr energiyasi ishlab chiqarishning hayot tsikli issiqxona gazlari chiqindilari". Sanoat ekologiyasi jurnali. 16: S73-S92. doi:10.1111 / j.1530-9290.2012.00472.x. S2CID  153286497.
  102. ^ Richard Shiffman (2013 yil 12 mart). "Ikki yildan beri Amerika Fukusima yadroviy falokatidan saboq olmadi". Guardian.
  103. ^ Martin Fakler (2011 yil 1-iyun). "Hisobotda Yaponiyada tsunami xavfi kam baholanganligi aniqlandi". Nyu-York Tayms.
  104. ^ "Radiation spike hinders work at Japan nuke plant". CBS News. 2011-03-15. Olingan 18 mart 2011.
  105. ^ Turner, James Edward (2007). Atoms, Radiation, and Radiation Protection. Vili-VCH. p.421. ISBN  978-3-527-40606-7.
  106. ^ Keyt Bradshir; va boshq. (2011 yil 12 aprel). "Yaponiya rasmiylari yadroviy ogohlantirish darajasining ko'tarilishi sababli mudofaada". Nyu-York Tayms.
  107. ^ Cresswell, Adam (March 16, 2011), "Stealthy, silent destroyer of DNA", Avstraliyalik
  108. ^ Winter, Michael (March 24, 2011). "Hisobot: Yaponiya zavodidan chiqadigan chiqindilar Chernobil darajasiga yaqinlashmoqda". USA Today.
  109. ^ Maykl Vinter (2011 yil 24 mart). "Hisobot: Yaponiya zavodidan chiqadigan chiqindilar Chernobil darajasiga yaqinlashmoqda". USA Today.
  110. ^ a b Jungmin Kang (2011 yil 4-may). "Boshqa Fukusimaning oldini olish uchun besh qadam". Atom olimlari byulleteni.
  111. ^ a b Devid Mark; Mark Willacy (April 1, 2011). "Fukusimadagi 100 yillik jang" ekipajlari ". ABC News.
  112. ^ a b "Atom energiyasi: bug 'tozalaganda". Iqtisodchi. 2011 yil 24 mart.
  113. ^ Fakler, Martin. Large Zone Near Japanese Reactors to Be Off Limits, The New York Times website on August 21, 2011, print edition on August 22, 2011, pg.A6.
  114. ^ Ohtsuki, Noriyoshi (17 July 2016). "Some restricted zones to be lifted near Fukushima nuclear plant". www.asahi.com. Asaxi Shimbun. Arxivlandi asl nusxasidan 2016 yil 18 iyuldagi. Olingan 18 iyul 2016. radiation level is now about 9 millisieverts per year, about one-fifth the level of five years ago
  115. ^ Kardis, Elisabet; va boshq. (2006). "Evropada Chernobil AESidagi avariya radioaktiv tushishidan saraton yukini baholash". Xalqaro saraton jurnali. 119 (6): 1224–1235. doi:10.1002 / ijc.22037. PMID  16628547. S2CID  37694075.
  116. ^ Press Release N° 168: The Cancer Burden from Chernobyl in Europe Arxivlandi 2011-07-01 da Orqaga qaytish mashinasi, Lyon Cedex, France: Jahon Sog'liqni saqlash tashkiloti, Xalqaro saraton tadqiqotlari agentligi, April 20, 2006.
  117. ^ Peplow, Mark. Special Report: Counting The Dead, Tabiat, 440, pp. 982–983, April 20, 2006, DOI:10.1038/440982a; Published online April 19, 2006; corrected April 21, 2006.
  118. ^ Tubiana, Maurice; Feinendegen, Ludwig; Yang, Chichuan; Kaminski, Joseph (April 2009). "The Linear No-Threshold Relationship Is Inconsistent with Radiation Biologic and Experimental Data". Radiologiya. 251 (1): 13–22. doi:10.1148/radiol.2511080671. PMC  2663584. PMID  19332842.
  119. ^ UCS ning yangi tahliliga ko'ra, Chernobil saratoni o'limi tez-tez keltirilgan 4000 kishidan olti martadan ko'proqni tashkil qiladi, Xavotirga tushgan olimlar ittifoqi, April 22, 2011. Retrieved from UCSUSA.org website.
  120. ^ Sovacool, Benjamin K. (2008). "Qobiliyatsiz xarajatlar: 1907-2007 yillarda sodir bo'lgan yirik energetik avariyalarni dastlabki baholash". Energiya siyosati. 36 (5): 1806. doi:10.1016 / j.enpol.2008.01.040.
  121. ^ Renee Schoof (April 12, 2011). "Japan's nuclear crisis comes home as fuel risks get fresh look". Makklatchi.
  122. ^ Health Impact of the Chernobyl Accident, NuclearInfo.net website, August 31, 2005.
  123. ^ Juergen Baetz (2011 yil 1 aprel). "Radioactive boars and mushrooms in Europe remain a grim reminder 25 years after Chornobyl". Associated Press. Olingan 7 iyun 2012.[doimiy o'lik havola ]
  124. ^ "Buyuk Britaniyaning so'nggi fermer xo'jaliklarida Chernobil fojiasidan keyingi qo'ylar nazorati bekor qilindi". BBC. 1 iyun 2012 yil. Olingan 7 iyun 2012.
  125. ^ Ukrainian President Turns Chernobyl Exclusion Zone, 48,870 Hectares, Into Game Reserve, League of Ukrainian Canadian Women, August 21, 2007; bu o'z navbatida:
    • Interfaks-Ukraina axborot agentligi, Kiev, (rus tilida), 2007 yil 13 avgust
    • BBC Monitoring xizmati, Buyuk Britaniya, 2007 yil 13 avgust.
  126. ^ Stiven Mulvi. Yovvoyi tabiat Chernobil radiatsiyasiga qarshi turadi, BBC yangiliklari, 2006 yil 20 aprel.
  127. ^ Potter, Ned. Chernobil: Yadro chiqindimi? Yoki qo'riqxona?, ABC News, 2009 yil 1-may.
  128. ^ Xigginbotam, Odam. Yarim umr: Chernobil halokatidan 25 yil o'tgach, ilmiy munozaralar davom etmoqda, Simli, 2011 yil 5-may.
  129. ^ a b v "SL-1 reaktoridagi avariya".
  130. ^ Steysi, Syuzan M. (2000). Printsipni isbotlash: Aydaho milliy muhandislik va atrof-muhit laboratoriyasining tarixi, 1949-1999 (PDF). AQSh Energetika vazirligi, Aydaho operatsiyalar idorasi. ISBN  978-0-16-059185-3. Arxivlandi asl nusxasi (PDF) 2012-11-01 kunlari. 16-bob.
  131. ^ Yadro energiyasini aldash Jadval 7: Ba'zi reaktor hodisalari
  132. ^ Horan, J. R. va J. B. Braun, 1993 yil, INEL-da Aydaho dala-ofis ishlarining kasbiy nurlanish tarixi, EGG-CS-11143, EG&G Idaho, Inc., oktyabr, Aydaho Falls, Aydaho.
  133. ^ Jonston, Vm. Robert. "SL-1 reaktori ekskursiyasi, 1961 yil". Jonsonning arxivi. Olingan 30 iyul 2010.
  134. ^ Maslin, Janet (1984 yil 21 mart). "Sl-1 (1983): Zaharlanish xavfini ko'rib chiqish". The New York Times. Olingan 30 iyul, 2010.
  135. ^ a b v Charlz D. Fergyuson; Frank A. Settle (2012). "AQShda atom energiyasining kelajagi" (PDF). Amerika olimlari federatsiyasi.
  136. ^ Benjamin K. Sovacool (2011). Yadro energetikasining kelajagi uchun bahslashish: Atom energiyasini tanqidiy global baholash, World Scientific, p. 192.
  137. ^ "Kongress byudjyet idorasining kuch reaktorlari va sarflangan materiallarga qilingan hujumlardan kelib chiqadigan zaifliklari".
  138. ^ Metyu Bunn va Scott Sagan (2014). "Insider tahdidlari bo'yicha eng yomon amaliyot qo'llanmasi: o'tmishdagi xatolardan saboq". Amerika San'at va Fanlar Akademiyasi.
  139. ^ a b Genpatsu-Shinsai: Yaponiya orollarida kutilayotgan zilzila va zilziladan kelib chiqadigan yadroviy avariyalarning bir nechta halokati (Slaydlar), Katsuhiko Ishibashi, 23-chi. IUGG Bosh assambleyasi, 2003 yil, Sapporo, Yaponiya, 2011-03-28
  140. ^ Genpatsu-Shinsai: Yaponiya orollarida kutilayotgan zilzila va zilzila oqibatida sodir bo'lgan yadro halokati, Katsuhiko Ishibashi, 23-chi. IUGG Bosh assambleyasi, 2003 yil, Sapporo, Yaponiya, 2011-03-28
  141. ^ a b Frantsiya va Germaniya atom elektr stantsiyalarida toshqinni qayta baholashning umumiy natijalari va xulosalari Arxivlandi 2011 yil 6 oktyabr, soat Orqaga qaytish mashinasi J. M. Mattey, E. Vial, V. Rebour, H. Lemersdorf, M. Turschmann, Evrosafe forumi 2001 yil, 2001 yilda nashr etilgan, 2011-03-21 da kirilgan
  142. ^ COMMUNIQUE N ° 7 - INCIDENT SUR LE SAYT DU BLAYAIS Arxivlandi 2013 yil 27 may, soat Orqaga qaytish mashinasi 1999-12-30 yillarda nashr etilgan ASN, 2011-03-22
  143. ^ 1999 yil Blayais toshqinidan olingan saboqlar: EDF toshqin xavfini boshqarish rejasiga umumiy nuqtai, Erik de Fraguier, EDF, 2010-03-11 da nashr etilgan, 2011-03-22 saytiga kirgan
  144. ^ Joshua M. Pirs (2012 yil 7-iyun). "Barqaror energiya manbai sifatida atom energiyasining cheklovlari". Barqarorlik. 4 (6): 1173–1187. doi:10.3390 / su4061173.
  145. ^ Benjamin K. Sovacool. "Osiyoda atom energiyasi va qayta tiklanadigan elektr energiyasini tanqidiy baholash", Zamonaviy Osiyo jurnali, Jild 40, № 3, 2010 yil avgust, p. 373.
  146. ^ a b "Yadro ekspluatatsiyasi: yadroviy inshootlarni bekor qilish - Butunjahon yadro assotsiatsiyasi".
  147. ^ a b "AQSh Atom elektr stantsiyalari necha yoshda va eng yangisi qachon qurilgan? - Tez-tez so'raladigan savollar - AQSh Energetika bo'yicha ma'muriyati (EIA)".
  148. ^ "NRC: Yadro inshootlarini bekor qilish".

Tashqi havolalar