Raketa - Rocket

A raketa (dan.) Italyancha: rocchetto, yoqilgan  "bobin")[nb 1][1] a raketa, kosmik kemalar, samolyot yoki boshqa transport vositasi bu oladi surish dan raketa dvigateli. Raketa dvigatelining egzozi butunlay hosil bo'ladi yoqilg'i raketa ichida olib yurilgan.[2] Raketa dvigatellari ishlaydi harakat va reaktsiya va raketalarni oldinga siljitib, ularning chiqindilarini qarama-qarshi tomonga katta tezlikda chiqarib yuboring va shuning uchun ham ishlashi mumkin vakuum makon.

Aslida raketalar kosmosda atmosferaga qaraganda samaraliroq ishlaydi. Ko'p bosqichli raketalar erishishga qodir qochish tezligi Erdan va shuning uchun cheksiz maksimal balandlikka erishishi mumkin. Bilan solishtirganda havo nafas oladigan dvigatellar, raketalar yengil va kuchli va katta hajmlarni yaratishga qodir tezlashtirish. Parvozlarni boshqarish uchun raketalar ishonadi momentum, havo plyonkalari, yordamchi reaksiya dvigatellari, gimballed itarish, impuls g'ildiraklari, egzoz oqimining burilishi, yoqilg'i oqimi, aylantirish, yoki tortishish kuchi.

Harbiy va ko'ngilochar maqsadlarda foydalanish uchun raketalar kamida 13-asrga tegishli Xitoy.[3] 20-asrga qadar, ilmiy, sayyoralararo va sanoatdagi muhim foydalanish raketa texnikasi uchun qulay texnologiya bo'lgan paytgacha sodir bo'lmagan. Kosmik asr, shu jumladan Yerning oyiga qadam qo'yish. Endi raketalar ishlatiladi fişek, qurol, chiqarish joylari, tashuvchi vositalar uchun sun'iy yo'ldoshlar, insonning kosmik parvozi va kosmik tadqiqotlar.

Kimyoviy raketalar eng tez-tez uchraydigan yuqori quvvatli raketa turi bo'lib, odatda tomonidan yuqori tezlikda egzoz hosil qiladi yonish ning yoqilg'i bilan oksidlovchi. Saqlangan yoqilg'i oddiy bosimli gaz yoki bitta bo'lishi mumkin suyuq yoqilg'i katalizator ishtirokida ajralib chiqadigan (monopropellant ), o'z-o'zidan reaksiyaga kirishadigan ikkita suyuqlik (gipergol yoqilg'isi ), reaktsiyaga kirishish uchun yoqilishi kerak bo'lgan ikkita suyuqlik (kerosin (RP1) va suyuq kislorod kabi suyuq yoqilg'ichli raketalar ), oksidlovchi bilan yoqilg'ining qattiq birikmasi (qattiq yoqilg'i ), yoki suyuq yoki gazli oksidlovchi bilan qattiq yoqilg'i (gibrid yoqilg'i tizimi ). Kimyoviy raketalar katta miqdordagi energiyani osongina ajralib chiqadigan shaklda to'playdi va juda xavfli bo'lishi mumkin. Biroq, ehtiyotkorlik bilan loyihalash, sinovdan o'tkazish, qurish va ishlatish xavflarni minimallashtiradi.

Tarix

Birinchi porox - kuchli raketalar XIII asrga kelib Song sulolasi davrida O'rta asrlarda Xitoyda rivojlandi. Mo'g'ullar Xitoyning raketa texnologiyasini qabul qildilar va ixtiro Mo'g'ul bosqinlari 13-asr o'rtalarida Yaqin Sharq va Evropaga.[4] Raketalar qayd etilgan[kim tomonidan? ] 1245 yildagi harbiy mashg'ulotlarda Song dengiz floti tomonidan foydalanilgan. Ichki yonish raketasi harakatlanishi 1264-raqamli ma'lumotnomada keltirilgan bo'lib, unda "yer-kalamush" deb yozilgan. fişek, uning o'g'li tomonidan sharafiga o'tkazilgan ziyofatda Empress-Ona Gongshengni qo'rqitgan edi Imperator Lizong.[5] Keyinchalik, raketalar harbiy traktatga kiritilgan Huolongjing, shuningdek, Xitoy artilleriyasi xodimi tomonidan yozilgan Fire Drake qo'llanmasi sifatida tanilgan Jiao Yu 14-asrning o'rtalarida. Ushbu matn birinchi ma'lum bo'lganlarni eslatib o'tadi ko'p bosqichli raketa, "suvdan chiqqan ajdaho" (Huo long chu shui), Xitoy dengiz floti tomonidan ishlatilgan deb o'ylagan.[6]

O'rta asr va dastlabki zamonaviy raketalar harbiy sifatida ishlatilgan olov qurollari yilda qamallar. 1270 va 1280 yillarda Hasan al-Rammah yozgan al-furusiyyah va al-manasib al-harbiyya (Harbiy otliqlar va zukko urush asboblari kitobi107 ta porox retseptini o'z ichiga olgan, ulardan 22 tasi raketalar uchun.[7][8]Evropada, Konrad Kyeser uning harbiy traktatida raketalar tasvirlangan Bellifortis 1405 atrofida.[9]

"Raketa" nomi Italyancha rocchetta, shakli "bobin" yoki "kichik shpindel" ma'nosini anglatadi, aylanuvchi g'ildirakka beriladigan ipni ushlab turish uchun ishlatiladigan bobin yoki g'altakka shakli o'xshashligi sababli berilgan.Leonhard Fronsperger va Konrad Xaas XVI asr o'rtalarida italyancha atamani nemis tiliga qabul qildi; "raketa" ingliz tilida 17-asrning boshlarida paydo bo'lgan.[1]Artis Magnae Artilleriae pars prima, muhim zamonaviy zamonaviy ish raketa artilleriyasi, tomonidan Kazimierz Siemienowicz, birinchi bo'lib bosilgan Amsterdam 1650 yilda.

Davomida Britaniya batalyoni mag'lubiyatga uchradi Guntur jangi kuchlari bilan Hyder Ali, kim samarali foydalangan Mysorean raketalari va raketa artilleriyasi yaqindan ommaviy Britaniya kuchlariga qarshi.

The Mysorean raketalari 18-asrning oxirida ishlab chiqarilgan birinchi temir korpusli raketalar edi Mysore qirolligi (bugungi kunning bir qismi Hindiston ) ning hukmronligi ostida Hyder Ali.[10] The Congveve raketasi edi a Inglizlar tomonidan ishlab chiqilgan va ishlab chiqilgan qurol Ser Uilyam Kongrive 1804 yilda. Ushbu raketa to'g'ridan-to'g'ri Mysorean raketalariga asoslangan, siqilgan kukun ishlatilgan va Napoleon urushlari. Bu Congreve raketalari edi Frensis Skott Key qamalda bo'lgan ingliz kemasida asirlikda bo'lganida "raketalarning qizil porlashi" haqida yozganida eslatib o'tdi. Fort-Xenri 1814 yilda.[11] Mysorean va Britaniyaning yangiliklari birgalikda harbiy raketalarning samarali turini 100 dan 2000 yardgacha oshirdi.

Raketani harakatga keltirish dinamikasining birinchi matematik davolashi tufayli Uilyam Mur (1813). 1815 yilda Aleksandr Dmitrievich Zasyadko raketalarni uchirishga imkon beruvchi raketa uchirish platformalarini qurdi qutqaruvchilar (Bir vaqtning o'zida 6 ta raketa) va qurol qo'yadigan qurilmalar. Uilyam Xeyl 1844 yilda raketa artilleriyasining aniqligini sezilarli darajada oshirdi. Edvard Mounier bokschisi 1865 yilda Congreve raketasini yanada takomillashtirdi.

Uilyam Leych birinchi bo'lib 1861 yilda insonning kosmik parvozini ta'minlash uchun raketalardan foydalanish kontseptsiyasini taklif qildi.[12] Konstantin Tsiolkovskiy keyinchalik (1903 yilda) ham ushbu g'oyani o'ylab topdi va keyingi kosmik parvozlarning rivojlanishiga zamin yaratgan nazariya asoslarini keng rivojlantirdi. 1920 yilda professor Robert Goddard ning Klark universiteti da raketa texnologiyasini takomillashtirish bo'yicha nashr etilgan Haddan tashqari balandliklarga erishish usuli.[13] 1923 yilda, Hermann Obert (1894-1989) nashr etilgan Die Rakete zu den Planetenräumen ("Raketa sayyora makoniga")

Suyuq kislorodli benzinli raketa bilan Goddard (1926)

Zamonaviy raketalar 1926 yilda Goddard a-ni biriktirganda paydo bo'lgan ovozdan tez (de Laval ) yuqori bosimgacha bo'lgan nozul yonish kamerasi. Ushbu nozullar yonish kamerasidan issiq gazni sovutgichga aylantiradi, gipertonik, yuqori yo'naltirilgan gaz oqimi, bosim kuchini ikki baravar oshirib, dvigatel samaradorligini 2% dan 64% gacha ko'taradi.[13] Uning ishlatilishi suyuq yoqilg'ilar o'rniga porox og'irlikni ancha pasaytirdi va raketalarning samaradorligini oshirdi. Ulardan foydalanish Ikkinchi jahon urushi artilleriya texnologiyani yanada rivojlantirdi va imkoniyat ochdi insonning kosmik parvozi 1945 yildan keyin.

1943 yilda V-2 raketasi Germaniyada boshlangan. Nemis bilan parallel ravishda boshqariladigan raketa dastur, shuningdek, raketalar ishlatilgan samolyot yoki gorizontal uchishga yordam berish uchun (RATO ), vertikal uchish (Bachem Ba 349 "Natter") yoki ularni quvvatlantirish uchun (Men 163, qarang Germaniyaning Ikkinchi Jahon urushi boshqariladigan raketalari ro'yxati ). Ittifoqchilarning raketa dasturlari kamroq Sovet Ittifoqi kabi boshqarilmaydigan raketalarga tayanib, kamroq texnologik edi Katyusha raketasi artilleriya rolida va Amerika qarshi tankida bazuka snaryad. Ularda qattiq kimyoviy yoqilg'ilar ishlatilgan.

Amerikaliklar ko'plab nemislarni asirga olishdi raketa olimlari, shu jumladan Verner fon Braun, 1945 yilda va ularni bir qismi sifatida AQShga olib keldi Paperclip operatsiyasi. Ikkinchi Jahon Urushidan keyin olimlar raketalar yordamida baland balandlikdagi sharoitlarni radio orqali o'rganishdi telemetriya atmosfera harorati va bosimi, aniqlash kosmik nurlar va boshqa texnikalar; ham e'tibor bering Bell X-1, buzilgan birinchi ekipaj vositasi ovoz to'sig'i (1947). Mustaqil ravishda, ichida Sovet Ittifoqining kosmik dasturi ostida tadqiqotlar davom ettirildi etakchilik bosh dizayner Sergey Korolev (1907–1966).

Davomida Sovuq urush zamonaviy rivojlanishi bilan raketalar harbiy jihatdan juda muhim ahamiyatga ega bo'ldi qit'alararo ballistik raketalar (ICBMs). 1960-yillarda raketa texnologiyasining jadal rivojlanishi, xususan Sovet Ittifoqida (Vostok, Soyuz, Proton ) va Qo'shma Shtatlarda (masalan, X-15 ). Raketalar foydalanishga topshirildi kosmik tadqiqotlar. Amerika ekipaj dasturlari (Mercury loyihasi, Egizaklar loyihasi va keyinroq Apollon dasturi ) 1969 yilda birinchi ekipaj bilan yakunlandi Oyga tushish - tomonidan ishga tushirilgan uskunalardan foydalanish Saturn V raketa.

Turlari

Avtotransport vositalarining konfiguratsiyasi
Ishga tushirish Apollon 15 Saturn V raketa: T - 30 s T + 40 s

Raketa vositalari ko'pincha vertikal ravishda uchadigan arxetipik uzun bo'yli ingichka "raketa" shaklida quriladi, ammo aslida juda ko'p turli xil raketalar mavjud:[14][15]

Dizayn

Raketa dizayni to'ldirilgan karton naycha kabi oddiy bo'lishi mumkin qora kukun, ammo samarali, aniq raketa yoki raketani yaratish uchun bir qator qiyin muammolarni engish kerak. Asosiy qiyinchiliklarga yonish kamerasini sovutish, yoqilg'ini quyish (suyuq yoqilg'ida) va harakat yo'nalishini boshqarish va tuzatish kiradi.[20]

Komponentlar

Raketalar a dan iborat yoqilg'i, yonilg'i quyish uchun joy (masalan, a yoqilg'i quyish tanki ) va a ko'krak. Ular, shuningdek, bir yoki bir nechtasiga ega bo'lishi mumkin raketa dvigatellari, yo'naltiruvchi stabillashadigan qurilma (lar) (kabi qanotlari, vernier dvigatellari yoki dvigatel gimbals uchun surish vektori, giroskoplar ) va struktura (odatda monokok ) ushbu komponentlarni bir-biriga bog'lab qo'yish. Atmosferadan yuqori tezlikda foydalanishga mo'ljallangan raketalar ham aerodinamik a. kabi yarmarka burun konusi, bu odatda foydali yukni ushlab turadi.[21]

Ushbu tarkibiy qismlar singari, raketalar ham qanot kabi boshqa har qanday tarkibiy qismlarga ega bo'lishi mumkin (raketa samolyotlari ), parashyutlar, g'ildiraklar (raketa mashinalari ), hatto, ma'lum ma'noda, bir kishi (raketa kamari ). Avtoulovlar tez-tez egalik qiladi navigatsiya tizimlari va rahbarlik tizimlari odatda foydalanadigan sun'iy yo'ldosh navigatsiyasi va inertial navigatsiya tizimlari.

Dvigatellar

Viking 5C raketa dvigateli

Raketa dvigatellari reaktiv harakatlanish.[2] Raketa bilan ishlaydigan raketa dvigatellari har xil turlarga ega; to'liq ro'yxatni asosiy maqolada topishingiz mumkin, Raketa dvigateli. Hozirgi raketalarning aksariyati kimyoviy quvvatga ega raketalardir (odatda ichki yonish dvigatellari,[22] ammo ba'zilari parchalanib ketadi monopropellant ) issiqni chiqaradi chiqindi gaz. Raketa dvigatelida gaz yoqilg'isi ishlatilishi mumkin, qattiq yoqilg'i, suyuq yonilg'i yoki a qattiq va suyuq gibrid aralashmasi. Ba'zi raketalar issiqlik manbalaridan va boshqa manbalardan olinadigan bosimdan foydalanadi kimyoviy reaktsiya kabi yoqilg'i (lar) ning bug 'raketalari, quyosh termal raketalari, yadroviy termal raketa kabi dvigatellar yoki oddiy bosimli raketalar suv raketasi yoki sovuq gaz uzatgichlari. Yonuvchan yonilg'i quyish vositalari bilan kimyoviy reaksiya boshlanadi yoqilg'i va oksidlovchi ichida yonish natijasida hosil bo'lgan issiq gazlar a dan tezlashadi raketa dvigatelining shtutseri (yoki nozullar ) raketaning orqa tomoniga qaragan uchida. The tezlashtirish dvigatel orqali ushbu gazlarning yonish kamerasi va shtutseriga kuch ("itarish") ta'sir qiladi va transport vositasini harakatga keltiradi ( Nyutonning uchinchi qonuni ). Bu aslida sodir bo'ladi, chunki yonish kamerasi devoridagi kuch (bosim vaqtlari maydoni) shtutserning ochilishi bilan muvozanatsiz bo'ladi; bu boshqa yo'nalishda emas. Nozikning shakli shuningdek chiqindi gazni raketa o'qi bo'ylab yo'naltirish orqali kuch hosil qiladi.[2]

Yonilg'i

Gas Core lampochkasi

Raketa yoqilg'isi - bu odatda saqlanadigan massa yoqilg'i tank yoki korpus, a dan chiqariladigan qo'zg'atuvchi massa sifatida ishlatilishidan oldin raketa dvigateli shaklida a suyuqlik samolyot ishlab chiqarish surish.[2] Kimyoviy raketalar uchun ko'pincha yoqilg'i yoqilg'isidir suyuq vodorod yoki kerosin kabi oksidlovchi bilan yondirilgan suyuq kislorod yoki azot kislotasi katta hajmdagi juda issiq gaz ishlab chiqarish uchun. Oksidlovchi alohida holatda saqlanadi va yonish kamerasida aralashtiriladi yoki qattiq raketalar singari oldindan aralashtiriladi.

Ba'zan yoqilg'i yoqilmaydi, ammo baribir kimyoviy reaktsiyaga kirishadi va "monopropellant" bo'lishi mumkin. gidrazin, azot oksidi yoki vodorod peroksid bo'lishi mumkin katalitik ravishda issiq gazga ajraldi.

Shu bilan bir qatorda, tashqi tomondan qizdirilishi mumkin bo'lgan inert yoqilg'idan foydalanish mumkin, masalan bug 'raketasi, quyosh termik raketasi yoki yadroviy termal raketalar.[2]

Kabi kichikroq, past rentabellikdagi raketalar uchun munosabatni nazorat qilishni kuchaytiradi bu erda yuqori ishlash unchalik zarur bo'lmasa, bosim o'tkazadigan suyuqlik, shunchaki harakatlantiruvchi nozul orqali kosmik kemadan qochib qutuladigan vosita sifatida ishlatiladi.[2]

Sarkaç raketasining xatoligi

Birinchi suyuq yonilg'i bilan ishlaydigan raketa, tomonidan qurilgan Robert H. Goddard, zamonaviy raketalardan sezilarli darajada farq qildi. The raketa dvigateli raketaning tepasida, yonilg'i idishi esa pastki qismida edi,[23] Goddardning raketa dvigateldan a kabi "osilib" barqarorlikka erishishiga ishonishiga asoslanadi mayatnik parvozda.[24] Biroq, raketa yo'nalishdan chiqib ketdi va 56 metrdan uzoqda qulab tushdi saytni ishga tushirish,[25] raketa bazasida raketa dvigateli bo'lganidan ko'ra barqarorroq emasligini ko'rsatmoqda.[26]

Foydalanadi

Raketalar yoki shunga o'xshash boshqa narsalar reaktsiya moslamalari o'z yoqilg'isini olib yurish, boshqa moddalar (quruqlik, suv yoki havo) yoki kuch yo'q bo'lganda ishlatilishi kerak (tortishish kuchi, magnetizm, yorug'lik ) bu a transport vositasi kosmosdagi kabi qo'zg'alish uchun foydali ish bilan ta'minlanishi mumkin. Bunday sharoitda, barcha narsalarni olib borish kerak yoqilg'i foydalanish uchun.

Biroq, ular boshqa holatlarda ham foydalidir:

Harbiy

A Trident II raketasi dengizdan uchirilgan.

Ba'zi harbiy qurollar raketalarni harakatga keltirish uchun ishlatadilar jangovar kallaklar ularning maqsadlariga. Raketa va uning foydali yuklari odatda a deb nomlanadi raketa qurolda a rahbarlik tizimi (barcha raketalarda raketa dvigatellari ishlatilmaydi, ba'zilari kabi boshqa dvigatellarda foydalaniladi samolyotlar ) yoki a sifatida raketa agar u boshqarilmasa. Tankga qarshi va zenit-raketalar qit'alararo ballistik raketalarni etkazib berish uchun ishlatilishi mumkin bo'lganida, raketa dvigatellaridan maqsadlarni yuqori tezlikda bir necha chaqirim masofada ushlab turish uchun foydalaning. bir nechta yadroviy kallaklar minglab chaqirimdan va ballistikaga qarshi raketalar ularni to'xtatishga harakat qiling. Raketalar ham sinovdan o'tkazildi razvedka kabi Ping-Pong raketasi dushman nishonlarini kuzatish uchun ishga tushirilgan, ammo qayta tiklanadigan raketalar hech qachon armiyada keng qo'llanilmagan.

Ilm-fan va tadqiqotlar

A Bamper tovushli raketa

Ovozli raketalar odatda Yer sathidan 50 kilometr (31 milya) dan 1500 kilometrgacha (930 milya) o'qiydigan asboblarni tashish uchun ishlatiladi.[27]The kosmosdan Yerning birinchi suratlari dan olingan V-2 1946 yilda raketa (parvoz # 13 ).[28]

Raketa dvigatellari ham harakatga keltirish uchun ishlatiladi raketa chanalari juda yuqori tezlikda temir yo'l bo'ylab. Buning uchun jahon rekordi Mach 8.5.[29]

Kosmik parvoz

Odatda kattaroq raketalar a dan uchiriladi ishga tushirish paneli bu yoqilgandan bir necha soniya o'tguncha barqaror yordam beradi. Egzozning tezligi - 2500 dan 4500 m / s gacha (9000 dan 16200 km / soat; 5,600 dan 10,100 milya) - raketalar juda yuqori tezlik talab etilganda, masalan, taxminan 7800 m / s (28000 km / soat; 17000 milya). Orbital traektoriyalarga etkazilgan kosmik kemalar aylanadi sun'iy yo'ldoshlar, ko'plab tijorat maqsadlarida ishlatiladi. Darhaqiqat, raketalar uchishning yagona usuli bo'lib qolmoqda kosmik kemalar orbitaga va undan tashqariga.[30] Ular, shuningdek, orbitani o'zgartirganda yoki orbitadan chiqqanda, kosmik kemalarni tezda tezlashtirish uchun ishlatiladi qo'nish. Qattiq parashyutga tushishni yumshatish uchun raketadan foydalanish mumkin (qarang) retrorocket ).

Qutqarish

Apollon LES yostiqni to'xtatish testi bilan qozon ekipaj moduli.

Raketalar qoqilgan kemaga chiziqni harakatlantirish uchun ishlatilgan, shunday qilib a Qozoqlar uchun ishlatilishi mumkin qutqarish bortda bo'lganlar. Raketalar ham uchirish uchun ishlatiladi favqulodda alevlashlar.

Ba'zi ekipaj raketalari, xususan Saturn V[31] va Soyuz,[32] bor qochish tizimlarini ishga tushirish. Bu kichik, odatda qattiq raketa bo'lib, u ekipaj kapsulasini asosiy transport vositasidan bir lahzaga xavfsizlikka tortib olishga qodir. Ushbu turdagi tizimlar sinov paytida ham, parvoz paytida ham bir necha bor ishlangan va har safar to'g'ri ishlagan.

Bu shunday bo'lganda edi Xavfsizlikni ta'minlash tizimi (Sovet nomenklaturasi) Sovet oyi raketasining to'rtta muvaffaqiyatsiz uchirilishidan uchtasida L3 kapsulasini muvaffaqiyatli tortib oldi, N1 transport vositalari 3L, 5L va 7L. Uchala holatda ham, kapsula ekstraktsiya qilinmagan bo'lsa-da, yo'q qilinishdan saqlanib qoldi. Yuqorida aytib o'tilgan uchta N1 raketasida faqat xavfsizlikni ta'minlash tizimlari mavjud edi. Eng yaxshi vosita, 6L, yuqori bosqichlari qo'g'irchoq edi va shuning uchun hech qanday qochish tizimi yo'q edi, chunki N1 kuchaytiruvchisi muvaffaqiyatsiz uchishdan chiqish uchun 100% muvaffaqiyatga erishdi.[33][34][35][36]

Ekipaj kapsulasidan muvaffaqiyatli qochish qachon yuz berdi Soyuz T-10, topshirig'iga binoan Salyut 7 Kosmik stansiya, maydonchada portladi.[37]

Qattiq raketa harakatga keltirildi chiqarish joylari ko'plab harbiy samolyotlarda parvozni boshqarish yo'qolganda ekipajni transport vositasidan xavfsiz tomonga haydash uchun foydalaniladi.[38]

Xobbi, sport va ko'ngil ochish

Model raketa - bu kichik balandliklarga (masalan, 30 g (1,1 oz) model uchun 100-500 m (330-1,640 fut)) erishish uchun mo'ljallangan kichik raketa va tiklanmoq turli xil vositalar bilan.

Qo'shma Shtatlarning fikriga ko'ra Milliy raketa uyushmasi (nar) Xavfsizlik kodeksi,[39] model raketalar qog'oz, yog'och, plastmassa va boshqa engil materiallardan yasalgan. Kod shuningdek, dvigateldan foydalanish, ishga tushirish joyini tanlash, ishga tushirish usullari, ishga tushirish moslamasini joylashtirish, tiklash tizimini loyihalash va joylashtirish va boshqalar uchun ko'rsatmalar beradi. 1960-yillarning boshlaridan boshlab Model Rocket Xavfsizlik Kodeksining nusxasi aksariyat model raketa to'plamlari va dvigatellari bilan ta'minlandi. Juda tez yonuvchan moddalar va yuqori tezlikda harakatlanadigan uchi uchli narsalar bilan uzviy bog'liqligiga qaramay, raketa modeli tarixiy jihatdan isbotladi[40][41] juda xavfsiz sevimli mashg'ulot bo'lish va oxir-oqibat katta bo'lgan bolalar uchun muhim ilhom manbai sifatida tan olingan olimlar va muhandislar.[42]

Havaskorlar turli xil model raketalarni yaratadilar va uchadilar. Ko'pgina kompaniyalar raketa to'plamlari va ehtiyot qismlarini ishlab chiqaradilar, ammo soddaligi tufayli ba'zi havaskorlar deyarli hamma narsadan raketa yasashgan. Raketalar ba'zi turdagi iste'molchilar va professionallarda ham qo'llaniladi fişek. A suv raketasi suvni reaktsiya massasi sifatida ishlatadigan model raketaning bir turi. Bosim idishi (raketa dvigateli) odatda ishlatiladigan alkogolsiz ichimliklar shishasidir. Suv bosim ostida bo'lgan gaz, odatda siqilgan havo bilan chiqarib yuboriladi. Bu Nyutonning uchinchi harakat qonuniga misol.

Havaskor raketaning miqyosi o'z hovlisida uchirilgan kichik raketadan tortib, kosmosga etib kelgan raketaga qadar bo'lishi mumkin.[43] Havaskor raketalar umumiy dvigatelga ko'ra uchta toifaga bo'lingan impuls: kam quvvatli, o'rta quvvatli va yuqori quvvat.

Vodorod peroksid raketalar quvvat olish uchun ishlatiladi reaktiv paketlar,[44] va kuch ishlatish uchun ishlatilgan mashinalar va raketa avtomobili har doim ham ushlab turadi (norasmiy bo'lsa ham) drag poygasi yozuv.[45]

Tana go'shti - bu hozirgacha uchirilgan eng kuchli notijorat raketadir Aerotech Buyuk Britaniyadagi dvigatel.

Parvoz

Ishga tushirilishi haqida video Space Shuttle Harakat qiling kuni STS-134

Ishga tushirildi orbital kosmik parvozlar yoki ichiga sayyoralararo makon, odatda erdagi aniq joydan, lekin samolyot yoki kemadan ham mumkin.

Raketani uchirish texnologiyalari nafaqat transport vositasining o'zi, balki avtomashinani muvaffaqiyatli uchirish uchun zarur bo'lgan barcha tizimlarni o'z ichiga oladi otishni boshqarish tizimlari, missiyani boshqarish markazi, ishga tushirish paneli, yer stantsiyalari va kuzatuv stantsiyalari muvaffaqiyatli ishga tushirish yoki tiklash yoki ikkalasi uchun zarur. Ular ko'pincha "deb nomlanadiyer segmenti ".

Orbital tashuvchi vositalar odatda vertikal ravishda ko'tariladi va keyin asta-sekin egilib boshlaydilar, odatda a tortishish burilishi traektoriya.

Avtotransport vositasi atmosferaning aksariyat qismidan yuqoriroq bo'lgandan so'ng, raketa reaktivini burchakka qaratib, uni gorizontal, lekin bir oz pastga yo'naltiradi, bu esa transport vositasiga gorizontal tezlikni oshirib, balandlikni saqlashga imkon beradi. Tezlik oshgani sayin, vosita orbital tezlikka qadar tobora ko'proq gorizontal holatga keladi, vosita to'xtaydi.

Hozirgi barcha transport vositalari bosqich, ya'ni orbitaga chiqish yo'lidagi jettison apparati. Garchi transport vositalari taklif qilingan uyushtirmasdan orbitaga chiqa oladigan hech kim bunyod etilmagan va agar faqat raketalar yordamida quvvatlansa, yonilg'iga bo'lgan talabning tobora ortib borishi bunday transport vositasi uning foydali yukini kichik yoki umuman yo'q qiladi. Hozirgi va tarixiy raketa vositalarining aksariyati o'zlarining jetkizlangan texnikalarini, odatda, okeanga qulab tushishiga yo'l qo'yib, "sarflaydilar", ammo ba'zilari parashyut yoki qo'zg'atuvchi qo'nish bilan tiklanib, qayta tiklandi.

PSLV-ning parvoz yo'li qutbli moyillikka yo'l qo'ymaslik Shri-Lanka quruqlik.

Orbitaga kosmik kemani uchirishda "dogleg"bu ko'tarilish bosqichida boshqariladigan va boshqariladigan burilish, bu raketaning uchish yo'lini" to'g'ri "yo'ldan chetga chiqishiga olib keladi. Agar kerakli orbitaga moyillikka erishish uchun azimut istalgan uchish kerak bo'lsa, dogleg zarur. zamin yo'li yoki quruqlik (yoki aholi punkti orqali, masalan, Rossiya quruqlikdan uchiradi, lekin odamlar yashamaydigan joylardan) yoki raketa orbital tekislikka etib bormoqchi bo'lsa kenglik ishga tushirish saytining. Bortga yoqilg'ining ortiqcha sarflanishi, og'irroq yukni keltirib chiqarishi va transport vositalarining ishlashini pasayishi tufayli Doglegs keraksiz.[46][47]

Shovqin

Ishchilar va ommaviy axborot vositalari Ovozni bostiruvchi suv tizimi sinoviga guvoh bo'lishadi Pad 39A-ni ishga tushiring.

Raketa chiqindilari sezilarli darajada akustik energiya ishlab chiqaradi. Sifatida ovozdan tez egzoz atrofdagi havo bilan to'qnashadi, zarba to'lqinlari shakllanadi. The tovush intensivligi bu zarba to'lqinlaridan raketaning kattaligiga, shuningdek chiqindi chiqarish tezligiga bog'liq. Katta va yuqori mahsuldor raketalarning tovush intensivligi yaqin masofada o'ldirishi mumkin.[48]

The Space Shuttle uning bazasi atrofida 180 dB shovqin hosil qildi.[49] Bunga qarshi kurashish uchun NASA ovozni bostirish tizimini ishlab chiqdi, u suvni daqiqasiga 900000 galongacha (57 m) oqishi mumkin.3/ s) ishga tushirish maydonchasiga. Suv shovqin darajasini 180 dB dan 142 dBgacha pasaytiradi (dizayn talablari 145 dB).[50] Ovozni bostirish tizimisiz, akustik to'lqinlar raketaga qarab uchish maydonchasidan chiqib, sezgir foydali yuk va ekipajni tebranadi. Ushbu akustik to'lqinlar shunchalik kuchliroq bo'lishi mumkinki, ular raketani buzishi yoki yo'q qilishi mumkin.

Odatda shovqin raketa erga yaqinlashganda eng kuchli bo'ladi, chunki dvigatellarning shovqini reaktivdan uzoqda, shuningdek erga aks etadi. Ushbu shovqinni tomlari bilan olovli xandaklar, reaktiv atrofiga suv quyish va reaktivni burchak ostida burish orqali biroz kamaytirish mumkin.[48]

Ekipaj raketalari uchun yo'lovchilar uchun tovush intensivligini kamaytirish uchun turli xil usullar qo'llaniladi va odatda kosmonavtlarning raketa dvigatellaridan uzoqroq joylashishi sezilarli darajada yordam beradi. Avtoulov ketayotganda yo'lovchilar va ekipaj uchun ovozdan tez tovush uzilib qoladi, chunki tovush to'lqinlari endi transport vositasini ushlab turolmaydi.[48]

Fizika

Ishlash

Nozik nozulli shar. Bunday holda, nozulning o'zi balonni itarmaydi, lekin uni tortib oladi. Konvergent / divergent nozul yaxshiroq bo'lar edi.

The effekt Raketa dvigatelida yoqilg'ining yonishi yoqilg'ida saqlanadigan kimyoviy energiyadan foydalanib, hosil bo'lgan gazlarning ichki energiyasini oshirishga qaratilgan.[iqtibos kerak ] Ichki energiya ortishi bilan bosim kuchayadi va bu energiyani yo'naltirilgan kinetik energiyaga aylantirish uchun shtutser ishlatiladi. Bu ushbu gazlar chiqaradigan atrof-muhitga ta'sir qiladi.[iqtibos kerak ] Egzozning ideal harakat yo'nalishi itarish uchun yo'nalishda bo'ladi. Yonish kamerasining yuqori qismida issiq va baquvvat gaz suyuqligi oldinga siljiy olmaydi va shu sababli u raketa dvigatelining tepasiga yuqoriga qarab siljiydi yonish kamerasi. Yonish gazlari yonish kamerasidan chiqishga yaqinlashganda, ular tezligini oshiradi. Ning ta'siri yaqinlashuvchi yonish gazlarining yuqori bosimli suyuqligidagi raketa dvigateli shtutserining bir qismi, gazlarning yuqori tezlikka tezlashishiga olib keladi. Gazlarning tezligi qancha yuqori bo'lsa, gazning bosimi shuncha past bo'ladi (Bernulli printsipi yoki energiyani tejash ) yonish kamerasining shu qismida harakat qilish. To'g'ri ishlab chiqilgan dvigatelda oqim nozulning tomog'idagi Mach 1 ga etib boradi. Qaysi nuqtada oqim tezligi oshadi. Nozikning bo'g'zidan tashqari, dvigatelning qo'ng'iroq shaklidagi kengaytiruvchi qismi kengayayotgan gazlarni raketa dvigatelining bu qismiga itarishga imkon beradi. Shunday qilib, nozulning qo'ng'iroq qismi qo'shimcha turtki beradi. Oddiy qilib aytganda, har bir harakat uchun unga ko'ra teng va qarama-qarshi reaktsiya mavjud Nyutonning uchinchi qonuni natijada chiqadigan gazlar raketaga ta'sir kuchini hosil qilib, uning raketani tezlashishiga olib keladi.[51][nb 2]

Raketa zarbasi yonish kamerasiga ham, shtutserga ham ta'sir qiladigan bosim tufayli yuzaga keladi

Yopiq kamerada bosim har bir yo'nalishda teng bo'ladi va hech qanday tezlanish bo'lmaydi. Agar kameraning pastki qismida teshik ochilgan bo'lsa, unda bosim endi yo'qolgan qismga ta'sir qilmaydi. Ushbu ochilish chiqindi gazdan qochishga imkon beradi. Qolgan bosimlar ochilishga qarama-qarshi tomondan natija beradi va bu bosimlar raketani harakatga keltiradi.

Burun shakli muhim ahamiyatga ega. Qisqartirilgan nozuldan chiqqan havo bilan harakatlanadigan sharni ko'rib chiqing. Bunday holatda havo bosimi va qovushqoq ishqalanish birikmasi shundan iboratki, shtutser sharni itarmaydi, lekin tortdi u bilan.[53] Konvergent / divergent nozuldan foydalanish ko'proq kuch beradi, chunki egzoz tashqi tomonga kengayganda, uni bosib turadi va umumiy kuchni taxminan ikki baravar oshiradi. Agar yonilg'i quyish kamerasiga doimiy ravishda qo'shilsa, bu bosim yoqilg'i saqlanib qolguncha saqlanib turishi mumkin. E'tibor bering, suyuq yoqilg'ida ishlaydigan dvigatellarda yonilg'i quyish kamerasiga harakatlanadigan nasoslar yonish kamerasidan kattaroq bosimni ushlab turishi kerak - odatda 100 atmosfera tartibida.[2]

Yon ta'sir sifatida, raketadagi bu bosimlar qarama-qarshi yo'nalishdagi chiqindilarga ta'sir qiladi va bu chiqindilarni juda yuqori tezlikka tezlashtiradi ( Nyutonning uchinchi qonuni ).[2] Printsipidan impulsning saqlanishi raketa chiqindilarining tezligi ma'lum miqdordagi yonilg'i quyish uchun qancha momentum ko'payishini aniqlaydi. Bunga raketa deyiladi o'ziga xos turtki.[2] Uchish paytida raketa, yoqilg'i va chiqindi gaz, hech qanday tashqi bezovtalanishlarsiz, yopiq tizim sifatida qaralishi mumkin, chunki umumiy impuls har doim o'zgarmas bo'ladi. Shuning uchun egzozning aniq tezligi bir yo'nalishda qanchalik tez bo'lsa, raketaning tezligi teskari yo'nalishda ham shuncha katta bo'ladi. Bu, ayniqsa, raketa tanasining massasi, odatda, chiqindi chiqindilarining umumiy massasidan ancha past bo'lgani uchun to'g'ri keladi.

Parvoz paytida raketadagi kuchlar

Parvoz paytida raketadagi kuchlar

Ning umumiy o'rganilishi kuchlar raketada maydon maydonidir ballistik. Quyidagi maydonda kosmik kemalar yanada o'rganiladi astrodinamika.

Uchayotgan raketalarga birinchi navbatda quyidagilar ta'sir qiladi:[54]

Bundan tashqari, inersiya va markazdan qochiruvchi psevdo-kuch samoviy jismning markazi atrofidagi raketa yo'li tufayli muhim bo'lishi mumkin; to'g'ri yo'nalishda va balandlikda etarlicha yuqori tezlik barqaror bo'lganda orbitada yoki qochish tezligi olingan.

Ushbu kuchlar, stabillashadigan quyruq bilan ( emprenaj ) mavjud iroda, agar ataylab nazorat qilish choralari ko'rilmasa, tabiiyki, transport vositasini taxminan ta'qib qilishiga olib keladi parabolik a deb nomlangan traektoriya tortishish burilishi, va bu traektoriya ko'pincha hech bo'lmaganda startning dastlabki qismida qo'llaniladi. (Bu raketa dvigateli burunga o'rnatilgan bo'lsa ham to'g'ri bo'ladi.) Shunday qilib, transport vositalari past yoki hatto nolni saqlab turishi mumkin hujum burchagi, bu ko'ndalangni minimallashtiradi stress ustida uchirish vositasi, kuchsizroq va shuning uchun engilroq tashuvchi vositaga ruxsat berish.[55][56]

Drag

Drag - bu harakatlanayotgan har qanday havoga nisbatan raketa harakatining yo'nalishiga qarama-qarshi kuch. Bu transport vositasining tezligini pasaytiradi va konstruktiv yuklarni hosil qiladi. Tez harakatlanadigan raketalar uchun sekinlashuv kuchlari tortish tenglamasi.

Drag aerodinamikasi yordamida minimallashtirilishi mumkin burun konusi va yuqori shaklni ishlatish bilan ballistik koeffitsient ("klassik" raketa shakli - uzun va ingichka) va raketani ushlab turish orqali hujum burchagi iloji boricha pastroq.

Ishga tushirish paytida, transport vositasining tezligi oshganda va atmosfera yupqalashganda, maksimal aerodinamik qarshilik nuqtasi mavjud maksimal Q. Bu transport vositasining minimal aerodinamik kuchini aniqlaydi, chunki raketadan qochish kerak buklanish ushbu kuchlar ostida.[57]

Net tortish

Raketa jeti shakli tashqi havo bosimiga qarab o'zgaradi. Yuqoridan pastgacha:
  • Kam kengaytirilgan
  • Ideal ravishda kengaytirilgan
  • Haddan tashqari kengaytirilgan
  • Yalpi haddan tashqari kengaytirilgan

Oddiy raketa dvigateli o'z massasining muhim sonini yonilg'ida har soniyada boshqarishi mumkin, bunda yonilg'i uchini sekundiga bir necha kilometrga qoldiradi. Bu degani tortish-tortish nisbati raketa dvigatelining va ko'pincha butun avtomobilning balandligi juda yuqori bo'lishi mumkin, o'ta og'ir holatlarda 100 yoshdan oshishi mumkin.[58] dvigatellar.[59]

Raketaning aniq zarbasi:

[2]:2–14

qaerda:

yoqilg'i oqimi (kg / s yoki lb / s)
The samarali egzoz tezligi (m / s yoki ft / s)

Egzozning samarali tezligi egzoz vositasidan chiqib ketish tezligidan ozmi yoki ko'pmi, va bo'shliq vakuumida samarali chiqindi tezligi ko'pincha tortish o'qi bo'ylab o'rtacha chiqindi tezligiga teng bo'ladi. Biroq, samarali chiqindi gaz tezligi har xil yo'qotishlarga imkon beradi va ayniqsa atmosferada ishlaganda kamayadi.

Raketa dvigateli orqali harakatlantiruvchi oqim tezligi tez-tez uchish paytida ataylab o'zgarib turadi, bu esa transport vositasining harakatlanish tezligini va shu bilan havo tezligini boshqarishni ta'minlaydi. Bu, masalan, aerodinamik yo'qotishlarni minimallashtirishga imkon beradi[57] va o'sishini cheklashi mumkin g- kuchlar yoqilg'i yukining kamayishi tufayli.

Umumiy impuls

Impuls - vaqt o'tishi bilan ob'ektga ta'sir etuvchi kuch, qarama-qarshi kuchlar (tortishish va aerodinamik tortishish) bo'lmaganda momentum (massa va tezlikning integrali) ob'ekt. Shunday qilib, bu raketaning uchish kuchi, massasi yoki "kuchi" emas, balki eng yaxshi ko'rsatkichi (foydali yuk massasi va terminal tezligi qobiliyati) ko'rsatkichidir. Raketaning (bosqichning) o'z yoqilg'isini yoqishining umumiy impulsi:[2]:27

Ruxsat etilgan kuch bo'lsa, bu shunchaki:

Ko'p bosqichli raketaning umumiy impulsi alohida bosqichlarning impulslari yig'indisidir.

Maxsus impuls

Mensp vakuumda turli xil raketalar
RaketaYonilg'i vositalariMensp, vakuum (lar)
Koinot kemasi
suyuq dvigatellar
LOX /LH2453[60]
Koinot kemasi
qattiq motorlar
APCP268[60]
Koinot kemasi
OMS
NTO /MMH313[60]
Saturn V
1 bosqich
LOX /RP-1304[60]

Bosish tenglamasidan ko'rinib turibdiki, chiqindi gazning samarali tezligi ma'lum soniyada yoqilgan yoqilg'idan hosil bo'lgan tortishish miqdorini boshqaradi.

Ekvivalent o'lchov, chiqarib yuborilgan yonilg'i quyish moslamasining og'irlik birligiga to'g'ri impuls deyiladi o'ziga xos impuls, , va bu raketaning ishlashini tavsiflovchi eng muhim ko'rsatkichlardan biridir. U samarali egzoz tezligi bilan bog'liqligi quyidagicha belgilanadi:

[2]:29

qaerda:

soniya birliklariga ega
bu Yer yuzidagi tezlanishdir

Shunday qilib, o'ziga xos impuls qanchalik katta bo'lsa, dvigatelning aniq tortish kuchi va ishlashi shunchalik katta bo'ladi. dvigatelni sinovdan o'tkazishda o'lchov bilan aniqlanadi. Amalda, raketalarning chiqindi chiqarish tezligi turlicha, lekin juda baland, ~ 4500 m / s bo'lishi mumkin, bu havo darajasidagi ovozning dengiz sathidan taxminan 15 baravar ko'p.

Delta-v (raketa tenglamasi)

Taxminiy xarita Delta-v atrofida Quyosh tizimi atrofida va Mars[61][62]

The delta-v raketaning sig'imi - bu raketaning tashqi aralashuvisiz (havo tortishishisiz, tortishish kuchi va boshqa kuchlarsiz) erishishi mumkin bo'lgan tezlikning nazariy umumiy o'zgarishi.

Qachon doimiy, raketa vositasi bera oladigan delta-v ni hisoblash mumkin Tsiolkovskiy raketa tenglamasi:[63]

}

qaerda:

- bu dastlabki umumiy massa, shu jumladan yoqilg'i, kg (yoki lb) da
kg (yoki lb) bo'yicha yakuniy umumiy massa
m / s (yoki ft / s) ga teng bo'lgan samarali chiqindi tezligi
m / s (yoki ft / s) ga teng bo'lgan delta-v

Yuk ko'taradigan bitta raketa uchun Yerdan amaliy delta-vs boshlanganda bir necha km / s bo'lishi mumkin. Ba'zi nazariy dizaynlarda 9 km / s dan yuqori delta va boshqalar bo'lgan raketalar mavjud.

Kerakli delta-v ma'lum bir manevr uchun ham hisoblab chiqilishi mumkin; Masalan, Yer yuzasidan qo'zg'aladigan delta-v Kam er orbitasi taxminan 9,7 km / s ni tashkil etadi, bu esa avtomashinani 200 km balandlikda 7,8 km / s tezlikda chetga surib qo'yadi. Ushbu manevrada taxminan 1,9 km / s yo'qolgan havo tortish, tortishish kuchi va balandlikka erishish.

Bu nisbat ba'zan deb nomlanadi massa nisbati.

Ommaviy nisbat

Tsiolkovskiy raketa tenglamasi massa koeffitsienti va egzoz tezligining ko'p sonli tezligi o'rtasidagi bog'liqlikni beradi

Raketaning deyarli barchasi massasi yoqilg'idan iborat.[64] Massa nisbati, har qanday "kuyish" uchun, raketaning boshlang'ich massasi va uning yakuniy massasi o'rtasidagi nisbatdir.[65] Qolganlarning hammasi teng bo'lsa, yuqori massa nisbati yaxshi ishlashi uchun maqbuldir, chunki bu raketaning yengilligi va shuning uchun ham yaxshiroq ishlashini anglatadi, asosan sport mashinalarida kam og'irlik kerak.

Raketalar guruh sifatida eng yuqori ko'rsatkichlarga ega tortish-tortish nisbati har qanday turdagi dvigatellar; va bu transport vositalarining yuqori ko'rsatkichlarga erishishiga yordam beradi ommaviy nisbatlar, bu parvozlarning ish faoliyatini yaxshilaydi. Nisbat qanchalik baland bo'lsa, unchalik katta bo'lmagan dvigatel massasini o'tkazish kerak bo'ladi. Bu delta-v ni nihoyatda yaxshilaydigan undan ham ko'proq yoqilg'ini olib o'tishga imkon beradi. Shu bilan bir qatorda, qutqaruv stsenariylari yoki poyga kabi ba'zi raketalar nisbatan kam yoqilg'i va foydali yukni ko'taradi va shuning uchun faqat engil tuzilishga ehtiyoj bor va buning o'rniga yuqori tezlashuvlarga erishiladi. Masalan, Soyuz qochish tizimi 20 ta ishlab chiqarishi mumking.[32]

Olingan massa koeffitsientlari yoqilg'ining turi, transport vositasi ishlatadigan dvigatel dizayni, qurilish xavfsizligi chegaralari va qurilish texnikasi kabi ko'plab omillarga juda bog'liq.

Eng yuqori massa nisbati odatda suyuq raketalar yordamida erishiladi va bu turlar odatda foydalaniladi orbital uchirish vositalari, vaziyat yuqori delta-v ni talab qiladi. Suyuq yonilg'i quyish moslamalari odatda suvga o'xshash zichlikka ega (istisnolardan tashqari) suyuq vodorod va suyuq metan ) va ushbu turlar engil, past bosimli tanklardan foydalanishga qodir va odatda yuqori mahsuldorlikda ishlaydi turbopompalar yoqilg'ini yonish kamerasiga majbur qilish.

Ba'zi bir massa fraktsiyalari quyidagi jadvalda keltirilgan (ba'zi samolyotlar taqqoslash maqsadida kiritilgan):

Transport vositasiUchish massasiYakuniy massaMassa nisbatiMassa ulushi
Ariane 5 (transport vositasi + foydali yuk)746000 kg [66] (~ 1,645,000 funt)2700 kg + 16000 kg[66] (~ 6000 funt + ~ 35,300 funt)39.90.975
Titan 23G birinchi bosqich117,020 kg (258,000 lb)4,760 kg (10,500 funt)24.60.959
Saturn V3,038,500 kg[67] (~ 6,700,000 funt)13,300 kg + 118,000 kg[67] (~ 29,320 lb + ~ 260,150 lb)23.10.957
Space Shuttle (transport vositasi + foydali yuk)2.040.000 kg (~ 4.500.000 lb)104,000 kg + 28,800 kg (~ 230,000 lb + ~ 63,500 lb)15.40.935
Saturn 1B (faqat sahna)448,648 kg[68] (989,100 funt)41,594 kg[68] (91,700 funt)10.70.907
Virgin Atlantic GlobalFlyer10,024,39 kg (22,100 funt)1,678,3 kg (3,700 funt)6.00.83
V-213000 kg (~ 28,660 lb) (12,8 tonna)3.850.74 [69]
X-1515,420 kg (34,000 funt)6,620 kg (14,600 funt)2.30.57[70]
Konkord~ 181,000 kg (400,000 lb.) [70])20.5[70]
Boeing 747~ 363,000 kg (800,000 lb.)[70])20.5[70]

Sahnalashtirish

Kosmik kemalarni joylashtirish massani kamaytirish uchun raketaning keraksiz qismlarini tashlab yuborishni o'z ichiga oladi.
Apollon 6 sahnalararo uzukni tushirayotganda

Hozirgacha orbitaga erishish uchun zarur bo'lgan tezlik (delta-v) har qanday bitta raketa tomonidan qo'lga olinmagan, chunki yoqilg'i, tankaj, tuzilish, ko'rsatma, klapanlar va dvigatellar va shunga o'xshash narsalar, uchish massasining ma'lum bir minimal foizini oladi, chunki u harakatga keltiruvchi dvigatel uchun juda foydali yuklarni ko'taradigan delta-v ga erishishi mumkin. Beri Bir bosqichli orbitaga Hozirgacha erishib bo'lilmagan, orbital raketalar har doim bir nechta bosqichlarga ega.

Masalan, Saturn V birinchi bosqichi, yuqori bosqichlarning og'irligini ko'tarib, a ga erishdi massa nisbati taxminan 10 ga teng va 263 soniya o'ziga xos impulsga erishdi. Bu delta-v atrofida 5,9 km / s ni tashkil etadi, 9,4 km / s atrofida delta-v uchun barcha yo'qotishlarga yo'l qo'yilgan holda orbitaga chiqish kerak.

Ushbu muammoni tez-tez hal qilishadi sahnalashtirish - raketa uchirish paytida ortiqcha vaznni tashlaydi (odatda bo'sh tankaj va tegishli dvigatellar). Sahnalashtirish ham ketma-ket oldingi bosqich tushib ketganidan keyin raketalar yonib turadigan joyda yoki parallel, u erda raketalar yonmoqda va keyin ular yonib ketganda ajralib chiqadi.[71]

The maximum speeds that can be achieved with staging is theoretically limited only by the speed of light. However the payload that can be carried goes down geometrically with each extra stage needed, while the additional delta-v for each stage is simply additive.

Acceleration and thrust-to-weight ratio

From Newton's second law, the acceleration, , of a vehicle is simply:

qayerda m is the instantaneous mass of the vehicle and is the net force acting on the rocket (mostly thrust, but air drag and other forces can play a part).

As the remaining propellant decreases, rocket vehicles become lighter and their acceleration tends to increase until the propellant is exhausted. This means that much of the speed change occurs towards the end of the burn when the vehicle is much lighter.[2] However, the thrust can be throttled to offset or vary this if needed. Discontinuities in acceleration also occur when stages burn out, often starting at a lower acceleration with each new stage firing.

Peak accelerations can be increased by designing the vehicle with a reduced mass, usually achieved by a reduction in the fuel load and tankage and associated structures, but obviously this reduces range, delta-v and burn time. Still, for some applications that rockets are used for, a high peak acceleration applied for just a short time is highly desirable.

The minimal mass of vehicle consists of a rocket engine with minimal fuel and structure to carry it. Bunday holda tortish-tortish nisbati[nb 3] of the rocket engine limits the maximum acceleration that can be designed. It turns out that rocket engines generally have truly excellent thrust to weight ratios (137 for the NK-33 dvigatel;[72] some solid rockets are over 1000[2]:442), and nearly all really yuqori g vehicles employ or have employed rockets.

The high accelerations that rockets naturally possess means that rocket vehicles are often capable of vertical takeoff, and in some cases, with suitable guidance and control of the engines, also vertikal qo'nish. For these operations to be done it is necessary for a vehicle's engines to provide more than the local tortishish tezlashishi.

Energiya

Energiya samaradorligi

Space Shuttle Atlantis during launch phase

Avtotransport vositalarini ishga tushiring take-off with a great deal of flames, noise and drama, and it might seem obvious that they are grievously inefficient. However, while they are far from perfect, their energy efficiency is not as bad as might be supposed.

The energy density of a typical rocket propellant is often around one-third that of conventional hydrocarbon fuels; the bulk of the mass is (often relatively inexpensive) oxidizer. Nevertheless, at take-off the rocket has a great deal of energy in the fuel and oxidizer stored within the vehicle. It is of course desirable that as much of the energy of the propellant end up as kinetik yoki potentsial energiya of the body of the rocket as possible.

Energy from the fuel is lost in air drag and tortishish kuchi and is used for the rocket to gain altitude and speed. However, much of the lost energy ends up in the exhaust.[2]:37–38

In a chemical propulsion device, the engine efficiency is simply the ratio of the kinetic power of the exhaust gases and the power available from the chemical reaction:[2]:37–38

100% efficiency within the engine (engine efficiency ) would mean that all the heat energy of the combustion products is converted into kinetic energy of the jet. This is not possible, but the near-adiabatic high expansion ratio nozzles that can be used with rockets come surprisingly close: when the nozzle expands the gas, the gas is cooled and accelerated, and an energy efficiency of up to 70% can be achieved. Most of the rest is heat energy in the exhaust that is not recovered.[2]:37–38 The high efficiency is a consequence of the fact that rocket combustion can be performed at very high temperatures and the gas is finally released at much lower temperatures, and so giving good Carnot samaradorligi.

However, engine efficiency is not the whole story. In common with the other jet-based engines, but particularly in rockets due to their high and typically fixed exhaust speeds, rocket vehicles are extremely inefficient at low speeds irrespective of the engine efficiency. The problem is that at low speeds, the exhaust carries away a huge amount of kinetik energiya rearward. Ushbu hodisa nomlanadi qo'zg'aluvchan samaradorlik ().[2]:37–38

However, as speeds rise, the resultant exhaust speed goes down, and the overall vehicle energetic efficiency rises, reaching a peak of around 100% of the engine efficiency when the vehicle is travelling exactly at the same speed that the exhaust is emitted. In this case the exhaust would ideally stop dead in space behind the moving vehicle, taking away zero energy, and from conservation of energy, all the energy would end up in the vehicle. The efficiency then drops off again at even higher speeds as the exhaust ends up traveling forwards – trailing behind the vehicle.

Plot of instantaneous propulsive efficiency (blue) and overall efficiency for a rocket accelerating from rest (red) as percentages of the engine efficiency

From these principles it can be shown that the propulsive efficiency for a rocket moving at speed egzoz tezligi bilan bu:

[2]:37–38

And the overall (instantaneous) energy efficiency bu:

For example, from the equation, with an of 0.7, a rocket flying at Mach 0.85 (which most aircraft cruise at) with an exhaust velocity of Mach 10, would have a predicted overall energy efficiency of 5.9%, whereas a conventional, modern, air-breathing jet engine achieves closer to 35% efficiency. Thus a rocket would need about 6x more energy; and allowing for the specific energy of rocket propellant being around one third that of conventional air fuel, roughly 18x more mass of propellant would need to be carried for the same journey. This is why rockets are rarely if ever used for general aviation.

Since the energy ultimately comes from fuel, these considerations mean that rockets are mainly useful when a very high speed is required, such as ICBMlar yoki orbital launch. Masalan, NASA "s kosmik transport fires its engines for around 8.5 minutes, consuming 1,000 tonnes of solid propellant (containing 16% aluminium) and an additional 2,000,000 litres of liquid propellant (106,261 kg of suyuq vodorod fuel) to lift the 100,000 kg vehicle (including the 25,000 kg payload) to an altitude of 111 km and an orbital tezlik of 30,000 km/h. At this altitude and velocity, the vehicle has a kinetic energy of about 3 TJ and a potential energy of roughly 200 GJ. Given the initial energy of 20 TJ,[nb 4] the Space Shuttle is about 16% energy efficient at launching the orbiter.

Thus jet engines, with a better match between speed and jet exhaust speed (such as turbofans —in spite of their worse )—dominate for subsonic and supersonic atmospheric use, while rockets work best at hypersonic speeds. On the other hand, rockets serve in many short-range nisbatan low speed military applications where their low-speed inefficiency is outweighed by their extremely high thrust and hence high accelerations.

Oberth ta'siri

One subtle feature of rockets relates to energy. A rocket stage, while carrying a given load, is capable of giving a particular delta-v. This delta-v means that the speed increases (or decreases) by a particular amount, independent of the initial speed. Biroq, chunki kinetik energiya is a square law on speed, this means that the faster the rocket is travelling before the burn the more orbital energy it gains or loses.

This fact is used in interplanetary travel. It means that the amount of delta-v to reach other planets, over and above that to reach escape velocity can be much less if the delta-v is applied when the rocket is travelling at high speeds, close to the Earth or other planetary surface; whereas waiting until the rocket has slowed at altitude multiplies up the effort required to achieve the desired trajectory.

Safety, reliability and accidents

Space Shuttle CHellenjer torn apart T+73 seconds after hot gases escaped the SRBs, causing the breakup of the Shuttle stack

The reliability of rockets, as for all physical systems, is dependent on the quality of engineering design and construction.

Because of the enormous chemical energy in raketa yoqilg'isi (greater energy by weight than explosives, but lower than benzin ), consequences of accidents can be severe. Most space missions have some problems.[73] In 1986, following the Space Shuttle Challenger halokati, Amerikalik fizik Richard Feynman, xizmat qilgan Rojers komissiyasi, estimated that the chance of an unsafe condition for a launch of the Shuttle was very roughly 1%;[74] more recently the historical per person-flight risk in orbital spaceflight has been calculated to be around 2%[75] or 4%.[76]

Costs and economics

The costs of rockets can be roughly divided into propellant costs, the costs of obtaining and/or producing the 'dry mass' of the rocket, and the costs of any required support equipment and facilities.[77]

Most of the takeoff mass of a rocket is normally propellant. However propellant is seldom more than a few times more expensive than gasoline per kilogram (as of 2009 gasoline was about $1/kg [$0.45/lb] or less), and although substantial amounts are needed, for all but the very cheapest rockets, it turns out that the propellant costs are usually comparatively small, although not completely negligible.[77] With liquid oxygen costing $0.15 per kilogram ($0.068/lb) and liquid hydrogen $2.20/kg ($1.00/lb), the Space Shuttle in 2009 had a liquid propellant expense of approximately $1.4 million for each launch that cost $450 million from other expenses (with 40% of the mass of propellants used by it being liquids in the external fuel tank, 60% solids in the SRBs ).[78][79][80]

Even though a rocket's non-propellant, dry mass is often only between 5–20% of total mass,[81] nevertheless this cost dominates. For hardware with the performance used in orbital tashuvchi vositalar, expenses of $2000–$10,000+ per kilogram of quruq vazn are common, primarily from engineering, fabrication, and testing; raw materials amount to typically around 2% of total expense.[82][83] For most rockets except reusable ones (shuttle engines) the engines need not function more than a few minutes, which simplifies design.

Extreme performance requirements for rockets reaching orbit correlate with high cost, including intensive quality control to ensure reliability despite the limited xavfsizlik omillari allowable for weight reasons.[83] Components produced in small numbers if not individually machined can prevent amortization of R&D and facility costs over mass production to the degree seen in more pedestrian manufacturing.[83] Amongst liquid-fueled rockets, complexity can be influenced by how much hardware must be lightweight, like pressure-fed engines can have two orders of magnitude lesser part count than pump-fed engines but lead to more weight by needing greater tank pressure, most often used in just small maneuvering thrusters as a consequence.[83]

To change the preceding factors for orbital launch vehicles, proposed methods have included mass-producing simple rockets in large quantities or on large scale,[77] yoki rivojlanmoqda reusable rockets meant to fly very frequently to amortize their up-front expense over many payloads, or reducing rocket performance requirements by constructing a non-rocket spacelaunch system for part of the velocity to orbit (or all of it but with most methods involving some rocket use).

The costs of support equipment, range costs and launch pads generally scale up with the size of the rocket, but vary less with launch rate, and so may be considered to be approximately a fixed cost.[77]

Rockets in applications other than launch to orbit (such as military rockets and raketa yordamida uchirish ), commonly not needing comparable performance and sometimes mass-produced, are often relatively inexpensive.

2010s emerging private competition

Since the early 2010s, new private options for obtaining spaceflight services emerged, bringing substantial price pressure into the existing market.[84][85][86][87]

Shuningdek qarang

Ro'yxatlar

General rocketry

Raketa harakatlanishi

Recreational rocketry

Qurol

Rockets for research

Turli xil

  • Samolyot – Vehicle that is able to fly by gaining support from the air
  • Ekvivalentlik printsipi – Principle of general relativity stating that inertial and gravitational masses are equivalent
  • Raketa festivali – Traditional festival of Laos and Thailand
  • Raketa pochta – Mail delivery by rockets or missiles

Izohlar

  1. ^ Ingliz tili raketa, first attested in 1566 (OED), adopted from the Italian term, given due to the similarity in shape to the bobbin or spool used to hold the thread to be fed to a spinning wheel. The modern Italian term is razzo.
  2. ^ "If you have ever seen a big fire hose spraying water, you may have noticed that it takes a lot of strength to hold the hose (sometimes you will see two or three firefighters holding the hose). The hose is acting like a rocket engine. The hose is throwing water in one direction, and the firefighters are using their strength and weight to counteract the reaction. If they were to let go of the hose, it would thrash around with tremendous force. If the firefighters were all standing on skateboards, the hose would propel them backward at great speed!"[52]
  3. ^ "thrust-to-weight ratio F/Vg is a dimensionless parameter that is identical to the acceleration of the rocket propulsion system (expressed in multiples of g0) ... in a gravity-free vacuum"[2]:442
  4. ^ The energy density is 31MJ per kg for aluminum and 143 MJ/kg for liquid hydrogen, this means that the vehicle consumes around 5 TJ of solid propellant and 15 TJ of hydrogen fuel.


  1. ^ a b Bernhard, Jim (1 January 2007). Porcupine, Picayune, & Post: How Newspapers Get Their Names. Missuri universiteti matbuoti. p.126. ISBN  978-0-8262-6601-9. Olingan 28 may 2016.
  2. ^ a b v d e f g h men j k l m n o p q r s t Satton, Jorj P.; Biblarz, Oskar (2001). Raketa harakatlantiruvchi elementlari. John Wiley & Sons. ISBN  978-0-471-32642-7. Arxivlandi asl nusxasidan 2014 yil 12 yanvarda. Olingan 28 may 2016.
  3. ^ MSFC History Office. "Qadimgi davrdagi raketalar (miloddan avvalgi 100 yildan 17 asrgacha)". A Timeline of Rocket History. NASA. Arxivlandi asl nusxasi 2009-07-09. Olingan 2009-06-28.
  4. ^ "Rockets appear in Arab literature in 1258 A.D., describing Mongol invaders' use of them on February 15 to capture the city of Baghdad." "Raketaning qisqacha tarixi". NASA Spacelink. Arxivlandi asl nusxasidan 2006-08-05. Olingan 2006-08-19.
  5. ^ Crosby, Alfred W. (2002). Olovni otish: Tarix orqali loyihalash texnologiyasi. Kembrij: Kembrij universiteti matbuoti. 100-103 betlar. ISBN  978-0-521-79158-8.
  6. ^ Needham, 5-jild, 7-qism, 510.
  7. ^ Xasan, Ahmad Y. "Gunpowder Composition for Rockets and Cannon in Arabic Military Treatises In Thirteenth and Fourteenth Centuries". History of Science and Technology in Islam. Arxivlandi asl nusxasi 2008 yil 26 fevralda. Olingan 29 mart, 2008.
  8. ^ Xasan, Ahmad Y. "Transfer Of Islamic Technology To The West, Part III: Technology Transfer in the Chemical Industries". History of Science and Technology in Islam. Arxivlandi asl nusxasi 2008 yil 9 martda. Olingan 2008-03-29.
  9. ^ Riper, A. Bowdoin Van (2004). Rockets and missiles : the life story of a technology. Westport: Greenwood Press. p. 10. ISBN  978-0-313-32795-7.
  10. ^ "rocket and missile system | weapons system". Britannica entsiklopediyasi. Arxivlandi from the original on 2017-10-31. Olingan 2017-10-29.
  11. ^ The Rockets That Inspired Francis Scott Key
  12. ^ Leitch, William (1862). Osmonlarda Xudoning ulug'vorligi.
  13. ^ a b Goddard, Robert (1919), Haddan tashqari balandliklarga erishish usuli (PDF), OCLC  3430998
  14. ^ "NASA History: Rocket vehicles". Hq.nasa.gov. Arxivlandi asl nusxasi 2013-01-25. Olingan 2012-12-10.
  15. ^ "OPEL Rocket vehicles". Strangevehicles.greyfalcon.us. Arxivlandi asl nusxasi 2012-08-17. Olingan 2012-12-10.
  16. ^ Kelion, Leo (2013-11-11). "Rocket bicycle sets 207mph speed record By Leo Kelion". BBC yangiliklari. Arxivlandi from the original on 2014-11-11. Olingan 2014-11-11.
  17. ^ Polmar, Norman; Mur, Kennet J. (2004). Cold War submarines : the design and construction of U.S. and Soviet submarines. Vashington, DC: Brasseyniki. p. 304. ISBN  978-1-57488-594-1.
  18. ^ III, compiled by A.D. Baker (2000). The Naval Institute guide to combat fleets of the world 2000–2001 : their ships, aircraft, and systems. Annapolis, tibbiyot fanlari: Naval Institute Press. p. 581. ISBN  978-1-55750-197-4.
  19. ^ "The Rocketman". The Rocketman. Arxivlandi asl nusxasi 2010-02-13 kunlari. Olingan 2012-12-10.
  20. ^ Richard B. Dow (1958), Fundamentals of Advanced Missiles, Washington (DC): John Wiley & Sons, loc 58-13458
  21. ^ Amerika Qo'shma Shtatlari Kongressi. House Select Committee on Astronautics and Space Exploration (1959), "4. Rocket Vehicles", Space handbook: Astronautics and its applications : Staff report of the Select Committee on Astronautics and Space Exploration, House document / 86th Congress, 1st session, no. 86, Washington (DC): U.S. G.P.O., OCLC  52368435, dan arxivlangan asl nusxasi 2009-06-18, olingan 2009-07-20
  22. ^ Charles Lafayette Proctor II. "internal combustion engines". Concise Britannica. Arxivlandi asl nusxasi on 2008-01-14. Olingan 2012-12-10.
  23. ^ NASA, Discover NASA and You Arxivlandi 2010-05-27 da Orqaga qaytish mashinasi
  24. ^ Skott Menli. The Pendulum Rocket Fallacy (YouTube ). Olingan 2020-10-02.
  25. ^ Streissguth, Thomas (1995). Rocket man: the story of Robert Goddard. Yigirma birinchi asr kitoblari. pp.37. ISBN  0-87614-863-1.
  26. ^ Satton, Jorj P. (2006). Suyuq harakatlantiruvchi raketa dvigatellari tarixi. Reston, Virjiniya: Amerika Aviatsiya va astronavtika instituti. pp. 267, 269.
  27. ^ Marconi, Elaine. "What is a Sounding Rocket?". NASA. Arxivlandi asl nusxasidan 2016 yil 2 iyunda. Olingan 28 may 2016.
  28. ^ Fraser, Lorens (1985). "1940-yillarda amaliy fizika laboratoriyasida yuqori balandlikdagi tadqiqotlar" (PDF). Jons Xopkins APL Texnik Digesti. 6 (1): 92–99. Olingan 18 oktyabr 2016.
  29. ^ "Test sets world land speed record". www.af.mil. Arxivlandi asl nusxasi 2013 yil 1-iyun kuni. Olingan 2008-03-18.
  30. ^ "Spaceflight Now-worldwide launch schedule". Spaceflightnow.com. Arxivlandi asl nusxasi 2013-09-11. Olingan 2012-12-10.
  31. ^ "Apollo launch escape subsystem". ApolloSaturn. Arxivlandi asl nusxasidan 2012-07-16. Olingan 2012-12-10.
  32. ^ a b "Soyuz T-10-1 "Launch vehicle blew up on pad at Tyuratam; crew saved by abort system"". Astronautix.com. Arxivlandi asl nusxasi 2014-08-05 da. Olingan 2012-12-10.
  33. ^ Veyd, Mark. "N1 Manned Lunar Launch Vehicle". astronautix.com. Entsiklopediya Astronautica. Arxivlandi from the original on 21 February 2012. Olingan 24 iyun 2014.
  34. ^ Veyd, Mark. "N1 5L launch – 1969.07.03". astronautix.com. Entsiklopediya Astronautica. Arxivlandi asl nusxasi 2015 yil 27 iyulda. Olingan 24 iyun 2014.
  35. ^ Harvi, Brayan (2007). Soviet and Russian lunar exploration. Berlin: Springer. p. 226. ISBN  978-0-387-73976-2.
  36. ^ "N1 (vehicle 5L) moon rocket Test – launch abort system activated". YouTube.com. 2015 YouTube, LLC. Arxivlandi asl nusxasidan 2015 yil 17 mayda. Olingan 12 yanvar 2015.
  37. ^ Veyd, Mark. "Soyuz T-10-1". astronautix.com. Entsiklopediya Astronautica. Arxivlandi asl nusxasi 2014 yil 5-avgustda. Olingan 24 iyun 2014.
  38. ^ Bonsor, Kevin (2001-06-27). "Howstuff works ejection seats". Science.howstuffworks.com. Arxivlandi asl nusxasi 2010-04-06 da. Olingan 2012-12-10.
  39. ^ "Model raketa xavfsizligi kodi". Milliy raketa uyushmasi. Arxivlandi asl nusxasi on 2014-02-05. Olingan 2019-10-30.
  40. ^ "Xavfsizlik". National Association of Rocketry. Arxivlandi asl nusxasi 2014-02-07 da. Olingan 2012-07-06.
  41. ^ "Model raketalar". exploration.grc.nasa.gov. Milliy aviatsiya va kosmik ma'muriyat. Arxivlandi asl nusxasi 2012-04-10. Olingan 2012-07-06.
  42. ^ "NARning tashkiliy bayonoti" (PDF). National Association of Rocketry.
  43. ^ "CSXT GO FAST! Rocket Confirms Multiple World Records". Colorado Space News. 4 sentyabr 2014. Arxivlangan asl nusxasi 2016 yil 4 martda. Olingan 28 may 2016.
  44. ^ "jetbelt". Transchool.eustis.army.mil. 1961-10-12. Olingan 2010-02-08.[o'lik havola ]
  45. ^ "Sammy Miller". Eurodragster.com. Arxivlandi asl nusxasi 2013-06-02 da. Olingan 2012-12-10.
  46. ^ "Moonport, CH1-2". www.hq.nasa.gov. Olingan 2020-07-31.
  47. ^ "Another task for the PSLV". Hind. 2011-06-22. ISSN  0971-751X. Olingan 2020-07-31.
  48. ^ a b v Potter, R.C; Crocker, M.J (1966), Acoustic Prediction Methods for Rocket Engines, Including the Effects of Clustered Engines and Deflected Exhaust Flow, CR-566 (PDF), Vashington, DC: NASA, OCLC  37049198, arxivlandi (PDF) asl nusxasidan 2013-12-06[sahifa kerak ]
  49. ^ "Launch Pad Vibroacoustics Research at NASA/KSC" Arxivlandi 2017-03-02 da Orqaga qaytish mashinasi, Retrieved on 30 April 2016.
  50. ^ "Sound Suppression System" Arxivlandi 2011-06-29 da Orqaga qaytish mashinasi, Retrieved on 30 April 2016.
  51. ^ Warren, J. W. (1979). Understanding force: an account of some aspects of teaching the idea of force in school, college and university courses in engineering, mathematics and science. London: Myurrey. pp.37–38. ISBN  978-0-7195-3564-2.
  52. ^ The confusion is illustrated in http://science.howstuffworks.com/rocket.htm
  53. ^ Warren, J. W. (1979). Understanding force: an account of some aspects of teaching the idea of force in school, college and university courses in engineering, mathematics and science. London: Myurrey. p.28. ISBN  978-0-7195-3564-2.
  54. ^ "Four forces on a model rocket". NASA. 2000-09-19. Arxivlandi asl nusxasi 2012-11-29 kunlari. Olingan 2012-12-10.
  55. ^ Glasstone, Samuel (1 January 1965). Sourcebook on the Space Sciences. D. Van Nostrand Co. p. 209. OCLC  232378. Arxivlandi asl nusxasidan 2017 yil 19-noyabrda. Olingan 28 may 2016.
  56. ^ Callaway, David W. (March 2004). Coplanar Air Launch with Gravity-Turn Launch Trajectories (PDF) (Magistrlik dissertatsiyasi). p. 2. Arxivlangan asl nusxasi (PDF) on November 28, 2007.
  57. ^ a b "Space Shuttle Max-Q". Aerospaceweb. 2001-05-06. Olingan 2012-12-10.
  58. ^ "General Electric J85". Geae.com. 2012-09-07. Arxivlandi asl nusxasi 2011-07-22. Olingan 2012-12-10.
  59. ^ "Mach 1 Club". Thrust SSC. Arxivlandi asl nusxasi on 2016-06-17. Olingan 2016-05-28.
  60. ^ a b v d Braeunig, Robert A. (2008). "Rocket Propellants". Rocket & Space Technology.
  61. ^ "table of cislunar/mars delta-vs". Arxivlandi asl nusxasi on 2007-07-01.
  62. ^ "cislunar delta-vs". Strout.net. Arxivlandi from the original on 2000-03-12. Olingan 2012-12-10.
  63. ^ "Choose Your Engine". Projectrho.com. 2012-06-01. Arxivlandi asl nusxasidan 2010-05-29. Olingan 2012-12-10.
  64. ^ "The Evolution of Rockets". Istp.gsfc.nasa.gov. Arxivlandi asl nusxasi 2013-01-08 da. Olingan 2012-12-10.
  65. ^ "Rocket Mass Ratios". Exploration.grc.nasa.gov. Arxivlandi asl nusxasi 2013-02-16. Olingan 2012-12-10.
  66. ^ a b Astronautix- Ariane 5g
  67. ^ a b Astronautix - Saturn V
  68. ^ a b Astronautix- Saturn IB
  69. ^ Astronautix-V-2
  70. ^ a b v d e "AIAA2001-4619 RLVs" (PDF). Arxivlandi asl nusxasi (PDF) 2013-12-06 kunlari. Olingan 2019-02-19.
  71. ^ NASA (2006). "Rocket staging". Raketalar uchun boshlang'ich qo'llanma. NASA. Arxivlandi asl nusxasi 2016-06-02 da. Olingan 2016-05-28.
  72. ^ "Astronautix NK-33 entry". Astronautix.com. 2006-11-08. Arxivlandi asl nusxasi on 2002-06-25. Olingan 2012-12-10.
  73. ^ "Kosmosdagi baxtsiz hodisalarning qisqacha tarixi". Jane's Civil Aerospace. 2003-02-03. Arxivlandi asl nusxasi 2003-02-04 da. Olingan 2010-04-24.
  74. ^ "Rogers commission Appendix F". Arxivlandi asl nusxasidan 2012-09-11. Olingan 2012-12-10.
  75. ^ "Going Private: The Promise and Danger of Space Travel By Tariq Malik". Space.com. 2004-09-30. Arxivlandi from the original on 2011-01-07. Olingan 2012-12-10.
  76. ^ "Weighing the risks of human spaceflight". Space Review. 21 Iyul 2003. Arxivlangan asl nusxasi 2010 yil 23 noyabrda. Olingan 1 dekabr 2010.
  77. ^ a b v d "A Rocket a Day Keeps the High Costs Away" Arxivlandi 2008-11-03 da Orqaga qaytish mashinasi by John Walker. 1993 yil 27 sentyabr.
  78. ^ "Space Shuttle Use of Propellants and Fluids" (PDF). NASA. Arxivlandi asl nusxasi (PDF) 2011 yil 17 oktyabrda. Olingan 2011-04-30.
  79. ^ "NASA Launch Vehicles and Facilities". NASA. Arxivlandi asl nusxasi 2011-04-27 da. Olingan 2011-04-30.
  80. ^ "Space Shuttle and International Space Station". NASA. Arxivlandi asl nusxasidan 2011-05-07. Olingan 2011-04-30.
  81. ^ "Mass Fraction". Andrews Space and Technology (original figure source). Arxivlandi asl nusxasi 2012-04-25. Olingan 2011-04-30.
  82. ^ Regis, Ed (1990), Great Mambo Chicken And The Transhuman Condition: Science Slightly Over The Edge, Asosiy kitoblar, ISBN  0-201-56751-2. Excerpt online
  83. ^ a b v d U.S. Air Force Research Report No. AU-ARI-93-8: LEO On The Cheap. Retrieved April 29, 2011.
  84. ^ Amos, Jonatan (2014 yil 3-dekabr). "Evropa Ariane 6 raketasi bilan oldinga intiladi". BBC yangiliklari. Olingan 2015-06-25.
  85. ^ Belfiore, Maykl (2013-12-09). "Roketchi". Tashqi siyosat. Olingan 2013-12-11.
  86. ^ Pasztor, Andy (2015-09-17). "AQSh raketa etkazib beruvchisi" qisqa tasma "ni buzishga o'xshaydi'". Wall Street Journal. Olingan 2015-10-14. Aerokosmik gigantlari [Boeing Co. va Lockheed Martin Corp.] o'tgan yili Pentagonning eng muhim sun'iy yo'ldoshlarini orbitada portlatish biznesida monopoliyaga ega bo'lganida, raketa ishlab chiqarish korxonasi tomonidan o'z kapitalidagi foydadan deyarli 500 million AQSh dollarini bo'lishgan. Ammo o'shandan beri "ular bizni juda qisqa bog'ichda ushlab turishdi", dedi "Yunayted Launch" ning ijrochi direktori Tori Bruno.
  87. ^ Davenport, Kristian (2016-08-19). "Milliarderlar sizni qanday qilib kosmosga olib chiqish uchun poyga qilgani haqidagi ichki voqea". Vashington Post. Olingan 2016-08-20. hukumatning kosmik sayohatlardagi monopoliyasi tugadi

Tashqi havolalar

Boshqaruv agentliklari

Axborot saytlari