Shoaling va maktabda ishlash - Shoaling and schooling

Shoaling va maktabda ishlash
Bular jarroh baliq bor shoaling. Ular bir oz mustaqil ravishda suzishyapti, lekin shunday bo'lsalar, ular bir-biriga bog'lanib, ijtimoiy guruhni tashkil qiladilar.
Bular ko'k chiziq bor maktabda o'qish. Ularning barchasi bir yo'nalishda muvofiqlashtirilgan tarzda suzishmoqda.

Biologiyada ijtimoiy sabablarga ko'ra birga turadigan har qanday baliq guruhi shoaling (talaffuz qilinadi) / ˈƩoʊlɪŋ /) va agar guruh bir xil yo'nalishda muvofiqlashtirilgan holda suzayotgan bo'lsa, ular maktabda o'qish (talaffuz qilinadi) / ːSkuːlɪŋ /).[1] Umumiy foydalanishda atamalar ba'zan juda yumshoq ishlatiladi.[1] Baliq turlarining qariyb to'rtdan bir qismi butun umrini, taxminan yarmi shollarini hayotlarining bir qismini egallaydi.[2]

Baliq shoale xatti-harakatlaridan ko'plab foyda keltiradi, shu jumladan yirtqichlardan himoya qilish (yirtqichlarni yaxshiroq aniqlash va individual qo'lga olish imkoniyatini yumshatish orqali) em-xashak muvaffaqiyat va turmush o'rtog'ini topishda yuqori muvaffaqiyat. Ehtimol, baliqlar sholga a'zo bo'lishdan ko'payishi orqali foyda ko'rishadi gidrodinamik samaradorlik.

Shoalmates tanlash uchun baliqlar ko'plab xususiyatlardan foydalanadilar. Odatda ular kattaroq shoalsni, o'z turlarining shoalateslarini, kattaligi va tashqi qiyofasi jihatidan o'ziga o'xshash shoalmates, sog'lom baliq va qarindoshlarni (tanib olganda) afzal ko'rishadi.

"G'alati effekt" tashqi qiyofasi bilan ajralib turadigan har qanday shoal a'zosi imtiyozli ravishda yirtqichlar tomonidan nishonga olinishiga olib keladi. Bu nima uchun baliqlar o'zlariga o'xshash shaxslar bilan shol qilishni afzal ko'rishini tushuntirishi mumkin. Shunday qilib, g'alati ta'sir shoalsni bir hil holga keltirishga intiladi.

Umumiy nuqtai

Maktabining suv osti video tsikli seldlar dagi yumurtlama joylariga yuqori tezlikda migratsiya Boltiq dengizi

An birlashma Baliq - bu ba'zi joylarda to'plangan baliqlarning har qanday to'plami uchun umumiy atama. Baliq agregatlari tuzilgan yoki tuzilmagan bo'lishi mumkin. Tarkibiy bo'lmagan birlashma ba'zi bir mahalliy manbalar, masalan, oziq-ovqat yoki uyalar joylari yonida tasodifiy ravishda to'plangan aralash turlar va o'lchamlar guruhi bo'lishi mumkin.

Agar qo'shimcha ravishda birlashma interaktiv, ijtimoiy shaklda birlashsa, ular deyilishi mumkin shoaling.[1][a] Baliq ovlash baliqlari bir-birlari bilan erkin munosabatda bo'lishlari mumkin, har bir baliq suzish va ozgina ozuqa bilan mustaqil ravishda shug'ullanish bilan birga, ular yaqin bo'lishlari uchun, suzish kabi xatti-harakatlarni sozlash uslubidan ko'rinib turganidek, guruhning boshqa a'zolaridan xabardor. guruhdagi boshqa baliqlarga. Shoal guruhlariga xilma-xil o'lchamdagi baliqlar kirishi va aralashgan kichik guruhlar kirishi mumkin.

Agar qirg'oq qattiqroq tartibga solinsa, baliqlar suzishni sinxronlashtirsa, shuning uchun ularning hammasi bir xil tezlikda va bir xil yo'nalishda harakatlansa, u holda baliq deb aytish mumkin maktabda o'qish.[1][3][b] Maktab baliqlari odatda bir xil va yoshi / kattaligi bir xil. Baliq maktablari alohida a'zolar bilan bir-biridan aniq masofada harakatlanadi. Maktablar murakkab manevralarni amalga oshirmoqdalar, go'yo maktablar o'zlarining aqllariga ega.[4]

Maktabda o'qitishning murakkabliklari, xususan, suzish va ovqatlanish energetikalari to'liq tushunilmagan. Maktabda o'qitish funktsiyasini tushuntirishga qaratilgan ko'plab farazlar, masalan, yaxshiroq yo'nalish, sinxronlashtirildi ov qilish, yirtqichlarning chalkashligi va topish xavfini kamaytirish. Maktabda o'qish, shuningdek, nafas olish muhitida chiqindilarni ko'payishi va kislorod va oziq-ovqat etishmovchiligi kabi kamchiliklarga ega. Maktabdagi baliq massivining usuli, ehtimol energiya tejash afzalliklarini beradi, ammo bu munozarali.[5]

Maktablari em-xashak baliqlari ko'pincha katta yirtqich baliqlarga hamroh bo'ladi. Bu erda maktab jaklar hamrohlik qilmoq ajoyib barrakuda.

Baliq bo'lishi mumkin majburiy yoki fakultativ xaridorlar.[6] Kabi majburiy shoalterlar tunalar, seldlar va hamsi, barcha vaqtlarini shoalga yoki maktabga sarflashga sarflang va agar guruhdan ajralib qolsangiz. Fakultativ shoalerlar, masalan Atlantika cod, deydi va ba'zilari karangidlar, faqat reproduktiv maqsadlar uchun, ehtimol ba'zi vaqtlarda shoal.[7]

Baliq baliqlari intizomli va muvofiqlashtirilgan maktabga o'tishi mumkin, keyin bir necha soniya ichida amorf shoalga qaytishi mumkin. Bunday siljishlar ovqatlanish, dam olish, sayohat yoki yirtqichlardan saqlanish kabi faoliyatning o'zgarishi bilan bog'liq.[4]

Maktab baliqlari ovqatlanishni to'xtatganda, ular qatorlarni buzadilar va shoalsga aylanadilar. Shoals yirtqichlarning hujumiga ko'proq ta'sir qiladi. Shoal yoki maktabning shakli baliq turiga va baliq nima bilan shug'ullanishiga bog'liq. Sayohat qilayotgan maktablar uzun ingichka chiziqlar yoki kvadratchalar yoki tasvirlar yoki amoeboid shakllar hosil qilishi mumkin. Tez harakatlanadigan maktablar odatda xanjar shaklini hosil qiladi, oziqlanadigan shoals esa aylana shaklida bo'ladi.[4]

Oziq-ovqat baliqlari kichikroq baliqlar bo'lib, ular katta yirtqichlar tomonidan oziq-ovqat uchun o'ldiriladi. Yirtqichlarga boshqa yirik baliqlar, dengiz qushlari va dengiz sutemizuvchilar. Odatda okean yemi baliqlari kichik, filtr bilan oziqlantirish kabi baliqlar seld, hamsi va menhaden. Oziq-ovqat baliqlari maktablarni shakllantirish orqali ularning kichik hajmini qoplaydi. Ba'zilar sinxronlashtirilgan katakchalarda og'izlari ochiq holda suzishadi, shunda ular ovqatlanishni samarali filtrlaydilar plankton.[8] Ushbu maktablar ulkan bo'lishi mumkin, qirg'oq bo'ylab harakatlanadigan va migratsiya ochiq okeanlar bo'ylab. Shoals katta dengiz yirtqichlari uchun oziq-ovqat manbalari.

Ba'zan ulkan yig'ilishlar yoqilg'ini yoqadi okean oziq-ovqat tarmog'i. Ko'pchilik em-xashak baliqlari pelagik baliq bu degani, ular maktablarini tubida yoki yonida emas, balki ochiq suvda shakllantiradilar (halokatli baliq ). Yem-xashak baliqlari qisqa umr ko'radi va asosan odamlarning e'tiboridan chetda qoladi. Yirtqichlar shollarga diqqat bilan e'tibor berishadi, ularning soni va qaerdaligini aniq bilishadi va qilishadi migratsiya o'zlari, ko'pincha o'zlarining maktablarida, ular bilan bog'lanish uchun minglab kilometrlarni bosib o'tishlari yoki ular bilan aloqada bo'lishlari mumkin.[9]

Baliq maktabida ko'plab ko'zlar mavjud, ular oziq-ovqat yoki tahdidlarni qidirib topishadi

seld eng ajoyib baliqlar orasida. Ular juda ko'p sonda birlashadilar. Eng katta maktablar ko'pincha ko'chish paytida kichik maktablar bilan birlashish orqali shakllanadi. Yuz kilometr uzunlikdagi maktablarning "zanjirlari" kuzatilgan kefal migratsiya Kaspiy dengizi. Radakovning taxmin qilishicha, Shimoliy Atlantika orolidagi seld maktablari baliq zichligi 0,5 dan 1,0 baliq / kubometrgacha, ya'ni bitta maktabda uch milliard baliqni tashkil etganda 4,8 kub kilometrni egallashi mumkin.[10] Ushbu maktablar qirg'oq bo'ylab harakatlanadi va ochiq okean bo'ylab harakatlanadi. Umuman olganda, ringa maktablari juda aniq tartibga ega bo'lib, ular maktabga nisbatan doimiy kruiz tezligini saqlashga imkon beradi. Herrings ajoyib eshitish qobiliyatiga ega va ularning maktablari yirtqichga juda tez ta'sir qiladi. So'ylovlar harakatlanuvchi suvosti sho'ng'inidan yoki qotil kitga o'xshab sayohat qiluvchi yirtqichlardan ma'lum masofani bosib, spotter samolyotidan donutga o'xshash vakuol hosil qiladi.[11]

Katta yirtqich baliqlarning ko'plab turlari, shu jumladan ko'pchilik juda migratsiya qiluvchi baliqlar, kabi orkinos va ba'zi okeangaing akulalar. Tarkiblar delfinlar, toshbaqalar va kitlar kabi uyushgan ijtimoiy guruhlarda ishlaydi podalar.

"Shoaling xatti-harakati, odatda, yirtqich hayvonlarga qarshi guruhlar bo'lib yashashning foydalari va tobora ortib borayotgan raqobat raqobati o'rtasidagi o'zaro kelishuv sifatida tavsiflanadi."[12] Landa (1998) quyida keltirilgan shoalning kumulyativ afzalliklari baliqlarni shollarga qo'shilish uchun kuchli selektiv induktsiyalar deb ta'kidlaydi.[13] Parrish va boshq. (2002) xuddi shunday ta'kidlaydiki, maktabda o'qitish klassik namunadir paydo bo'lishi, bu erda maktab egasi bo'lgan baliqlar emas, balki xususiyatlar mavjud. Rivojlanayotgan xususiyatlar maktab a'zolariga evolyutsion ustunlik beradi, unga a'zo bo'lmaganlar olishmaydi.[14]

Ijtimoiy o'zaro ta'sir

Agregatsiyalarning ijtimoiy va genetik funktsiyasini qo'llab-quvvatlash, ayniqsa baliqlar tomonidan tuzilgan, ularning xulq-atvorining bir necha jihatlaridan ko'rish mumkin. Masalan, eksperimentlar shuni ko'rsatdiki, maktabdan olib tashlangan alohida baliqlar nafas olish darajasi maktabda uchraydigan baliqlarga qaraganda yuqori bo'ladi. Ushbu ta'sir stress bilan bog'liq bo'lib, shuning uchun o'ziga xos xususiyatlarga ega bo'lishning ta'siri tinchlantiruvchi va birlashishda qolish uchun kuchli ijtimoiy turtki bo'lib ko'rinadi.[15] Masalan, seld, agar ular o'ziga xos xususiyatlardan ajratilgan bo'lsa, juda qo'zg'alib ketadi.[7] Maktabdagi xulq-atvorga moslashishlari tufayli ular kamdan-kam hollarda namoyish etiladi akvarium. Akvaryum eng yaxshi vositalar bilan ham, yovvoyi maktablardagi tebranish energiyasiga nisbatan mo'rt va sust bo'lib qolishi mumkin.

Ovqatlanishning afzalliklari

Ba'zi qirg'oq uy-joylar (qizil) sholalar uchun planktonga boy oziqlanish joylarini taqdim etadi em-xashak baliqlari, bu o'z navbatida katta yirtqich baliqlarni jalb qiladi.

Guruhlarda suzish muvaffaqiyatga erishishni kuchaytiradi deb taklif qilingan. Ushbu qobiliyatni Pitcher va boshqalar shoalda ovlash xatti-harakatlarini o'rganishda namoyish etdilar siprinidlar.[16] Ushbu tadqiqotda guruhlar uchun vaqt sarflandi minnows va oziq-ovqat mahsulotlarini topish uchun oltin baliq miqdori aniqlandi. Guruhlardagi baliqlar soni har xil bo'lib, katta guruhlarga oziq-ovqat topish uchun zarur bo'lgan vaqt statistik jihatdan sezilarli darajada kamayganligi aniqlandi. Yirtqich baliqlar maktablari tarkibida maktablarning oziqlanish qobiliyatini oshirish uchun qo'shimcha yordam mavjud. Keklik va boshqalar Atlantika moviy orkinos orkinosining havodagi fotosuratlaridan maktab tuzilishini tahlil qilib, maktab parabolik shaklga ega ekanligini aniqladilar, bu esa ushbu turda kooperativ ov qilish to'g'risida dalolat beradi.[17]

"Buning sababi shundaki, oziq-ovqat izlayotgan ko'plab ko'zlar mavjud. Shoalsdagi baliqlar bir-birlarining xatti-harakatlarini diqqat bilan kuzatib borish orqali ma'lumotlarni" o'rtoqlashadilar ". Bitta baliqdagi oziqlanish xatti-harakatlari tezda boshqalarda oziq-ovqat qidirish harakatlarini rag'batlantiradi.[18]

Yem-xashak baliqlari uchun serhosil ovqatlanish joylari okean qatlamlari bilan ta'minlangan. Okean girlari keng ko'lamli okean oqimlari sabab bo'lgan Coriolis ta'siri. Shamol bilan boshqariladigan sirt oqimlari ushbu girlar va suv osti relyefi bilan o'zaro ta'sir qiladi, masalan dengiz qirg'oqlari, baliq ovlash banklari, va chekkasi kontinental javonlar, uy-joylarni ishlab chiqarish va uy-joylar.[19] Ular plankton rivojlanadigan ozuqa moddalarini tashiy olishlari mumkin. Natijada plankton bilan oziqlanadigan ozuqa baliqlari uchun jozibali boy ovqatlanish joylari bo'lishi mumkin. O'z navbatida, em-xashak baliqlari o'zlari yirikroq yirtqich baliqlar uchun oziqlanadigan joyga aylanadi. Uy-joylarning aksariyati qirg'oq bo'yli bo'lib, ularning aksariyati dunyodagi eng samarali baliqchilikni qo'llab-quvvatlaydi. Diqqatga sazovor bo'lgan ko'tarilish mintaqalariga qirg'oq kiradi Peru, Chili, Arab dengizi, g'arbiy Janubiy Afrika, sharqiy Yangi Zelandiya va Kaliforniya qirg'oq.

Kopepodlar, asosiy zooplankton, em-xashak baliqlari menyusidagi asosiy mahsulot. Ular kichik guruhdir qisqichbaqasimonlar okean va chuchuk suv yashash joylari. Copepodlar odatda tanasi ko'z yoshi shaklida bo'lgan bir millimetrdan (0,04 dyuym) ikki millimetrgacha (0,08 dyuym). Ba'zi olimlarning ta'kidlashicha, ular eng katta hayvonni tashkil qiladi biomassa sayyorada.[20] Copepodlar juda hushyor va qochishga qodir. Ular katta antennalar (chapdagi rasmga qarang). Antennalarini yoyganda, ular yaqinlashayotgan baliqdan bosim to'lqinini sezib, bir necha santimetrdan katta tezlik bilan sakrab o'tishadi. Agar kopepod kontsentratsiyasi yuqori darajaga etgan bo'lsa, maktabdagi sersuvlar bu usulni qo'llashadi qo'chqorni boqish. Quyidagi fotosuratda, seld qo'chqorlari maktabni oziqlantiradi kopepodlar. Ular og'zini keng ochgan holda suzishadi va o'zlarining operkula to'liq kengaytirilgan.

Baliqlar, yuqoridagi animatsiyada ko'rsatilgandek, ularning orasidagi masofa o'ljalarining sakrash uzunligi bilan bir xil bo'lgan panjarada suzadi. Animatsiyada balog'atga etmagan balchiq ovlanadi kopepodlar ushbu sinxronlashtirilgan usulda. Kopepodlar o'zlarini sezadilar antennalar yaqinlashib kelayotgan seldning bosimi va tez sakrab sakrash bilan reaksiyaga kirishadi. Sakrashning uzunligi ancha o'zgarmas. Baliqlar o'zlarini ushbu sakrash uzunligi bilan panjara bo'ylab tekislashadi. Kopepod charchamasdan taxminan 80 marta dart chiqishi mumkin. Sakrashdan so'ng, antennalarini yana yoyish uchun 60 millisekundagacha vaqt kerak bo'ladi va bu vaqtni kechiktirish uning bekor qilinishiga aylanadi, chunki deyarli cheksiz seldlar oqimi seldning kopepodni olishiga imkon beradi. Voyaga etmagan seld hech qachon katta kopepodni ushlay olmas edi.[8]

Reproduktiv afzalliklar

Baliq guruhlarining uchinchi taklif etilayotgan foydasi shundaki, ular reproduktiv funktsiyani bajaradilar. Ular potentsial juftlarga ko'proq kirish imkoniyatini beradi, chunki shoalda turmush o'rtog'ini topish ko'p energiya talab qilmaydi. Va uzoq masofalarga yumurtlama uchun suzib yuradigan baliqlarni ko'chirish uchun, ehtimol, sholning barcha a'zolari kiritgan holda, sholning navigatsiyasi alohida baliq tomonidan olinganidan yaxshiroq bo'ladi.[4]

Island kapelinining ko'chishi

Oziq-ovqat baliqlari ko'pincha ajoyib bo'ladi migratsiya ularning tug'ilishi, boqilishi va pitomniklari o'rtasida. Muayyan zaxiradagi maktablar odatda ushbu maydonlar orasidagi uchburchakda harakat qilishadi. Masalan, bitta zaytun zaxirasi janubda yumurtlama maydoniga ega Norvegiya, ularning ovqatlanish joylari Islandiya va ularning shimoliy Norvegiyadagi bolalar bog'chasi. Bu kabi keng uchburchak sayohatlar muhim bo'lishi mumkin, chunki em-xashak baliqlari o'zlarining nasllarini ajrata olmaydilar.

Kapelin ning yem-xashak baliqlari hid topilgan oila Atlantika va Arktika okeanlar. Yozda ular zich to'dalarda boqishadi plankton muzli tokchaning chetida joylashgan. Bundan kattaroq kapelin ham iste'mol qiladi krill va boshqalar qisqichbaqasimonlar. Kapelin yirik maktablarda qirg'oqqa ko'chib o'tib, bahor va yoz oylarida planktonga boy joylarda boqish uchun ko'chib keladi. Islandiya, Grenlandiya va Jan Mayen. Migratsiya ta'sir qiladi okean oqimlari. Islandiya atrofida pishadigan kapelin bahorda va yozda shimolga katta miqdordagi oziqlanish migratsiyasini amalga oshiradi. Qaytish migratsiyasi sentyabrdan noyabrgacha amalga oshiriladi. Yumurtlama migratsiyasi Islandiyaning shimolidan dekabr yoki yanvarda boshlanadi.

O'ngdagi diagrammada asosiy narsa ko'rsatilgan yumurtlama asoslar va lichinka drift yo'nalishlari. Oziqlantirish joyiga boradigan yo'lda kapelin yashil rangga, orqaga qaytishda kapelin ko'k rangda, nasl berish joylari qizil rangda.

Gidrodinamik samaradorlik

Ushbu nazariya shuni ko'rsatadiki, baliqlar guruhlari birgalikda suzish paytida energiyani tejashlari mumkin, bu esa velosipedchilarning qo'lidan keladi qoralama a-da bir-birlari peloton. Vee formasiyasida uchayotgan g'ozlar, shuningdek, yangilanishda uchib, energiyani tejashga qodir deb o'ylashadi girdob avvalgi hayvon tomonidan shakllanishida hosil bo'lgan.[21][22] Baliq maktablari uchun guruhlarda suzish samaradorligini oshirish taklif qilingan Antarktika krillasi.

Maktablarda baliqlarning bir-biridan muntazam ravishda bir xilligi va kattaligi bir xilligi gidrodinamik samaradorlikka olib keladi deb o'ylash oqilona tuyuladi.[12] Laboratoriya tajribalari maktabdagi baliq qo'shnilari tomonidan yaratilgan gidrodinamik ko'taruvchidan hech qanday yutuq topolmadi,[18] samaradorlikni oshirish tabiatda sodir bo'ladi deb o'ylashadi. Landa (1998) maktabning etakchisi doimiy ravishda o'zgarib turadi, chunki maktab tanasida bo'lish gidrodinamik ustunlik beradi, lekin etakchi ovqatga birinchi bo'lib chiqadi.[13]

Yirtqichlardan qochish

Maktab yirtqichi ko'kfin trevally maktabgacha ta'lim hamsi
Ko'p ko'zlar yuqori darajadagi hushyorlikni ta'minlaydi
Yirtqich hayvon oldida maktabga javob berish vaqti[23][24]

Odatda maktab baliqlari, agar ular maktabdan ajratilgan bo'lsa, ularni eyish xavfi borligi kuzatiladi.[4] Bir nechta yirtqichlarga qarshi funktsiyalar baliq maktablari taklif qilindi.

Baliq maktablariga xalaqit beradigan potentsial usullardan biri yirtqichlar Milinski va Heller tomonidan taklif qilingan va namoyish etilgan "yirtqich chalkashlik effekti" (1978).[25] Ushbu nazariya yirtqichlar uchun guruhlardan alohida o'lja tanlash qiyin bo'ladi degan fikrga asoslanadi, chunki ko'plab harakatlanayotgan maqsadlar yirtqichning vizual kanalining hissiy ortiqcha yukini yaratadi. Milinski va Hellerning xulosalari tajribada ham tasdiqlandi[26][27] va kompyuter simulyatsiyalari.[28][29] "Baliq baliqlari bir xil o'lchamdagi va kumush rangga ega, shuning uchun ingl. Yirtqich hayvon uchun burishib, miltillovchi baliqlar massasidan tanlab olish va keyin u qirg'oqqa g'oyib bo'lguncha o'ljasini ushlab olish uchun etarli vaqtga ega bo'lish qiyin".[4]

Maktabdagi xatti-harakatlar chalkashliklarni keltirib chiqaradi lateral chiziqli organ (LLO) shuningdek elektrosensor yirtqichlarning tizimi (ESS).[30][31][32] Bitta baliqning fin harakatlari nuqta shaklidagi to'lqin manbai bo'lib, yirtqichlar uni lokalizatsiya qilishi mumkin bo'lgan gradyan chiqaradi. Ko'pgina baliqlarning dalalari bir-birining ustiga chiqib ketishi sababli, maktabda o'qish bu gradientni yashirishi kerak, ehtimol katta hayvonning bosim to'lqinlarini taqlid qilishi va lateral chiziq idrokini chalkashtirib yuborishi mumkin.[30] LLO yirtqichlarning hujumining so'nggi bosqichida juda muhimdir.[33] Elektr-retseptiv hayvonlar fazoviy bir xillikdan foydalangan holda dala manbasini lokalizatsiya qilishi mumkin. Alohida signallarni ishlab chiqarish uchun alohida o'lja tanasining kengligi taxminan beshga teng bo'lishi kerak. Agar ob'ektlar bir-biridan ajralib turishi uchun juda yaqin bo'lsa, ular loyqa tasvirni hosil qiladi.[34] Shunga asoslanib, maktabda o'qitish yirtqichlarning ESS-larini chalkashtirib yuborishi mumkinligi taxmin qilingan[30]

Hayvonlarning birlashishining potentsial yirtqichlarga qarshi uchinchi ta'siri - bu "ko'p ko'zlar" gipotezasi. Ushbu nazariya shuni ko'rsatadiki, guruhning kattalashishi bilan atrofni yirtqichlar uchun skanerlash vazifasi ko'plab odamlarga tarqalishi mumkin. Bu nafaqat buni qiladi ommaviy hamkorlik ehtimol yuqori darajadagi hushyorlikni ta'minlaydi, shuningdek, individual ovqatlanish uchun ko'proq vaqt ajratishi mumkin.[35][36]

Baliq maktablarining yirtqich hayvonlarga qarshi ta'siri bo'yicha to'rtinchi gipoteza - bu "to'qnashuvni susaytirish" effekti. Suyultirish effekti ishlab chiqilgan raqamlarda xavfsizlik va chalkashlik effekti bilan o'zaro ta'sir qiladi.[18] Berilgan yirtqichlarning hujumi kichik shoalga qaraganda katta shoalning kichik qismini yeydi.[37] Xemilton hayvonlar birlashishni yirtqichlardan "xudbinlik" bilan qochish sababli to'plashni taklif qildi va shu tariqa yashirinishga intilishning bir shakli bo'ldi.[38] Nazariyaning yana bir formulasi Tyorner va Pitcher tomonidan berilgan va aniqlash va hujum ehtimoli kombinatsiyasi sifatida qaraldi.[39] Nazariyaning aniqlash komponentida, potentsial o'lja birgalikda yashash orqali foyda ko'rishi mumkin degan fikr ilgari surilgan, chunki yirtqichning tarqalishi tarqalishidan ko'ra bitta guruhga uchrash ehtimoli kamroq. Hujum komponentida, ko'p miqdordagi baliq mavjud bo'lganda, hujum qiluvchi yirtqich hayvon ma'lum bir baliqni kamroq iste'mol qilishi mumkin deb o'ylardi. Xulosa qilib aytganda, baliqni aniqlash va hujum qilish ehtimoli guruhning kattaligi bilan nomutanosib ravishda ko'paymasligini nazarda tutgan holda, agar u ikkitadan kattaroq bo'lsa, baliq afzalliklarga ega.[40]

Maktabdagi yem-xashak baliqlari yirtqichlarning doimiy hujumlariga duchor bo'ladi. Afrikaliklar davrida sodir bo'lgan hujumlarni misol qilib keltirish mumkin sardalya yuguradi. Afrikalik sardalya yugurishi - bu janub bo'ylab millionlab kumush sardaklarning ajoyib ko'chishi qirg'oq chizig'i Afrika. Biomassa nuqtai nazaridan sardalya yugurishi Sharqiy Afrikaning buyuklariga raqib bo'lishi mumkin yovvoyi hayvonlar migratsiyasi.[41] Sardalya qisqa hayot tsikliga ega, atigi ikki yoki uch yil yashaydi. Kattalar sardalyalari, taxminan ikki yoshda, massa Agulhas banki u erda ular bahor va yoz oylarida yumurtlayarak o'n minglab tuxumni suvga tashladilar. Voyaga etgan sardalalar keyinchalik yuzlab shoalsda subtropik suvlar tomon yo'l olishadi Hind okeani. Kattaroq qirg'oqning uzunligi 7 kilometr (4 milya), kengligi 1,5 kilometr (1 mil) va chuqurligi 30 metr (100 fut) bo'lishi mumkin. Ko'p sonli akula, delfin, orkinos, yelkenli baliq, Cape mo'ynali muhrlari va hatto qotil kitlar to'planib, shollarga ergashib, a yaratadilar g'azablantirish qirg'oq bo'ylab.[42]

Katta o'lja to'pi bo'sh suv o'tlari atrofida aylanmoqda

Sardalyalar (va boshqa em-xashak baliqlari) tahdid qilinganda instinktiv ravishda birlashadilar va massiv hosil qiladilar o'lja to'plari. Yem to'plari diametri 20 metr (70 fut) gacha bo'lishi mumkin. Ular qisqa umr ko'rishadi, kamdan-kam hollarda 20 daqiqadan ko'proq davom etishadi, Agulhas banklarida qolgan baliq tuxumlari shimolga g'arbiy tomon oqim bilan g'arbiy qirg'oq bo'ylab suvga, u erda lichinkalar balog'atga etmagan baliqlarga aylanadi. Ular etarlicha yoshga etganda, ular zich qirg'oqlarga birlashadilar va tsiklni qayta boshlash uchun Agulhas banklariga qaytib, janubga ko'chadilar.[42]

Maktabdagi xatti-harakatlarning rivojlanishi, ehtimol, kannibalizmdan qochish uchun idrok etish darajasi, yirtqich hayot tarzi va o'lchamlarni saralash mexanizmlari bilan bog'liq edi.[32] Filtrni boqadigan ajdodlarda ko'rishdan oldin va octavolateralis tizimi (OLS) rivojlangan bo'lsa, yirtqichlik xavfi cheklangan bo'lar edi va asosan umurtqasiz hayvonlar tufayli. Demak, o'sha paytda, ehtimol sonlar xavfsizligi shollarda yoki maktablarda yig'ilish uchun katta rag'batlantiruvchi omil bo'lmagan. Vison va OLS rivojlanishi potentsial o'ljani aniqlashga imkon bergan bo'lar edi. Bu shol ichida odamxo'rlik potentsialining oshishiga olib kelishi mumkin edi. Boshqa tomondan, idrok sifatining oshishi kichik odamlarga qochish yoki hech qachon katta baliqlarga qo'shilmaslik imkoniyatini beradi. Kichik baliqlar katta baliqlar bilan guruhga qo'shilishdan saqlanishlari ko'rsatildi, ammo katta baliqlar kichik xususiyatlarga qo'shilishdan qochmaydi.[43] Sezish sifatini oshirishga asoslangan bu tartiblash mexanizmi baliqlarning shollarda bir xil bo'lishiga olib kelishi mumkin edi, bu esa sinxronlikda harakat qilish imkoniyatini oshiradi.[32]

Yirtqichlarning qarshi choralari

Maktab blackfin barracuda hujum rejimida saf tortdi

Yirtqichlar em-xashak baliqlarining mudofaa shoalini va maktabdagi harakatlarini buzish uchun turli xil choralarni ishlab chiqdilar. The yelkan baliqlari Baliq yoki kalamar maktabini boqish uchun suzib yurishini ancha kattalashtirish uchun suzib ko'taradi. Qilich-baliq o'lja yoki hayratda qoldirish uchun qilichlarini kesib, em-xashak baliqlari maktablari orqali yuqori tezlikda zaryad qiling. Keyin ular qaytib, o'zlarining "ovlarini" iste'mol qilish uchun qaytib kelishadi. Sharklar baliqlarni hayratda qoldirish uchun ularning uzun dumlaridan foydalaning. Ish tashlashdan oldin, akulalar ixcham yirtqich maktablarni atrofida suzish va suvni dumi bilan sepish, ko'pincha juft yoki kichik guruhlar bilan. Kirpiklar maktab o'quvchilarini ixcham massaga aylantirish uchun aylanada suzishadi, oldin ularni hayratda qoldirish uchun dumining yuqori qismi bilan keskin urishadi.[44][45] Spinner akulalar maktab bo'ylab vertikal ravishda zaryad qiling, og'zini ochgan holda o'z o'qi atrofida aylaning va atrofni silkitib oling. Ushbu spiral yugurishlarning oxiridagi akula impulsi uni ko'pincha havoga ko'taradi.[46][47]

Delfinlar kabi ba'zi yirtqichlar, o'z guruhlarida ov qilishadi. Ko'pgina delfin turlari tomonidan qo'llaniladigan usullardan biri podachilik, bu erda podalar baliq maktabini boshqaradi, ayrim a'zolar esa navbat bilan haydab, zichroq o'ralgan maktabni boqishadi (odatda bu shakllanish o'lja to'pi.) Korallashtirish - bu baliqlarni osonroq qo'lga kiritiladigan sayoz suvga haydash usuli. Yilda Janubiy Karolina, Atlantika shisha delfin baliqlarni loy qirg'oqlariga haydab yuboradigan va u erdan olib chiqadigan baliq ovi deb nomlangan narsa bilan buni bir qadam oldinga olib boradi.[49]

Keng tarqalgan delfinlar boshqa texnikadan foydalangan holda kuzatilgan. Bitta delfin "haydovchi" vazifasini bajaradi va to'siq hosil qiladigan boshqa delfinlarga qarab baliq maktabini boqadi. Haydovchi delfin baliqni havoga sakrab chiqishiga sabab bo'ladigan zarbani uradi. Baliq sakrashi paytida haydovchi delfin to'siq delfinlari bilan harakat qiladi va baliqlarni havoda ushlaydi.[48] Ushbu turdagi kooperativ roli ixtisoslashuvi ko'proq uchraydi dengiz hayvonlari ga qaraganda quruqlikdagi hayvonlar Ehtimol, okeanlarning o'lja xilma-xilligi ko'proq o'zgaruvchanligi sababli, biomassa va yirtqichlarning harakatchanligi.[48]

Davomida sardalya yuguradi, 18000 ga yaqin delfinlar o'zlarini qo'y itlari kabi tutib, sardalalarni o'lja to'plariga to'playdilar yoki sayoz suvda saqlaydilar. Dumaloqlar va boshqa yirtqichlar yumaloqlangandan so'ng, navbatma-navbat o'lja sharlarini haydab, baliqlar ustidan supurib chiqayotganda shovullaydilar. Dengiz qushlari ham ularga yuqoridan hujum qilishadi gannets, kormorantlar, terns va marralar. Ushbu dengiz qushlarining ba'zilari jangovar samolyotlarga o'xshash bug 'yo'llarini qoldirib, suvga sho'ng'ib, 30 metr balandlikdan sakrab tushishadi.[42] Gannets soatiga 100 kilometr (60 milya) tezlikda suvga sho'ng'iydi. Ularning yuzi va ko'kragida teri ostidagi havo xaltalari bor, ular xuddi shunday harakat qilishadi qabariq bilan o'rash, ta'sirni suv bilan yumshatish.

Ichki qismlar shisha delfin aholi Mavritaniya odam baliqchilari bilan turlararo kooperativ baliq ovlash bilan shug'ullanishi ma'lum. Delfinlar baliqlar maktabini odamlar to'rlari bilan kutayotgan qirg'oq tomon haydashadi. To'qilgan to'rlarning chalkashliklarida delfinlar ko'plab baliqlarni ham ovlaydilar. Turli xil kooperativ ovqatlantirish usullari ham kuzatilgan va ba'zilari ushbu xatti-harakatlar madaniy vositalar orqali uzatilishini taklif qilishadi. Rendell va Uaytxed tsitetsiyanlardagi madaniyatni o'rganish uchun tuzilma taklif qildi,[50]

Ba'zi kitlar o'pka ovqatlanishi o'lja to'plarida.[51] O'pka bilan boqish ekstremal ovqatlanish usuli bo'lib, unda kit o'lja to'pi ostidan yuqori tezlikka tezlashadi va keyin og'zini katta burish burchagiga ochadi. Bu og'izni kengaytirish va suv va baliqlarning katta miqdorini yutish va filtrlash uchun zarur bo'lgan suv bosimini hosil qiladi. Katta odam tomonidan o'pkaning ovqatlanishi rorquals eng katta ekanligi aytilmoqda biomexanik Yerdagi voqea.[52]

Tashqi video
video belgisi Delfinlar sardalani boqishadi.[42]
video belgisi Sardalyalar "divebomb".[42]
video belgisi Sailfish tomonidan kooperativ ov.

Baliq maktabi qanday

Maktab ta'limining "tornado" si barrakudalar

Baliq maktablari intizomli falankslarda suzishadi, ba'zi turlari, masalan, seldalar, ta'sirchan tezlikda yuqoriga va pastga qarab oqar, bu tomonni aylantirib, maktab shaklidagi hayratlanarli o'zgarishlarni to'qnashuvlarsiz amalga oshiradilar. Go'yo ularning harakatlari xoreografiya qilingan bo'lsa-da, ular yo'q. Baliqni bunga imkon berish uchun juda tezkor javob tizimlari bo'lishi kerak. Yosh baliqlar maktab texnikasini ikki juftlikda, so'ngra ularning texnikasi va hissiyotlari etuklashganda katta guruhlarda mashq qiladilar. Maktabdagi xatti-harakatlar instinktiv ravishda rivojlanadi va keksa baliqlardan o'rganilmaydi. Maktabga borish uchun baliqlar hissiy tizimlarni talab qiladi, ular qo'shnilariga nisbatan o'zlarining pozitsiyalaridagi kichik o'zgarishlarga katta tezlik bilan javob bera oladilar. Aksariyat maktablar qorong'ilikdan keyin o'qish qobiliyatini yo'qotadi va shunchaki shoal. Bu esa ko'rishning maktab ta'limi uchun muhimligini ko'rsatadi. Vizyonning ahamiyati, vaqtincha ko'r bo'lgan baliqlarning xatti-harakatlari bilan ham belgilanadi. Maktab turlarining boshlari yon tomonlarida ko'zlari bor, ya'ni ular qo'shnilarini osongina ko'rishlari mumkin. Shuningdek, maktab turlarining yelkalarida yoki dumlari tagida "maktab nishonlari" yoki o'qish paytida mos yozuvlar belgilarini ko'rsatadigan ingl.[53] funktsiyasiga o'xshash passiv belgilar sun'iy harakatlanishda. Biroq, bu markerlarsiz baliqlar hanuzgacha maktab xatti-harakatlarida qatnashadilar,[54] ehtimol unchalik samarali emas.

Boshqa hislar ham ishlatiladi. Feromonlar yoki ovoz ham rol o'ynashi mumkin, ammo hozirgacha tasdiqlovchi dalillar topilmadi. The lateral chiziq baliqning har ikki tomoni bo'ylab gill qopqoqlaridan quyruq tagigacha cho'zilgan chiziq. Laboratoriya tajribalarida maktab baliqlarining lateral chiziqlari olib tashlandi. Ular yaqinroq suzib, baliqlar juda yaqinlashganda lateral chiziqlar qo'shimcha ogohlantirishlarni ta'minlaydi degan nazariyani keltirib chiqardi.[53] Yon chiziqli tizim suv oqimlarining o'zgarishiga va suvdagi tebranishga juda sezgir. Unda chaqirilgan retseptorlardan foydalaniladi neyromastlar, ularning har biri soch hujayralari guruhidan iborat. Sochlar o'simtaga o'xshash jele kabi bilan o'ralgan kubok, odatda 0,1 dan 0,2 mm gacha. Yanal chiziqdagi soch hujayralari umurtqali hayvonlarning ichki qulog'i ichidagi soch hujayralariga o'xshaydi, bu lateral chiziq va ichki quloqning umumiy kelib chiqishini bildiradi.[4]

Shoal tuzilishini tavsiflash

Baliqlarning ko'pligi sababli haqiqiy baliq baliqlarining uch o'lchovli tuzilishini kuzatish va ta'riflash qiyin. Texnika so'nggi yutuqlardan foydalanishni o'z ichiga oladi baliq ovlash akustikasi.[55]

Baliq qirg'og'ini belgilaydigan parametrlarga quyidagilar kiradi.

  • Shoal hajmi - sholadagi baliqlar soni. Shimoliy Amerikaning sharqiy qirg'og'ida joylashgan kontinental shelfning chekkasida masofadan turib zondlash texnikasi ishlatilgan bo'lib, baliq shollarini tasvirga olishgan. Shoals - ehtimol tuzilgan Atlantika seldasi, skup, hake va qora dengiz boshi tarkibida "o'n millionlab" baliq borligi va "ko'p kilometrlarga" cho'zilganligi aytilgan.[56]
  • Zichlik - Baliq shoalining zichligi - bu baliqlar sonini shol egallagan hajmga bo'lish. Zichlik butun guruhda doimiy bo'lishi shart emas. Maktablardagi baliqlar, odatda, tana uzunligining bir kubiga taxminan bitta baliqning zichligiga ega.[57]
  • Polarlik - Guruh qutbliligi baliqlarning barchasi bir tomonga yo'naltirilganligini tavsiflaydi. Ushbu parametrni aniqlash uchun guruhdagi barcha hayvonlarning o'rtacha yo'nalishi aniqlanadi. Keyin har bir hayvon uchun uning yo'nalishi va guruh yo'nalishi o'rtasidagi burchak farqi topiladi. Guruh qutbliligi bu farqlarning o'rtacha ko'rsatkichidir.[58]
  • Yaqin qo'shni masofasi - Yaqin qo'shni masofasi (NND) bitta baliqning (fokal baliq) va fokal baliqqa yaqin bo'lgan baliqning tsentroidi orasidagi masofani tavsiflaydi. Ushbu parametr to'plangan har bir baliq uchun topiladi va keyin o'rtacha hisoblanadi. Baliq yig'ilishining chekkasida joylashgan baliqlarni hisobga olish uchun ehtiyot bo'lish kerak, chunki bu baliqlarning bir yo'nalishda qo'shnisi yo'q. NND shuningdek, qadoqlash zichligi bilan bog'liq. Maktab baliqlari uchun NND odatda tana uzunligining bir yarim va bir qismi orasida bo'ladi.
  • Eng yaqin qo'shni pozitsiyasi - qutb koordinatalari tizimida eng yaqin qo'shni pozitsiyasi fokal baliqqa yaqin qo'shnining burchagi va masofasini tavsiflaydi.
  • Paket fraktsiyasi - Qadoqlash fraktsiyasi - bu 3D baliq guruhlari tashkilotini (yoki holatini, ya'ni qattiq, suyuq yoki gazni) aniqlash uchun fizikadan olingan parametr. Bu zichlikning muqobil o'lchovidir. Ushbu parametrda birlashma qattiq sharlar ansambli sifatida idealizatsiya qilingan, har bir baliq sharning markazida joylashgan. Qadoqlash fraktsiyasi barcha alohida sferalar egallagan umumiy hajmning birlashmaning global hajmiga bo'linadigan nisbati sifatida aniqlanadi. Qiymatlar noldan bittagacha o'zgarib turadi, bu erda kichik ambalaj qismi gaz kabi suyultirilgan tizimni ifodalaydi.[59]
  • Integratsiyalashgan shartli zichlik - Ushbu parametr zichlikni har xil uzunlikdagi o'lchovlarda o'lchaydi va shuning uchun hayvon guruhi bo'yicha zichlikning bir xilligini tavsiflaydi.[59]
  • Juftlikni taqsimlash funktsiyasi - Ushbu parametr odatda fizikada zarralar tizimidagi fazoviy tartib darajasini tavsiflash uchun ishlatiladi. Shuningdek, u zichlikni tavsiflaydi, ammo bu o'lchov ma'lum bir nuqtadan uzoqroq masofada zichlikni tavsiflaydi. Cavagna va boshq. yulduzlar to'plami gazdan ko'ra ko'proq tuzilishga ega, ammo suyuqlikdan kamligini aniqladi.[59]

Maktab xatti-harakatlarini modellashtirish

Between o'rtasidagi farqni aks ettiruvchi diagramma metrik masofa va topologik masofa baliq maktablariga murojaat qilishda
↑ Katta maktablar, shunga o'xshash, hali ham pozitsion baholashni kuzatib boradi va kichik maktablar singari zichlik va hajm ko'rsatkichlari bilan tartibga solinadi[23]

Nuvola ilovalari kaboodle.svg Qoidalarni simulyatsiya qilish - Java kerak

Nuvola ilovalari kaboodle.svg O'ziyurar zarralarning interaktiv simulyatsiyasi[60] - Java kerak

Matematik modellar

Kuzatuv usuli maktablarni matematik modellashtirish bilan to'ldiriladi. Maktablarning eng keng tarqalgan matematik modellari hayvonlarga uchta qoidaga rioya qilishni buyuradi:

  1. Qo'shningiz bilan bir xil yo'nalishda harakat qiling
  2. Qo'shnilaringiz bilan yaqin bo'ling
  3. Qo'shnilaringiz bilan to'qnashuvlardan saqlaning

Bunday simulyatsiyaning misoli botiqlar tomonidan yaratilgan dastur Kreyg Reynolds 1986 yilda.[61] Boshqasi o'ziyurar zarracha tomonidan kiritilgan model Vikeks va boshq. 1995 yilda[62] Ko'pgina zamonaviy modellar ushbu qoidalar bo'yicha o'zgarishlardan foydalanadilar. Masalan, ko'plab modellar ushbu uchta qoidani har bir baliq atrofidagi qatlamli zonalar orqali amalga oshiradilar.

  1. Baliqqa juda yaqin bo'lgan itarish zonasida fokal baliq to'qnashuvni oldini olish uchun qo'shnilaridan uzoqlashishga intiladi.
  2. Hizalanish zonasidan biroz uzoqroq masofada fokal baliq o'z harakat yo'nalishini qo'shnilariga moslashtirishga intiladi.
  3. Fokal baliqlardan sezadigan darajada uzoqroqqa cho'zilgan eng diqqatga sazovor zonada, fokal baliq qo'shnisi tomon harakat qilishga intiladi.

Ushbu zonalarning shakli, albatta, baliqlarning hissiy qobiliyatlariga ta'sir qiladi. Baliqlar ikkala ko'rishga ham, u orqali uzatiladigan gidrodinamik signallarga ham ishonadilar lateral chiziq. Antarktika krillasi ko'rishga va u orqali o'tadigan gidrodinamik signallarga tayanadi antennalar.

In a masters thesis published in 2008, Moshi Charnell produced schooling behaviour without using the alignment matching component of an individuals behaviour.[63] His model reduces the three basic rules to the following two rules:

  1. Remain close to your neighbours
  2. Avoid collisions with your neighbours

In a paper published in 2009, researchers from Iceland recount their application of an interacting particle model to the capelin stock around Iceland, successfully predicting the spawning migration route for 2008.[64]

Evolutionary models

In order to gain insight into nima uchun animals evolve swarming behaviour, scientists have turned to evolutionary models that simulate populations of evolving animals. Typically these studies use a genetik algoritm taqlid qilmoq evolyutsiya over many generations in the model. These studies have investigated a number of hypotheses explaining why animals evolve swarming behaviour, such as the selfish herd theory,[65][66][67][68] the predator confusion effect,[29][69] the dilution effect,[70][71] and the many eyes theory.[72]

Mapping the formation of schools

In 2009, building on recent advances in akustik imaging,[55][73] guruhi MIT researchers observed for "the first time the formation and subsequent migration of a huge shoal of fish."[74] The results provide the first field confirmation of general theories about how large groups behave, from locust swarms ga bird flocks.[75]

The researchers imaged yumurtlama Atlantika seldasi yopiq Jorj banki. They found that the fish come together from deeper water in the evening, shoaling in a disordered way. A chain reaction triggers when the population density reaches a critical value, like an tomoshabin to'lqini travelling around a sport stadium. A rapid transition then occurs, and the fish become highly polarised and synchronized in the manner of schooling fish. After the transition, the schools start migrating, extending up to 40 kilometres (25 mi) across the ocean, to shallow parts of the bank. There they spawn during the night. In the morning, the fish school back to deeper water again and then disband. Small groups of leaders were also discovered that significantly influenced much larger groups.[75]

Leadership and decision-making

Fish schools are faced with decisions they must make if they are to remain together. For example, a decision might be which direction to swim when confronted by a predator, which areas to stop and forage, or when and where to migrate.[76]

Kvorumni aniqlash can function as a collective decision-making process in any decentralised system. A quorum response has been defined as "a steep increase in the probability of group members performing a given behaviour once a threshold minimum number of their group mates already performing that behaviour is exceeded".[77] A recent investigation showed that small groups of fish used consensus decision-making when deciding which fish model to follow. The fish did this by a simple quorum rule such that individuals watched the decisions of others before making their own decisions. This technique generally resulted in the 'correct' decision but occasionally cascaded into the 'incorrect' decision. In addition, as the group size increased, the fish made more accurate decisions in following the more attractive fish model.[78] Consensus decision-making, a form of jamoaviy aql, thus effectively uses information from multiple sources to generally reach the correct conclusion. Such behaviour has also been demonstrated in the shoaling behaviour of threespine sticklebacks.[77]

Other open questions of shoaling behaviour include identifying which individuals are responsible for the direction of shoal movement. Bo'lgan holatda ko'chib yuruvchi movement, most members of a shoal seem to know where they are going. Observations on the foraging behaviour of captive oltin porloq (bir xil minnow ) found they formed shoals which were led by a small number of experienced individuals who knew when and where food was available.[79] If all golden shiners in a shoal have similar knowledge of food availability, there are a few individuals that still emerge as natural leaders (being at the front more often) and behavioural tests suggest they are naturally bolder.[80] Smaller golden shiners appear more willing than larger ones to be near the front of the shoal, perhaps because they are hungrier.[81] Observations on the oddiy roach have shown that food-deprived individuals tend to be at the front of a shoal, where they obtain more food[82][83] but where they may also be more vulnerable to ambush predators.[84] Individuals that are wary of predation tend to seek more central positions within shoals.[85]

Shoal choice

Fish, such as these sweepers, usually prefer to join larger schools which contain members of their own species matching their own size
A swirl of different schools, each confined to its own species

Experimental studies of shoal preference are relatively easy to perform. An aquarium containing a choosing fish is sandwiched between two aquaria containing different shoals, and the choosing fish is assumed to spend more time next to the shoal it prefers. Studies of this kind have identified several factors important for shoal preference.

Fish generally prefer larger shoals.[86][87] This makes sense, as larger shoal usually provide better protection against predators. Indeed, the preference for larger shoals seems stronger when predators are nearby,[88][89] or in species that rely more on shoaling than body armour against predation.[90] Larger shoals may also find food faster, though that food would have to be shared amongst more individuals. Competition may mean that hungry individuals might prefer smaller shoals or exhibit a lesser preference for very large shoals, as shown in sticklebacks.[91][92]

Fish prefer to shoal with their own species. Sometimes, several species may become mingled in one shoal, but when a predator is presented to such shoals, the fish reorganize themselves so that each individual ends up being closer to members of its own species.[93]

Fish tend to prefer shoals made up of individuals that match their own size.[94][95][96] This makes sense as predators have an easier time catching individuals that stand out in a shoal. Some fish may even prefer shoals of another species if this means a better match in current body size.[97] As for shoal size however, hunger can affect the preference for similarly-sized fish; large fish, for example, might prefer to associate with smaller ones because of the competitive advantage they will gain over these shoalmates. Yilda oltin porloq, large satiated fish prefer to associate with other large individuals, but hungry ones prefer smaller shoalmates.[98]

Fish prefer to shoal with individuals with which the choosing fish is already familiar. This has been demonstrated in kulcha,[99][100] threespine stickleback,[101] banded killifish,[102] the surfperch Embiotoca jeksoni,[103] Mexican tetra,[104] and various minnows.[105][106] A study with the White Cloud Mountain minnow has also found that choosing fish prefer to shoal with individuals that have consumed the same diet as themselves.[107]

Sticklebacks and killifish have been shown to prefer shoals made up of healthy individuals over parasitized ones, on the basis of visual signs of parasitism and abnormal behaviour by the parasitized fish.[108][109][110][111] Zebrafish prefer shoals that consist of well-fed (greater stomach width) fish over food-deprived ones.[112]

Threespine stickleback prefer to join a shoal made up of bold individuals rather than shy ones.[113] Angelfish prefer shoals made up of subordinate rather than dominant individuals.[114] European minnow can discriminate between shoals composed of good versus poor competitors, even in the absence of obvious cues such as differences in aggressiveness, size, or feeding rate; they prefer to associate with the poor competitors.[115] All of this suggests a strategy to obtain food, as bolder individuals should be more likely to find food, while subordinates would offer less competition for the discovered food.

Fish prefer to join shoals that are actively feeding.[116][117] Oltin porlovchi can also detect the anticipatory activity of shoals that expect to be fed soon, and preferentially join such shoals.[118] Zebrafish also choose shoals that are more active.[119]

Tijorat baliq ovi

The schooling behaviour of fish is exploited on an industrial scale by the savdo baliq ovlash sanoat. Katta pul sumkasi vessels use spotter planes to locate schooling fish, such as tuna, cod, mackerel and forage fish. They can capture huge schools by rapidly encircling them with purse seine nets with the help of fast auxiliary boats and sophisticated sonar, which can track the shape of the shoal.

Boshqa misollar

Maktab temirchilar being cleaned by parasite eating fish

Temirchi fish live in loose shoals. They have a symbiotic relationship with the parasite eating senorita fish. When they encounter a shoal of senorita fish, they stop and form a tight ball and hang upside down (pictured), each fish waiting its turn to be cleaned. The senorita fish pick dead tissues and external parasites, like parasitic copecods and isocods, from the skin of other fishes.[iqtibos kerak ]

Some shoals engage in mobbing harakati. Masalan, bluegills form large nesting colonies and sometimes attack toshbaqalarni tortib olish. This may function to advertise their presence, drive the predator from the area, or aid in cultural transmission of predator recognition.[120]

Piranha have a reputation as fearless fish that hunt in ferocious packs. However, recent research, which "started off with the premise that they school as a means of cooperative hunting", discovered that they were in fact rather fearful fish, like other fish, which schooled for protection from their predators, such as cormorants, caimans and dolphins. Piranhas are "basically like regular fish with large teeth".[121]

Gumboldt kalmar are large carnivorous marine invertebrates that move in schools of up to 1,200 individuals. They swim at speeds of up to 24 kilometres per hour (15 mph or 13 kn) propelled by water ejected through a sifon and by two triangular fins. Ularning chodirlar bear suckers lined with sharp teeth with which they grasp prey and drag it towards a large, sharp beak. During the day the Humboldt squid behave similar to mesopelagic fish, living at depths of 200 to 700 m (660 to 2,300 ft). Electronic tagging has shown that they also undergo diel vertikal migratsiyasi which bring them closer to the surface from dusk to dawn.[122] They hunt near the surface at night, taking advantage of the dark to use their keen vision to feed on more plentiful prey. The squid feed primarily on small baliq, qisqichbaqasimonlar, sefalopodlar va copepod, and hunt for their prey in a cooperative fashion, the first observation of such behaviour in invertebrates.[123] The Humboldt squid is also known to quickly devour larger prey when cooperatively hunting in groups. Humboldt squid are known for their speed in feasting on hooked fish, sharks, and squid, even from their own species and shoal,[124] and have been known to attack fishermen and divers.[125]

Shuningdek qarang

Izohlar

  1. ^ Other collective nouns used for fish include a qoralama of fish, a drift of fish, or a o'lchov baliq. Collective nouns used for specific fish or marine animal species groups include a maydalash of blackfish, a troubling of goldfish, terim of herrings, bog'lash yoki yugurish of salmon, shiver of sharks, isitma of stingrays, taint of tilapia, olib boring of trouts and pod of whales.[iqtibos kerak ]
  2. ^ Shoaling is a special case of aggregating, and schooling is a special case of shoaling. While schooling and shoaling mean different things within biology, they are often treated as sinonimlar by non-specialists, with speakers of Britaniya ingliz tili tending to use "shoaling" to describe any grouping of fish, while speakers of Amerika ingliz tili tend to use "schooling" just as loosely.[1]

Adabiyotlar

  1. ^ a b v d e Pitcher and Parish 1993, page 365.
  2. ^ Shaw, E (1978). "Schooling fishes". Amerikalik olim. 66 (2): 166–175. Bibcode:1978AmSci..66..166S.
  3. ^ Helfman G., Collette B., & Facey D.: The Diversity of Fishes, Blackwell Publishing, p 375, 1997, ISBN  0-86542-256-7
  4. ^ a b v d e f g Moyle, PB and Cech, JJ (2003) Fishes, An Introduction to Ichthyology. 5th Ed, Benjamin Cummings. ISBN  978-0-13-100847-2
  5. ^ Pitcher, TJ and Parrish, JK (1993) Behaviour of Teleost Fishes, Chp 12: Teleostlarda shoalning xatti-harakatlari Springer. ISBN  978-0-412-42930-9
  6. ^ Breder, C. M., Jr. (1967). "On the survival value of fish schools". Zoologica. 52: 25–40.
  7. ^ a b Keklik, B .; Pitcher, T .; Cullen, M.; Wilson, J. (1980). "The three-dimensional structure of fish schools". Behav Ekol Sotsiobiol. 6 (4): 277–288. doi:10.1007/BF00292770. S2CID  8032766.
  8. ^ a b Kils, U. (1992). "The ecoSCOPE and dynIMAGE: Microscale tools for in situ studies of predator-prey interactions". Arch Hydrobiol Beih. 36: 83–96.
  9. ^ National Coalition for Marine Conservation: Oziq-ovqat baliqlari
  10. ^ Radakov DV (1973) Schooling in the ecology of fish. Israel Program for Scientific Translation, translated by Mill H. Halsted Press, New York. ISBN  978-0-7065-1351-6
  11. ^ Nøttestad, L.; Axelsen, B. E. (1999). "Herring schooling manoeuvres in response to killer whale attacks" (PDF). Kanada Zoologiya jurnali. 77 (10): 1540–1546. doi:10.1139/z99-124. Arxivlandi asl nusxasi (PDF) on 2008-12-17.
  12. ^ a b Hoare, D. J.; Krause, J.; Peuhkuri, N.; Godin, J. G. J. (2000). "Body size and shoaling in fish". Baliq biologiyasi jurnali. 57 (6): 1351–1366. doi:10.1111/j.1095-8649.2000.tb02217.x.
  13. ^ a b Landa, J. T. (1998). "Bioeconomics of schooling fishes: selfish fish, quasi-free riders, and other fishy tales". Baliqlarning ekologik biologiyasi. 53 (4): 353–364. doi:10.1023/A:1007414603324. S2CID  12674762.
  14. ^ Parrish, J. K.; Viscedo, S. C.; Grunbaum, D. (2002). "Self organised fish-schools: An examination of emergent properties". Biologik byulleten. 202 (3): 296–305. CiteSeerX  10.1.1.116.1548. doi:10.2307/1543482. JSTOR  1543482. PMID  12087003.
  15. ^ Abrahams, M.; Colgan, P. (1985). "Risk of predation, hydrodynamic efficiency, and their influence on school structure". Baliqlarning ekologik biologiyasi. 13 (3): 195–202. doi:10.1007/BF00000931. S2CID  22329892.
  16. ^ Pitcher, T .; Magurran, A.; Winfield, I. (1982). "Fish in larger shoals find food faster". Behav. Ekol. Sotsiobiol. 10 (2): 149–151. doi:10.1007/BF00300175. S2CID  6340986.
  17. ^ Keklik, B .; Johansson, J.; Kalish, J. (1983). "The structure of schools of giant bluefin tuna in Cape Cod Bay". Baliqlarning ekologik biologiyasi. 9 (3–4): 253–262. doi:10.1007/BF00692374. S2CID  6799134.
  18. ^ a b v Pitcher and Parish 1993
  19. ^ "Wind Driven Surface Currents: Upwelling and Downwelling".
  20. ^ Biology of Copepods Arxivlandi 2009-01-01 da Orqaga qaytish mashinasi da Oldenburgdagi Karl fon Ossiyetskiy universiteti
  21. ^ Fish, F. E. (1995). "Kinematics of ducklings swimming in formation: consequences of position". Eksperimental Zoologiya jurnali. 273 (1): 1–11. doi:10.1002/jez.1402730102. S2CID  49732151.
  22. ^ Alexander, R McNeill (2004). "Hitching a lift hydrodynamically - in swimming, flying and cycling". Journal of Biology. 3 (2): 7. doi:10.1186/jbiol5. PMC  416560. PMID  15132738.
  23. ^ a b Aparna, Bhaduri (2011) Mockingbird Tales: Readings in Animal Behavior OpenStax College.
  24. ^ Hoare, D. J.; Couzin, I. D.; Godin, J. G.; Krause, J. (2004). "Context-dependent group size choice in fish". Hayvonlar harakati. 67 (1): 155–164. doi:10.1016/j.anbehav.2003.04.004. S2CID  2244463.
  25. ^ Milinski, H.; Heller, R. (1978). "Influence of a predator on the optimal foraging behavior of sticklebacks". Tabiat. 275 (5681): 642–644. Bibcode:1978Natur.275..642M. doi:10.1038/275642a0. S2CID  4184043.
  26. ^ Jeschke JM, Tollrian R; Tollrian, Ralph (2007). "Prey swarming: which predators become confused and why?". Hayvonlar harakati. 74 (3): 387–393. doi:10.1016/j.anbehav.2006.08.020. S2CID  53163951.
  27. ^ Ioannou CC; Tosh CR; Neville L; Krause J (2008). "The confusion effect—from neural networks to reduced predation risk". Xulq-atvor ekologiyasi. 19 (1): 126–130. doi:10.1093/beheco/arm109.
  28. ^ Krakauer DC (1995). "Groups confuse predators by exploiting perceptual bottlenecks: a connectionist model of the confusion effect". Xulq-atvor ekologiyasi va sotsiobiologiyasi. 36 (6): 421–429. doi:10.1007/BF00177338. S2CID  22967420.
  29. ^ a b Olson RS; Hintze A; Dyer FC; Knoester DB; Adami C (2013). "Predator confusion is sufficient to evolve swarming behaviour". J. R. Soc. Interfeys. 10 (85): 20130305. arXiv:1209.3330. doi:10.1098/rsif.2013.0305. PMC  4043163. PMID  23740485.
  30. ^ a b v Larsson, M (2009). "Possible functions of the octavolateralis system in fish schooling". Baliq va baliqchilik. 10 (3): 344–355. doi:10.1111/j.1467-2979.2009.00330.x.
  31. ^ Larsson, M (2011). "Incidental sounds of locomotion in animal cognition". Hayvonlarni bilish. 15 (1): 1–13. doi:10.1007/s10071-011-0433-2. PMC  3249174. PMID  21748447.
  32. ^ a b v Larsson, M (2012). "Nega baliq maktabi?". Amaldagi zoologiya. 58 (1): 116–128. doi:10.1093 / czoolo / 58.1.116.
  33. ^ New, JG; Fewkes, LA; Khan, AN (2001). "Strike feeding behavior in the muskellunge, Esox masquinongy: Contributions of the lateral line and visual sensory systems". J Exp Biol. 204 (6): 1207–1221. PMID  11222136.
  34. ^ Babineau, D; Lewis, JE; Longtin, A (2007). "Spatial acuity and prey detection in weakly electric fish". PLOS Comput Biol. 3 (3): 402–411. Bibcode:2007PLSCB...3...38B. doi:10.1371/journal.pcbi.0030038. PMC  1808493. PMID  17335346.
  35. ^ Roberts, G (1996). "Why individual vigilance declines as group size increases". Anim Behav. 51 (5): 1077–1086. CiteSeerX  10.1.1.472.7279. doi:10.1006/anbe.1996.0109. S2CID  53202810.
  36. ^ Lima, S (1995). "Back to the basics of anti-predatory vigilance: the group-size effect". Hayvonlar harakati. 49 (1): 11–20. doi:10.1016/0003-3472(95)80149-9. S2CID  53205760.
  37. ^ Morse, DH (1977). "Feeding behavior and predator avoidance in heterospecific groups". BioScience. 27 (5): 332–339. doi:10.2307/1297632. JSTOR  1297632.
  38. ^ Hamilton, W. D. (1971). "Geometry for the selfish herd". J. Theor Biology. 31 (2): 295–311. doi:10.1016/0022-5193(71)90189-5. PMID  5104951.
  39. ^ Turner, G.; Pitcher, T. (1986). "Attack abatement: a model for group protection by combined avoidance and dilution". Amerikalik tabiatshunos. 128 (2): 228–240. doi:10.1086/284556.
  40. ^ Krause, J.; Ruxton, G.; Rubenstein, D. (1998). "Is there always an influence of shoal size on predator hunting success?". Baliq biologiyasi jurnali. 52 (3): 494–501. doi:10.1006/jfbi.1997.0595.
  41. ^ "Marine Scientists Scratch Heads Over Sardines". Arxivlandi asl nusxasi on 2004-09-25.
  42. ^ a b v d e "Sardine Run Shark Feeding Frenzy Phenomenon in Africa". Arxivlandi asl nusxasi 2008-12-02 kunlari.
  43. ^ Lachlan, RF; Crooks, L; Laland, KN (1998). "Who follows whom? Shoaling preferences and social learning of foraging information in guppies". Hayvonlar harakati. 56 (1): 181–190. doi:10.1006/anbe.1998.0760. PMID  9710476. S2CID  30973104.
  44. ^ Seitz, J.C. Pelagic Thresher. Florida Tabiat tarixi muzeyi. Qabul qilingan 2008 yil 22-dekabr.
  45. ^ Oliver, SP; Turner, JR; Gann, K; Silvosa, M; D'Urban Jackson, T (2013). "Thresher sharks use tail-slaps as a hunting strategy". PLOS ONE. 8 (7): e67380. Bibcode:2013PLoSO...867380O. doi:10.1371/journal.pone.0067380. PMC  3707734. PMID  23874415.
  46. ^ Compagno, L.J.V. (1984). Sharks of the World: An Annotated and Illustrated Catalogue of Shark Species Known to Date. Rome: Food and Agricultural Organization. pp. 466–468. ISBN  978-92-5-101384-7.
  47. ^ "Carcharhinus brevipinna, Spinner Shark". MarineBio.org. Olingan 9 may, 2009.
  48. ^ a b v Gazda, S K; Connor, R C; Edgar, R K; Cox, F (2005). "A division of labour with role specialization in group-hunting bottlenose dolphins (Tursiops truncatus) off Cedar Key, Florida". Qirollik jamiyati materiallari B. 272 (1559): 135–140. doi:10.1098/rspb.2004.2937. PMC  1634948. PMID  15695203.
  49. ^ "Coastal Stock(s) of Atlantic Bottlenose Dolphin: Status Review and Management," Proceedings and Recommendations from a Workshop held in Beaufort, North Carolina, 13 September 1993 – 14 September 1993. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. 56-57 betlar.
  50. ^ Rendell, L.; Whitehead, H. (2001). "Culture in whales and dolphins". Xulq-atvor va miya fanlari. 24 (2): 309–382. doi:10.1017/S0140525X0100396X. PMID  11530544. S2CID  24052064.
  51. ^ Reeves RR, Stewart BS, Clapham PJ and Powell J A (2002) Dunyoning dengiz sutemizuvchilariga oid Milliy Audubon Jamiyati qo'llanmasi Chanticleer Press. ISBN  9780375411410.
  52. ^ Potvin, J; Goldbogen, JA; Shadwick, R. E. (2009). "Passive versus active engulfment: verdict from trajectory simulations of lunge-feeding fin whales Balaenoptera physalus". J. R. Soc. Interfeys. 6 (40): 1005–1025. doi:10.1098/rsif.2008.0492. PMC  2827442. PMID  19158011.
  53. ^ a b Bone Q and Moore RH (2008) Biology of Fishes pp. 418–422, Taylor & Francis Group. ISBN  978-0-415-37562-7
  54. ^ BBC News Online, Robofish accepted by wild fish shoal, 09:54 GMT, Thursday, 1 July 2010 10:54 UK
  55. ^ a b "One fish, two fish: New MIT sensor improves fish counts". Phys.org. Olingan 13 sentyabr 2014.
  56. ^ Makris, N.C.; Ratilal, P.; Symonds, D.T.; Jagannathan, S.; Li, S .; Nero, R.W. (2006). "Fish Population and Behavior Revealed by Instantaneous Continental Shelf-Scale Imaging". Ilm-fan. 311 (5761): 660–663. Bibcode:2006Sci...311..660M. doi:10.1126/science.1121756. PMID  16456080. S2CID  140558930.
  57. ^ Pitcher, TJ; Partridge, TL (1979). "Fish School density and volume". Mar. Biol. 54 (4): 383–394. doi:10.1007/BF00395444. S2CID  84810154.
  58. ^ Viscido, S.; Parrish, J.; Grunbaum, D. (2004). "Individual behavior and emergent properties of fish schools: a comparison of observation and theory" (PDF). Dengiz ekologiyasi taraqqiyoti seriyasi. 273: 239–249. Bibcode:2004MEPS..273..239V. doi:10.3354/meps273239.
  59. ^ a b v Cavagna, A.; Cimarelli, Giardina; Orlandi, Parisi; Procaccini, Santagati; Stefanini (2008). "New statistical tools for analyzing the structure of animal groups". Mathematical Biosciences. 214 (1–2): 32–37. doi:10.1016/j.mbs.2008.05.006. PMID  18586280.
  60. ^ "Self driven particle model". PhET. Olingan 13 sentyabr 2014.
  61. ^ Reynolds, CW (1987). "Flocks, herds and schools: A distributed behavioral model". Proceedings of the 14th annual conference on Computer graphics and interactive techniques - SIGGRAPH '87. Kompyuter grafikasi. 21. 25-34 betlar. CiteSeerX  10.1.1.103.7187. doi:10.1145/37401.37406. ISBN  978-0897912273. S2CID  546350.
  62. ^ Vicsek, T; Czirok, A; Ben-Jacob, E; Cohen, I; Shochet, O (1995). "Novel type of phase transition in a system of self-driven particles". Jismoniy tekshiruv xatlari. 75 (6): 1226–1229. arXiv:cond-mat/0611743. Bibcode:1995PhRvL..75.1226V. doi:10.1103/PhysRevLett.75.1226. PMID  10060237. S2CID  15918052.
  63. ^ Charnell, M. (2008)"Individual-based modelling of ecological systems and social aggregations". Yuklash[doimiy o'lik havola ]
  64. ^ Barbaro A, Einarsson B, Birnir B, Sigurðsson S, Valdimarsson S, Pálsson ÓK, Sveinbjörnsson S, Sigurðsson P (2009). "Modelling and simulations of the migration of pelagic fish". ICES Marine Science Journal. 66 (5): 826–838. doi:10.1093/icesjms/fsp067.
  65. ^ Olson RS; Knoester DB; Adami C (2013). Critical Interplay Between Density-dependent Predation and Evolution of the Selfish Herd. Proceedings of GECCO 2013. pp. 247–254. doi:10.1145/2463372.2463394. ISBN  9781450319638. S2CID  14414033.
  66. ^ Ward CR; Gobet F; Kendall G (2001). "Evolving collective behavior in an artificial ecology". Sun'iy hayot. 7 (2): 191–209. CiteSeerX  10.1.1.108.3956. doi:10.1162/106454601753139005. PMID  11580880. S2CID  12133884.
  67. ^ Reluga TC, Viscido S; Viscido, Steven (2005). "Simulated evolution of selfish herd behavior". Nazariy biologiya jurnali. 234 (2): 213–225. doi:10.1016/j.jtbi.2004.11.035. PMID  15757680.
  68. ^ Wood AJ, Ackland GJ; Ackland, G. J (2007). "Evolving the selfish herd: emergence of distinct aggregating strategies in an individual-based model". Proc Biol Sci. 274 (1618): 1637–1642. doi:10.1098/rspb.2007.0306. PMC  2169279. PMID  17472913.
  69. ^ Demsar J; Hemelrijk CK; Hildenbrandt H & Bajec IL (2015). "Simulating predator attacks on schools: Evolving composite tactics" (PDF). Ekologik modellashtirish. 304: 22–33. doi:10.1016/j.ecolmodel.2015.02.018.
  70. ^ Tosh CR (2011). "Which conditions promote negative density dependent selection on prey aggregations?" (PDF). Nazariy biologiya jurnali. 281 (1): 24–30. doi:10.1016/j.jtbi.2011.04.014. PMID  21540037.
  71. ^ Ioannou CC; Guttal V; Couzin ID (2012). "Predatory Fish Select for Coordinated Collective Motion in Virtual Prey". Ilm-fan. 337 (6099): 1212–1215. Bibcode:2012Sci...337.1212I. doi:10.1126/science.1218919. PMID  22903520. S2CID  10203872.
  72. ^ Olson RS; Haley PB; Dyer FC & Adami C (2015). "Exploring the evolution of a trade-off between vigilance and foraging in group-living organisms". Qirollik jamiyati ochiq fan. 2 (9): 150135. arXiv:1408.1906. Bibcode:2015RSOS....250135O. doi:10.1098/rsos.150135. PMC  4593673. PMID  26473039.
  73. ^ Makris, NC; Ratilal, P; Symonds, DT; Jagannathan, S; Li, S; Nero, RW (2006). "Fish Population and Behavior Revealed by Instantaneous Continental Shelf-Scale Imaging". Ilm-fan. 311 (5761): 660–663. Bibcode:2006Sci...311..660M. doi:10.1126/science.1121756. PMID  16456080. S2CID  140558930.
  74. ^ Makris, NC; Ratilal, P; Jagannathan, S; Gong, Z; Andrews, M; Bertsatos, I; Godø, OR; Nero, RW; Jech, M; va boshq. (2009). "Critical Population Density Triggers Rapid Formation of Vast Oceanic Fish Shoals". Ilm-fan. 323 (5922): 1734–1737. Bibcode:2009Sci...323.1734M. doi:10.1126/science.1169441. PMID  19325116. S2CID  6478019.
  75. ^ a b "Scientists IDs genesis of animal behavior patterns". Olingan 13 sentyabr 2014.
  76. ^ Sumpter, D. "Collective Behavior".
  77. ^ a b Ward, AJ; Krause, J; Sumpter, DJ (2012). "Quorum decision-making in foraging fish shoals". PLOS ONE. 7 (3): e32411. Bibcode:2012PLoSO...732411W. doi:10.1371/journal.pone.0032411. PMC  3296701. PMID  22412869.
  78. ^ Sumpter, D.; Krause, J; James, R.; Couzin, I.; Ward, A. (2008). "Consensus decision making by fish". Hozirgi biologiya. 18 (22): 1773–1777. doi:10.1016/j.cub.2008.09.064. PMID  19013067. S2CID  11362054.
  79. ^ Reebs, SG (2000). "Can a minority of informed leaders determine the foraging movements of a fish shoal?". Hayvonlar harakati. 59 (2): 403–409. doi:10.1006/anbe.1999.1314. PMID  10675263. S2CID  4945309.
  80. ^ Leblond, C.; Reebs, S.G. (2006). "Individual leadership and boldness in shoals of golden shiners (Notemigonus crysoleucas)". Xulq-atvor. 143 (10): 1263–1280. doi:10.1163/156853906778691603. S2CID  56117643.
  81. ^ Reebs, S.G. (2001). "Influence of body size on leadership in shoals of golden shiners, Notemigonus crysoleucas". Xulq-atvor. 138 (7): 797–809. doi:10.1163/156853901753172656.
  82. ^ Krause, J. (1993). "The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus leuciscus): a field study". Ekologiya. 93 (3): 356–359. Bibcode:1993Oecol..93..356K. doi:10.1007/bf00317878. PMID  28313435. S2CID  13140673.
  83. ^ Krause, J.; Bumann, D.; Todt, D. (1992). "Relationship between the position preference and nutritional state of individuals in schools of juvenile roach (Rutilus rutilus)". Xulq-atvor ekologiyasi va sotsiobiologiyasi. 30 (3–4): 177–180. doi:10.1007/bf00166700. S2CID  32061496.
  84. ^ Bumann, D.; Krause, J.; Rubenstein, D. (1997). "Mortality risk of spatial positions in animal groups: the danger of being in the front". Xulq-atvor. 134 (13): 1063–1076. doi:10.1163/156853997x00403.
  85. ^ Krause, J. (1993). "The effect of Schreckstoff on the shoaling behaviour of the minnow: a test of Hamilton's selfish herd theory". Hayvonlar harakati. 45 (5): 1019–1024. doi:10.1006/anbe.1993.1119. S2CID  54287659.
  86. ^ Keenleyside, M.H.A. (1955). "Some aspects of the schooling behaviour in fish" (PDF). Xulq-atvor. 8: 183–248. doi:10.1163/156853955x00229.
  87. ^ Tedeger, R.W.; Krause, J. (1995). "Density dependence and numerosity in fright stimulated aggregation behaviour of shoaling fish". London Qirollik jamiyati falsafiy operatsiyalari B. 350 (1334): 381–390. Bibcode:1995RSPTB.350..381T. doi:10.1098/rstb.1995.0172.
  88. ^ Hager, M.C.; Helfman, G.S. (1991). "Safety in numbers: shoal size choice by minnows under predatory threat". Xulq-atvor ekologiyasi va sotsiobiologiyasi. 29 (4): 271–276. doi:10.1007/bf00163984. S2CID  30901973.
  89. ^ Ashley, E.J.; Kats, L.B.; Wolfe, J.W. (1993). "Balancing trade-offs between risk and changing shoal size in northern red-belly dace (Phoxinus eos)". Copeia. 1993 (2): 540–542. doi:10.2307/1447157. JSTOR  1447157.
  90. ^ Krause, J.; Godin, J.-G.J.; Rubenstein, D. (1998). "Group choice as a function of group size differences and assessment time in fish: the influence of species vulnerability to predation". Etologiya. 104: 68–74. doi:10.1111/j.1439-0310.1998.tb00030.x.
  91. ^ van Havre, N.; FitzGerald, G J (1988). "Shoaling and kin recognition in the threespine stickleback (Gasterosteus aculeatus L.)". Biology of Behaviour. 13: 190–201.
  92. ^ Krause, J. (1993). "The influence of hunger on shoal size choice by three-spined sticklebacks, Gasterosteus aculeatus". Baliq biologiyasi jurnali. 43 (5): 775–780. doi:10.1111/j.1095-8649.1993.tb01154.x.
  93. ^ Allan, J.R.; Pitcher, T.J. (1986). "Species segregation during predator evasion in cyprinid fish shoals". Chuchuk suv biologiyasi. 16 (5): 653–659. doi:10.1111/j.1365-2427.1986.tb01007.x.
  94. ^ Ranta, E.; Lindstrom, K.; Peuhkuri, N. (1992). "Size matters when three-spined sticklebacks go to school". Hayvonlar harakati. 43: 160–162. doi:10.1016/s0003-3472(05)80082-x. S2CID  53177367.
  95. ^ Ranta, E.; Juvonen, S.-K.; Peuhkuri, N. (1992). "Further evidence for size-assortative schooling in sticklebacks". Baliq biologiyasi jurnali. 41 (4): 627–630. doi:10.1111/j.1095-8649.1992.tb02689.x.
  96. ^ Krause, J. (1994). "The influence of food competition and predation risk on size-assortative shoaling in juvenile chub (Leuciscus cephalus)". Etologiya. 96 (2): 105–116. doi:10.1111/j.1439-0310.1994.tb00886.x.
  97. ^ Krause, J.; Godin (2010). "J 1994, Shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae): effects of predation risk, fish size, species composition and size of shoals". Etologiya. 98 (2): 128–136. doi:10.1111/j.1439-0310.1994.tb01063.x.
  98. ^ Reebs, S.G.; Saulnier, N. (1997). "The effect of hunger on shoal choice in golden shiners (Pisces: Cyprinidae, Notemigonus crysoleucas)". Etologiya. 103 (8): 642–652. doi:10.1111/j.1439-0310.1997.tb00175.x.
  99. ^ Magurran, A.E.; Seghers, B.H.; Shaw, P.W.; Carvalho, G.R. (1994). "Schooling preferences for familiar fish in the guppy, Poecilia reticulata". Baliq biologiyasi jurnali. 45 (3): 401–406. doi:10.1006/jfbi.1994.1142.
  100. ^ Griffiths, S.W.; Magurran, A.E. (1999). "Schooling decisions in guppies (Poecilia reticulata) are based on familiarity rather than kin recognition by phenotype matching". Xulq-atvor ekologiyasi va sotsiobiologiyasi. 45 (6): 437–443. doi:10.1007/s002650050582. S2CID  23085058.
  101. ^ Barber, I.; Ruxton, G.D. (2000). "The importance of stable schooling: do familiar sticklebacks stick together?". London Qirollik jamiyati materiallari B. 267 (1439): 151–155. doi:10.1098/rspb.2000.0980. PMC  1690514. PMID  10687820.
  102. ^ Lee-Jenkins, S.S.Y.; Godin, J.-G. J. (2010). "Social familiarity and shoal formation in juvenile fishes". Baliq biologiyasi jurnali. 76 (3): 580–590. doi:10.1111/j.1095-8649.2009.02512.x. PMID  20666898.
  103. ^ Sikkel, P.C.; Fuller, C.A. (2010). "Shoaling preference and evidence for maintenance of sibling groups by juvenile black perch Embiotoca jacksoni". Baliq biologiyasi jurnali. 76 (7): 1671–1681. doi:10.1111/j.1095-8649.2010.02607.x. PMID  20557623.
  104. ^ De Fraipont, M.; Thines, G. (1986). "Responses of the cavefish Astyanax meksikanusi (Anoptichthys antrobius) to the odor of known and unknown conspecifics". Experientia. 42 (9): 1053–1054. doi:10.1007/bf01940729. S2CID  29725205.
  105. ^ Brown, G.E.; Smith, R.J.F. (1994). "Fathead minnows use chemical cues to discriminate natural shoalmates from unfamiliar conspecifics". Kimyoviy ekologiya jurnali. 20 (12): 3051–3061. doi:10.1007/bf02033710. PMID  24241976. S2CID  31326304.
  106. ^ Farmer, N.A.; Ribble, D.O.; Miller, III (2004). "Influence of familiarity on shoaling behaviour in Texas and blacktailed shiners". Baliq biologiyasi jurnali. 64 (3): 776–782. doi:10.1111/j.1095-8649.2004.00332.x.
  107. ^ Webster, M.M.; Adams, E.L.; Laland, K.N. (2008). "Diet-specific chemical cues influence association preferences and prey patch use in a shoaling fish". Hayvonlar harakati. 76: 17–23. doi:10.1016/j.anbehav.2007.12.010. S2CID  53175064.
  108. ^ Dugatkin, L.A.; FitzGerald, G.J.; Lavoie, J. (1994). "Juvenile three-spined sticklebacks avoid parasitized conspecifics". Baliqlarning ekologik biologiyasi. 39 (2): 215–218. doi:10.1007/bf00004940. S2CID  39806095.
  109. ^ Krause, J.; Godin (2010). "J 1996, Influence of parasitism on shoal choice in the banded killifish (Fundulus diaphanus, Teleostei, Cyprinodontidae)". Etologiya. 102: 40–49. doi:10.1111/j.1439-0310.1996.tb01102.x.
  110. ^ Barber, I.; Downey, L.C.; Braithwaite, V.A. (1998). "Parasitism, oddity and the mechanism of shoal choice". Baliq biologiyasi jurnali. 53 (6): 1365–1368. doi:10.1006/jfbi.1998.0788.
  111. ^ Ward, A.J.W.; Duff, A.J.; Krause, J.; Barber, I. (2005). "Shoaling behaviour of sticklebacks infected with the microsporidian parasite, Glutea anomala". Baliqlarning ekologik biologiyasi. 72 (2): 155–160. CiteSeerX  10.1.1.460.7259. doi:10.1007/s10641-004-9078-1. S2CID  21197916.
  112. ^ Krause, J.; Hartmann, N.; Pritchard, V.L. (1999). "The influence of nutritional state on shoal choice in zebrafish, Danio rerio". Hayvonlar harakati. 57 (4): 771–775. doi:10.1006/anbe.1998.1010. PMID  10202085. S2CID  25036232.
  113. ^ Harcourt, J.L.; Sweetman, G.; Johnstone, R.A.; Manica, A. (2009). "Personality counts: the effect of boldness on shoal choice in three-spined sticklebacks". Hayvonlar harakati. 77 (6): 1501–1505. doi:10.1016/j.anbehav.2009.03.004. S2CID  53254313.
  114. ^ Gomez-Laplaza, L.M. (2005). "The influence of social status on shoaling preferences in the freshwater angelfish (Pterophyllum scalare)". Xulq-atvor. 142 (6): 827–844. doi:10.1163/1568539054729141. S2CID  145533152.
  115. ^ Metcalfe, N.B.; Thomson, B.C. (1995). "Fish recognize and prefer to shoal with poor competitors". London Qirollik jamiyati materiallari B. 259 (1355): 207–210. Bibcode:1995RSPSB.259..207M. doi:10.1098/rspb.1995.0030. S2CID  85131321.
  116. ^ Pitcher, T.J.; House, A.C. (1987). "Foraging rules for group feeders: forage area copying depends upon food density in shoaling goldfish". Etologiya. 76 (2): 161–167. doi:10.1111/j.1439-0310.1987.tb00681.x.
  117. ^ Krause, J (1992). "Ideal free distribution and the mechanism of patch profitability assessment in three-spined sticklebacks (Gasterosteus aculeatus)". Xulq-atvor. 123 (1–2): 27–37. doi:10.1163/156853992x00093.
  118. ^ Reebs, S.G.; Gallant, B.Y. (1997). "Food-anticipatory activity as a cue for local enhancement in golden shiners (Pisces: Cyprinidae, Notemigonus crysoleucas)". Etologiya. 103 (12): 1060–1069. doi:10.1111/j.1439-0310.1997.tb00148.x. S2CID  84055118.
  119. ^ Pritchard, V.L.; Lourens, J .; Butlin, R.K.; Krause, J. (2001). "Shoal choice in zebrafish, Danio rerio: the influence of shoal size and activity". Hayvonlar harakati. 62 (6): 1085–1088. doi:10.1006/anbe.2001.1858. S2CID  53165127.
  120. ^ Dominey, Wallace J. (1983). "Mobbing in Colonially Nesting Fishes, Especially the Bluegill, Lepomis makrochirusi". Copeia. 1983 (4): 1086–1088. doi:10.2307/1445113. JSTOR  1445113.
  121. ^ Fountain, Henry (24 May 2005). "Red-Bellied Piranha Is Really Yellow". Nyu-York Tayms. Olingan 13 sentyabr 2014.
  122. ^ Gilly, W.F.; Markaida, U.; Baxter, C.H.; Block, B.A.; Boustani, A .; Zeidberg, L.; Reisenbichler, K.; Robison, B.; Bazzino, G.; Salinas, C. (2006). "Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging" (PDF). Dengiz ekologiyasi taraqqiyoti seriyasi. 324: 1–17. Bibcode:2006MEPS..324....1G. doi:10.3354/meps324001.
  123. ^ Zimmermann, Tim (July 2006). "Behold the Humboldt squid". Onlayndan tashqarida. Olingan 13 sentyabr 2014.
  124. ^ "The Curious Case of the Cannibal Squid – National Wildlife Federation". Olingan 13 sentyabr 2014.
  125. ^ Thomas, Pete (26 March 2007). "Warning lights of the sea". Los Anjeles Tayms.

Qo'shimcha o'qish

Tashqi havolalar