Immunitet tizimi - Immune system - Wikipedia

Taglavhani ko'ring
A elektron mikroskopni skanerlash bitta rasm oq qon hujayrasi (sariq / o'ng), qamrab oluvchi kuydirgi bakteriyalari (to'q sariq / chapda) - shkalasi 5 µm (noto'g'ri rang)

The immunitet tizimi ning tarmog'i biologik jarayonlar himoya qiladigan organizm qarshi kasallik. U turli xil narsalarni aniqlaydi va ularga javob beradi patogenlar, dan viruslar ga parazit qurtlar, shu qatorda; shu bilan birga saraton hujayralari va yog'och kabi narsalar parchalar, ularni organizmning sog'lomlaridan farqlash to'qima. Ko'pgina turlarda immunitet tizimining ikkita asosiy quyi tizimi mavjud. The tug'ma immunitet tizimi vaziyatlar va stimullarning keng guruhlariga oldindan tuzilgan javobni beradi. The adaptiv immunitet tizimi ilgari duch kelgan molekulalarni tanib olishni o'rganib, har bir stimulga moslashtirilgan javob beradi. Ikkalasi ham foydalanadi molekulalar va hujayralar ularning funktsiyalarini bajarish.

Deyarli barcha organizmlar qandaydir immunitet tizimiga ega. Bakteriyalar shaklida ibtidoiy immunitet tizimiga ega fermentlar himoya qiladi virus infektsiyalar. Qadimgi davrda boshqa asosiy immunitet mexanizmlari rivojlangan o'simliklar va hayvonlar va zamonaviy avlodlarida qoladilar. Ushbu mexanizmlarga quyidagilar kiradi fagotsitoz, mikroblarga qarshi peptidlar deb nomlangan defensinlar, va komplement tizimi. Jag'li umurtqali hayvonlar odamlarni o'z ichiga olgan holda, yanada murakkab himoya mexanizmlariga ega, shu jumladan patogenlarni samaraliroq tanib olishga moslashish qobiliyati. Adaptiv (yoki orttirilgan) immunitet hosil qiladi immunologik xotira xuddi shu patogen bilan keyingi uchrashuvlarga kuchaytirilgan javobni keltirib chiqaradi. Ushbu erishilgan immunitet jarayoni asosidir emlash.

Immunitet tizimining buzilishi sabab bo'lishi mumkin otoimmun kasalliklar, yallig'lanish kasalliklari va saraton. Immunitet tanqisligi immunitet tizimi odatdagidan kam faol bo'lganda paydo bo'ladi, natijada infektsiyalar takrorlanib, hayotga xavf tug'diradi. Odamlarda immunitet tanqisligi a natijasi bo'lishi mumkin genetik kasallik kabi og'ir birlashgan immunitet tanqisligi kabi sotib olingan sharoitlar OIV /OITS yoki foydalanish immunosupressiv dori. Otoimmunitet giperaktiv immunitet tizimining normal to'qimalarga begona organizmlar singari hujum qilishidan kelib chiqadi. Oddiy otoimmun kasalliklarga quyidagilar kiradi Hashimoto tiroiditi, romatoid artrit, diabetes mellitus 1 turi va tizimli eritematoz. Immunologiya immunitet tizimining barcha jihatlarini o'rganishni o'z ichiga oladi.

Qatlamli mudofaa

Immunitet tizimi o'z uy egasini himoya qiladi infektsiya tobora ortib borayotgan o'ziga xoslikning qatlamli himoyasi bilan. Jismoniy to'siqlar kabi patogenlarning oldini oladi bakteriyalar va viruslar organizmga kirishdan.[1] Agar patogen bu to'siqlarni buzsa, tug'ma immunitet tizimi darhol, ammo o'ziga xos bo'lmagan javobni beradi. Tug'ma immunitet tizimlari hammasi mavjud hayvonlar.[2] Agar patogenlar tug'ma javobdan muvaffaqiyatli qochishsa, umurtqali hayvonlar ikkinchi himoya qatlamiga ega adaptiv immunitet tizimi, bu tug'ma javob bilan faollashadi.[3] Bu erda immunitet tizimi qo'zg'atuvchining tan olinishini yaxshilash uchun infektsiya paytida uning ta'sirini moslashtiradi. Ushbu takomillashtirilgan javob keyinchalik patogen yo'q qilinganidan keyin an shaklida saqlanib qoladi immunologik xotira va adaptiv immunitet tizimiga ushbu patogen har safar duch kelganida tezroq va kuchliroq hujumlar uyushtirishga imkon beradi.[4][5]

Immunitet tizimining tarkibiy qismlari
Tug'ma immunitet tizimiAdaptiv immunitet tizimi
Javob o'ziga xos emasPatogen va antigen aniq javob
Ta'sir darhol maksimal javob berishga olib keladiTa'sir va maksimal javob o'rtasidagi kechikish vaqti
Uyali vositachilik va hazilkash komponentlarUyali vositachilik va hazilkash komponentlar
Immunologik xotira yo'qTa'sir immunologik xotiraga olib keladi
Hayotning deyarli barcha shakllarida uchraydiFaqatgina ichida jag 'umurtqali hayvonlar

Ham tug'ma, ham adaptiv immunitet immunitet tizimining o'zini o'zi va o'zligidan farqlash qobiliyatiga bog'liq molekulalar. Immunologiyada, o'zini o'zi molekulalar - bu organizm tanasining tarkibiy qismlari bo'lib, ularni begona moddalardan immunitet tizimi bilan farqlash mumkin.[6] Aksincha, o'zini o'zi emas molekulalar xorijiy molekulalar deb tan olinganlardir. O'z-o'ziga xos bo'lmagan molekulalarning bir sinfiga antigenlar deyiladi (dastlab borliq nomi berilgan) qarshitanasi generatorlar) va o'ziga xoslik bilan birikadigan moddalar sifatida aniqlanadi immun retseptorlari va immunitetni keltirib chiqaradi.[7]

Yuzaki to'siqlar

Bir nechta to'siqlar organizmlarni infektsiyadan, shu jumladan mexanik, kimyoviy va biologik to'siqlardan himoya qiladi. Mum kutikula ko'p barglarning ekzoskelet hasharotlar chig'anoqlar va tashqi yotqizilgan tuxumlarning membranalari va teri infektsiyadan himoya qilishning birinchi yo'nalishi bo'lgan mexanik to'siqlarning namunalari.[8] Organizmlarni atrof-muhitdan butunlay muhrlab bo'lmaydi, shuning uchun tizimlar tana teshiklarini himoya qilish uchun harakat qiladi o'pka, ichak, va genitoüriner trakt. O'pkada yo'tal va hapşırma patogenlarni va boshqalarni mexanik ravishda chiqarib tashlaydi tirnash xususiyati beruvchi moddalar dan nafas olish yo'llari. Ning yuvish harakati ko'z yoshlar va siydik shuningdek, patogenlarni mexanik ravishda chiqarib tashlaydi, shu bilan birga mukus nafas olish yo'li bilan va oshqozon-ichak trakti mikroorganizmlarni ushlash va tutish uchun xizmat qiladi.[9]

Kimyoviy to'siqlar ham infektsiyadan himoya qiladi. Teri va nafas olish yo'llari ajralib chiqadi mikroblarga qarshi peptidlar β- kabidefensinlar.[10] Fermentlar kabi lizozim va fosfolipaza A2 yilda tupurik, ko'z yoshlari va ona suti shuningdek antibakterial vositalar.[11][12] Vaginal sekretsiyalar quyidagi kimyoviy to'siq bo'lib xizmat qiladi menarx, ular bir oz bo'lganda kislotali, esa sperma tarkibida defensinlar va rux patogenlarni yo'q qilish.[13][14] In oshqozon, oshqozon kislotasi yutilgan patogenlarga qarshi kimyoviy himoya vazifasini bajaradi.[15]

Genitoüriner va oshqozon-ichak traktida, komensal flora kabi oziq-ovqat va kosmik uchun patogen bakteriyalar bilan raqobatlashib, ba'zi hollarda ularning atrof-muhit sharoitlarini o'zgartirish orqali biologik to'siqlar bo'lib xizmat qiladi. pH yoki mavjud temir. Natijada, kasallik qo'zg'atadigan mikroorganizmlarning etarlicha songa etish ehtimoli kamayadi.[16]

Tug'ma immunitet tizimi

Organizmga muvaffaqiyatli kiradigan mikroorganizmlar yoki toksinlar tug'ma immunitet tizimining hujayralari va mexanizmlariga duch keladi. Tug'ma javob, odatda mikroblar tomonidan aniqlanganda boshlanadi naqshni aniqlash retseptorlari mikroorganizmlarning keng guruhlari orasida saqlanadigan tarkibiy qismlarni tan oladigan,[17] yoki shikastlangan, shikastlangan yoki stressli hujayralar signal signallarini yuborganda, ularning ko'pchiligi patogenlarni taniydigan retseptorlari tomonidan tan olinadi.[18] Tug'ma immunitet himoyasi o'ziga xos emas, ya'ni bu tizimlar patogenlarga umumiy ta'sir ko'rsatadi.[19] Ushbu tizim uzoq muddatli xizmat qilmaydi immunitet patogenga qarshi. Tug'ma immunitet tizimi ko'plab organizmlarda egalarni himoya qilishning dominant tizimi,[2] va o'simliklarda yagona.[20]

Immunitetni aniqlash

Tug'ma immunitet tizimidagi hujayralar naqshni aniqlash retseptorlari patogenlar tomonidan ishlab chiqariladigan molekulyar tuzilmalarni tan olish.[21] Ular oqsillar asosan hujayralari tomonidan ifodalangan tug'ma immunitet tizimi masalan, dendritik hujayralar, makrofaglar, monotsitlar, neytrofillar va epiteliya hujayralari[19][22] molekulalarning ikkita sinfini aniqlash: patogen bilan bog'liq bo'lgan molekulyar naqshlar (PAMP), ular mikrob bilan bog'liq patogenlar va zarar bilan bog'liq molekulyar naqshlar (DAMPlar), ular hujayraning zararlanishi yoki o'lishi paytida ajralib chiqadigan xujayra hujayralarining tarkibiy qismlari bilan bog'liq.[23]

Hujayradan tashqari yoki endosomal PAMPlarning tan olinishi vositachilik qiladi transmembran oqsillari sifatida tanilgan pullik retseptorlari (TLR).[24] TLR'lar odatdagi strukturaviy motivga ega leytsinga boy takroriy moddalar (LRR), bu ularga egri shakl beradi.[25] Pullik retseptorlari birinchi marta kashf etilgan Drosophila va sintezi va sekretsiyasini qo'zg'atadi sitokinlar va tug'ma yoki moslashuvchan immun javob uchun zarur bo'lgan boshqa uy egalarini himoya qilish dasturlarini faollashtirish. Odamlarda pullikga o'xshash o'nta retseptorlar tasvirlangan.[26]

Tug'ma immunitet tizimidagi hujayralar ichkarida infektsiyani yoki hujayraning zararlanishini aniqlaydigan naqshni aniqlash retseptorlariga ega. Ushbu "sitosolik" retseptorlarning uchta asosiy klassi NODga o'xshash retseptorlar, RIG (retinoik kislotani keltirib chiqaradigan gen) o'xshash retseptorlari, va sitosolik DNK datchiklari.[27]

Tug'ma immunitet hujayralari

Taglavhani ko'ring
A elektron mikroskopni skanerlash oddiy aylanib yuradigan odamning tasviri qon. Biror kishi ko'rish mumkin qizil qon hujayralari, bir nechta tugma oq qon hujayralari shu jumladan limfotsitlar, a monotsit, a neytrofil va ko'plab kichik disk shaklida trombotsitlar.

Biroz leykotsitlar (oq qon hujayralari) mustaqil, bir hujayrali organizmlar kabi harakat qiladi va tug'ma immunitet tizimining ikkinchi qo'li hisoblanadi. Tug'ma leykotsitlarga quyidagilar kiradi "professional" fagotsitlar (makrofaglar, neytrofillar va dendritik hujayralar ). Ushbu hujayralar patogenlarni aniqlaydi va yo'q qiladi, yoki aloqa orqali katta patogenlarga hujum qilish yoki mikroorganizmlarni yutish va keyin yo'q qilish. Tug'ma javobda ishtirok etadigan boshqa hujayralar kiradi tug'ma limfoid hujayralar, mast hujayralari, eozinofillar, bazofillar va tabiiy qotil hujayralar. [28]

Fagotsitoz patogenlar yoki zarralarni yutib yuboradigan fagotsitlar deb ataladigan hujayralar tomonidan bajariladigan uyali tug'ma immunitetning muhim xususiyati. Fagotsitlar odatda patogenlarni qidirishda tanani patrul qiladi, ammo sitokinlar tomonidan ma'lum joylarga chaqirilishi mumkin.[29] Patogen mikroorganizm fagotsit bilan yutib yuborilgandan so'ng, u hujayra ichkarisida qoladi pufakcha deb nomlangan fagosoma, keyinchalik u a deb nomlangan boshqa pufakcha bilan birlashadi lizosoma shakllantirish fagolisozoma. Patogen ovqat hazm qilish fermentlarining faolligi yoki a ga rioya qilish natijasida yo'q qilinadi nafas olish portlashi bu chiqadi erkin radikallar fagolizozomga kiradi.[30][31] Fagotsitoz sotib olish vositasi sifatida rivojlandi ozuqa moddalari, ammo bu rol fagotsitlarda kengaytirilib, himoya mexanizmi sifatida patogenlarni yutishini o'z ichiga oladi.[32] Fagotsitoz, ehtimol, mezbonlarni himoya qilishning eng qadimgi shaklini anglatadi, chunki fagotsitlar umurtqali va umurtqasiz hayvonlarda aniqlangan.[33]

Neytrofillar va makrofaglar - bu fagotsitlar bo'lib, yuqumli kasallik qo'zg'atuvchilarni ta'qib qilish orqali butun tanada tarqaladi.[34] Neytrofillar odatda qon oqimi va fagotsitlarning eng ko'p tarqalgan turi bo'lib, ular umumiy aylanib yuruvchi leykotsitlarning 50% dan 60% gacha.[35] Yallig'lanishning o'tkir davrida neytrofillar deb ataladigan jarayonda yallig'lanish joyiga qarab siljiydi kemotaksis, va odatda infektsiya joyiga kelgan birinchi hujayralar. Makrofaglar to'qimalarda joylashgan va ko'plab kimyoviy moddalar ishlab chiqaradigan fermentlarni o'z ichiga olgan ko'p qirrali hujayralardir, to'ldiruvchi oqsillar va sitokinlar, shuningdek ular tanani eskirgan hujayralar va boshqa chiqindilarni tozalaydigan tozalovchi vazifasini bajarishi mumkin va antigen taqdim etuvchi hujayralar Adaptiv immunitet tizimini faollashtiradigan (APC).[36]

Dendritik hujayralar - tashqi muhit bilan aloqada bo'lgan to'qimalardagi fagotsitlar; shu sababli ular asosan teri, burun, o'pka, oshqozon va ichak.[37] Ular o'xshashligi uchun nomlangan neyronal dendritlar, chunki ikkalasida ham umurtqaga o'xshash proektsiyalar mavjud. Dendritik hujayralar xuddi ular singari tana to'qimalari va tug'ma va adaptiv immunitet tizimlari o'rtasida bog'lovchi bo'lib xizmat qiladi mavjud antijenler ga T hujayralari, adaptiv immunitet tizimining asosiy hujayralar turlaridan biri.[37]

Granulotsitlar sitoplazmasida granulalar bo'lgan leykotsitlardir. Ushbu turkumda neytrofillar, mast hujayralari, bazofillar va eozinofillar mavjud. Mast hujayralari joylashgan biriktiruvchi to'qimalar va shilliq pardalar va yallig'lanish reaktsiyasini tartibga soladi.[38] Ular ko'pincha bog'liqdir allergiya va anafilaksi.[35] Bazofillar va eozinofillar neytrofillar bilan bog'liq. Ular himoya qilish bilan shug'ullanadigan kimyoviy vositachilarni chiqaradilar parazitlar kabi allergik reaktsiyalarda rol o'ynaydi Astma.[39]

Tug'ma limfoid hujayralar (AKM) - bu bir guruh tug'ma immunitet olingan hujayralar umumiy lenfoid nasli va tegishli lenfoid nasab. Ushbu hujayralar antigenga xos bo'lmaganligi bilan belgilanadi B yoki T hujayralari retseptorlari (TCR) yo'qligi sababli rekombinatsiyalashtiruvchi gen. AKM miyeloid yoki dendritik hujayra markerlarini ifoda etmaydi.[40]

Tabiiy qotil hujayralar (NK) - bu limfotsitlar va tug'ma immunitet tizimining tarkibiy qismi bo'lib, ular bosqinchi mikroblarga bevosita hujum qilmaydi.[41] Aksincha, NK hujayralari zararlangan xujayrali hujayralarni yo'q qiladi, masalan, o'sma hujayralari yoki virus bilan kasallangan hujayralar, bunday hujayralarni "yo'qolgan o'zini" deb atashadi. Ushbu atama MHC I deb nomlangan hujayra sirtining past darajadagi hujayralarini tavsiflaydi (asosiy gistosayish kompleksi ) - xost hujayralarining virusli infektsiyalarida yuzaga kelishi mumkin bo'lgan holat.[42] Oddiy tana hujayralari NK hujayralari tomonidan tan olinmaydi va ularga hujum qilinmaydi, chunki ular butun MHC antigenlarini ifoda etadi. Ushbu MHC antigenlari asosan NK hujayralariga tormoz qo'yadigan qotil hujayra immunoglobulin retseptorlari tomonidan tan olinadi.[43]

Yallig'lanish

Yallig'lanish - immunitet tizimining infektsiyaga qarshi birinchi reaktsiyalaridan biri.[44] Yallig'lanish alomatlari qizarish, shishish, issiqlik va og'riqni kuchaytiradi qon to'qimalarga oqib chiqadi. Yallig'lanish tomonidan ishlab chiqariladi eikosanoidlar va sitokinlar shikastlangan yoki yuqtirilgan hujayralar tomonidan chiqariladigan. Eikosanoidlar kiradi prostaglandinlar ishlab chiqaradigan isitma va kengayish ning qon tomirlari yallig'lanish bilan bog'liq va leykotrienlar aniq narsalarni jalb qiladi oq qon hujayralari (leykotsitlar).[45][46] Umumiy sitokinlarga kiradi interleykinlar oq qon hujayralari o'rtasidagi aloqa uchun javobgardir; kimyoviy moddalar targ'ib qiladigan kemotaksis; va interferonlar bor virusga qarshi o'chirish kabi effektlar oqsil sintezi mezbon katakchada.[47] O'sish omillari va sitotoksik omillar ham chiqarilishi mumkin. Ushbu sitokinlar va boshqa kimyoviy moddalar immunitet hujayralarini yuqtirish joyiga to'playdi va patogenlarni olib tashlaganidan keyin zararlangan to'qimalarning davolanishiga yordam beradi.[48] Naqshni aniqlash retseptorlari chaqirildi inflammasomalar sitosolik PAMPlar va DAMPlarga javoban hosil bo'lgan multiproteinli komplekslar (NLR, adapter oqsil ASC va pro-kaspaza-1 effektor molekulasidan iborat), ularning vazifasi yallig'lanish sitokinlari IL-1β va IL ning faol shakllarini yaratishdir. -18.[49]

Gumoral himoya

To'ldiruvchi tizim a biokimyoviy kaskad begona hujayralar yuzalariga hujum qiladi. U tarkibida 20 dan ortiq turli xil oqsillar mavjud va ular patogenlarni o'ldirishni "to'ldirish" qobiliyatiga ega antikorlar. Komplement - bu tug'ma immunitet reaktsiyasining asosiy gumoral komponenti.[50][51] Ko'pgina turlarda komplement tizimlari mavjud, shu jumladansutemizuvchilar o'simliklar, baliqlar va boshqalar kabi umurtqasizlar.[52] Odamlarda bu reaktsiya ushbu mikroblarga biriktirilgan antitelalar bilan komplementni biriktirishi yoki kompleman oqsillarini biriktirishi bilan faollashadi. uglevodlar yuzalarida mikroblar. Ushbu e'tirof signal tez o'ldirishga javob beradi.[53] Javobning tezligi ketma-ketlikdan keyin sodir bo'lgan signalni kuchaytirish natijasidir proteolitik kompleman molekulalarining faollashishi, ular ham proteazlardir. Komplementning oqsillari dastlab mikrob bilan bog'langandan so'ng, ular o'zlarining proteaz faolligini faollashtiradilar, bu esa boshqa komplement proteyalarini faollashtiradi va hokazo. Bu ishlab chiqaradi katalitik boshqariladigan tomonidan dastlabki signalni kuchaytiradigan kaskad ijobiy fikr.[54] Kaskad immunitet hujayralarini o'ziga jalb qiladigan peptidlarni ishlab chiqarishga olib keladi qon tomirlarining o'tkazuvchanligi va opsonizatsiya qilish (palto) patogenning yuzasi, uni yo'q qilish uchun belgilaydi. Komplementning bunday cho'kishi hujayralarni buzish orqali to'g'ridan-to'g'ri ularni o'ldirishi ham mumkin plazma membranasi.[50]

Adaptiv immunitet tizimi

diagram showing the processes of activation, cell destruction and digestion, antibody production and proliferation, and response memory
Birlamchi immunitetga javob beradigan jarayonlarga umumiy nuqtai

Adaptiv immunitet tizimi umurtqali hayvonlar hayotida rivojlanib, immunitetni kuchaytirishga imkon beradi immunologik xotira, bu erda har bir patogen imzo antigeni bilan "esda qoladi".[55] Adaptiv immun javob antigenga xos bo'lib, jarayon davomida o'ziga xos "o'ziga xos bo'lmagan" antijenlarni tan olishni talab qiladi. antigen taqdimoti. Antigenning o'ziga xos xususiyati o'ziga xos patogenlar yoki patogen yuqtirgan hujayralarga mos keladigan javoblarni yaratishga imkon beradi. Ushbu mos javoblarni o'rnatish qobiliyati tanada "xotira hujayralari" tomonidan saqlanib qoladi. Agar patogen tanaga bir necha marta yuqsa, ushbu maxsus xotira hujayralari uni tezda yo'q qilish uchun ishlatiladi.[56]

Antigenni aniqlash

Adaptiv immunitet tizimining hujayralari - bu lyukotsitlarning maxsus turlari, ular limfotsitlar deb ataladi. B hujayralari va T hujayralari limfotsitlarning asosiy turlari bo'lib, ulardan kelib chiqadi gematopoetik ildiz hujayralari ichida ilik.[57] B hujayralari gumoral immunitetga javob T hujayralari esa ishtirok etadi hujayra vositachiligidagi immunitet reaktsiyasi. Killer T hujayralari faqat biriktirilgan antigenlarni taniydi I sinf MHC molekulalar, yordamchi T hujayralari va tartibga soluvchi T hujayralari esa faqat biriktirilgan antijenlarni taniydi II sinf MHC molekulalar. Antigen taqdimotining ushbu ikkita mexanizmi T xujayrasining ikki xil rolini aks ettiradi. Uchinchi, kichik kichik tip γδ T hujayralar MHC retseptorlari bilan bog'liq bo'lmagan buzilmagan antijenlarni taniydi.[58] Ikkita musbat T hujayralari turli xil o'z-o'zidan antigenlarga duch keladi timus, unda yod timus rivojlanishi va faoliyati uchun zarurdir.[59] Aksincha, B hujayrasi antigeniga xos retseptor B hujayrasi yuzasida antikor molekulasi bo'lib, mahalliy (qayta ishlanmagan) antigenni hech qanday ehtiyoj sezmasdan taniydi. antigenni qayta ishlash. Bunday antijenler patogenlar yuzasida topilgan katta molekulalar bo'lishi mumkin, ammo kichik bo'lishi mumkin haptenlar (masalan, penitsillin) tashuvchisi molekulasiga biriktirilgan.[60] B hujayralarining har bir nasli turli xil antikorlarni ifodalaydi, shuning uchun B hujayra antigen retseptorlarining to'liq to'plami organizm ishlab chiqarishi mumkin bo'lgan barcha antikorlarni ifodalaydi.[57] B yoki T hujayralari o'zaro bog'liq antigenlarga duch kelganda ko'payadi va bir xil antigenga qaratilgan hujayralarning ko'plab "klonlari" hosil bo'ladi. Bu deyiladi klonli tanlov.[61]

T limfotsitlarga antigen taqdimoti

B hujayralari ham, T hujayralari ham ma'lum maqsadlarni tan oladigan retseptorlari molekulalariga ega. T hujayralari antigenlar (qo'zg'atuvchining kichik qismlari) qayta ishlangandan va asosiy histokompatibillik kompleksi (MHC) molekulasi deb nomlangan "o'z-o'zini" retseptorlari bilan birgalikda taqdim etilgandan keyingina, "qo'zg'atuvchi" kabi nishonni taniydi.[62]

Hujayra vositachiligidagi immunitet

T hujayralarining ikkita asosiy pastki turi mavjud: qotil T hujayrasi va yordamchi T hujayrasi. Bundan tashqari, mavjud tartibga soluvchi T hujayralari immunitet reaktsiyasini modulyatsiya qilishda muhim rol o'ynaydi.[63]

Qotil T hujayralari

Qotil T hujayralari viruslarni yuqtirgan (yoki boshqa qo'zg'atuvchilarni) hujayralarni o'ldiradigan yoki boshqacha tarzda buzilgan yoki ishlamay qolgan T hujayralarining pastki guruhidir.[64] B hujayralarida bo'lgani kabi, T hujayralarining har bir turi boshqa antigenni taniydi. Killer T hujayralari qachon faollashadi T-hujayra retseptorlari ushbu o'ziga xos antigen bilan boshqa hujayraning MHC I klassi retseptorlari bilan kompleksda bog'lanadi. Ushbu MHKni tan olish: antigen kompleksiga a yordam beradi birgalikda retseptorlari deb nomlangan T hujayrasida CD8. Keyin T xujayrasi tanadagi MHC I retseptorlari ushbu antigenni o'z ichiga olgan hujayralarni qidirishda harakat qiladi. Faollashtirilgan T xujayrasi bunday hujayralar bilan aloqa qilganda, u ajralib chiqadi sitotoksinlar, kabi perforin, maqsad hujayraning teshiklarini hosil qiladi plazma membranasi, ruxsat berish ionlari, suv va toksinlar kiradi. Boshqa toksinni kiritish granulysin (proteaz) maqsadli hujayrani o'tishiga undaydi apoptoz.[65] Viruslarning ko'payishini oldini olishda xujayraning hujayralarini o'ldirish ayniqsa muhimdir. T xujayrasining faollashishi qattiq nazorat ostida va odatda juda kuchli MHC / antigen faollashtirish signalini yoki "yordamchi" T hujayralari tomonidan ta'minlanadigan qo'shimcha faollashtirish signallarini talab qiladi (pastga qarang).[65]

Yordamchi T hujayralari

Yordamchi T hujayralari ham tug'ma, ham adaptiv immun reaktsiyalarni tartibga soladi va organizmning ma'lum bir patogenga qanday immunitet ta'sirini aniqlashga yordam beradi.[66][67] Ushbu hujayralar sitotoksik ta'sirga ega emas va yuqtirilgan hujayralarni o'ldirmaydi yoki to'g'ridan-to'g'ri patogenlarni tozalashmaydi. Buning o'rniga ular boshqa hujayralarni ushbu vazifalarni bajarishga yo'naltirish orqali immunitet ta'sirini boshqaradilar.[68]

Yordamchi T hujayralari II sinf MHC molekulalariga bog'langan antigenni taniy oladigan T xujayrali retseptorlarini ifoda etadi. MHC: antigen kompleksi yordamchi hujayralar tomonidan ham tan olinadi CD4 T-hujayra ichidagi molekulalarni to'playdigan ko-retseptor (masalan Lck ) T xujayrasining faollashishi uchun javobgardir. Yordamchi T hujayralari MHC: antigen kompleksi bilan qotil T hujayralarida kuzatilganidan ko'ra kuchsizroq birikma hosil qiladi, ya'ni yordamchi T hujayrasida ko'plab retseptorlari (200-300 atrofida) MHC bilan bog'langan bo'lishi kerak: yordam hujayrasini faollashtirish uchun antigen, qotil esa T hujayralarni bitta MHC: antigen molekulasini biriktirish orqali faollashtirish mumkin. Helper T hujayrasini faollashtirish, shuningdek antigen taqdim etuvchi hujayra bilan uzoqroq aloqa qilishni talab qiladi.[69] Tinchlanadigan yordamchi T hujayrasining faollashishi ko'plab hujayralar turlarining ta'siriga ta'sir etuvchi sitokinlarni chiqarishga olib keladi. Yordamchi T hujayralari tomonidan ishlab chiqarilgan sitokin signallari makrofaglarning mikrobitsid funktsiyasini va qotil T hujayralarining faolligini oshiradi.[70] Bundan tashqari, yordamchi T hujayrasini faollashishi T xujayrasi yuzasida ifoda etilgan molekulalarning regulyatsiyasini keltirib chiqaradi, masalan CD40 ligand (shuningdek, deyiladi) CD154 ), odatda antitel ishlab chiqaradigan B hujayralarini faollashtirish uchun zarur bo'lgan qo'shimcha ogohlantiruvchi signallarni beradi.[71]

Gamma delta T hujayralari

Gamma delta T hujayralari (b T hujayralari) CD4 + va CD8 + (a) T hujayralaridan farqli o'laroq muqobil T hujayralari retseptorlariga (TCR) ega va yordamchi T hujayralari, sitotoksik T hujayralari va NK hujayralarining xususiyatlarini baham ko'radi. Γδ T hujayralaridan javob beradigan sharoitlar to'liq tushunilmagan. O'zgarmas TCRlarni o'z ichiga olgan boshqa "noan'anaviy" T xujayrasi pastki to'plamlari singari CD1d - cheklangan tabiiy qotil T hujayralari, γδ T hujayralari tug'ma va adaptiv immunitet chegarasida joylashgan.[72] Bir tomondan, γδ T hujayralari ular singari adaptiv immunitetning tarkibiy qismidir TCR genlarini qayta tashkil etish retseptorlari xilma-xilligini ishlab chiqarish va shuningdek, xotira fenotipini ishlab chiqishi mumkin. Boshqa tomondan, turli xil pastki qismlar tug'ma immunitet tizimining bir qismidir, chunki cheklangan TCR yoki NK retseptorlari sifatida ishlatilishi mumkin naqshni aniqlash retseptorlari. Masalan, ko'p sonli Vγ9 / Vδ2 T hujayralari soatlab javob beradi umumiy molekulalar mikroblar tomonidan ishlab chiqarilgan va juda cheklangan Vδ1 + T hujayralari epiteliya stressli epiteliya hujayralariga javob bering.[58]

Gumoral immunitetga javob

diagram showing the Y-shaped antibody. The variable region, including the antigen-binding site, is the top part of the two upper light chains. The remainder is the constant region.
Antikor ikkita og'ir zanjir va ikkita engil zanjirdan iborat. Noyob o'zgaruvchan mintaqa antikorga mos antigenini tanib olishga imkon beradi.[73]

A B xujayrasi uning yuzasida antikorlar ma'lum bir begona antigen bilan bog'langanda patogenlarni aniqlaydi.[74] Ushbu antigen / antikor kompleksi B hujayrasi tomonidan qabul qilinadi va qayta ishlanadi proteoliz peptidlarga. Keyin B hujayrasi ushbu antijenik peptidlarni o'zining MHC sinf II molekulalarida aks ettiradi. MHC va antigenning bu birikmasi ajralib chiqadigan yordamchi T hujayrasini o'ziga tortadi limfokinlar va B hujayrasini faollashtiradi.[75] Sifatida faollashtirilgan B hujayrasi boshlanadi bo'lmoq, uning avlodlari (plazma hujayralari ) sir ushbu antigenni tan oladigan antikorning millionlab nusxalari. Ushbu antikorlar qon plazmasida va limfa, antigenni ifoda etuvchi patogenlar bilan bog'lanib, ularni yo'q qilish uchun belgilang komplementni faollashtirish yoki fagotsitlar tomonidan qabul qilish va yo'q qilish uchun. Antikorlar, shuningdek, bakteriyalar toksinlari bilan bog'lanish yoki viruslar va bakteriyalar hujayralarni yuqtirish uchun foydalanadigan retseptorlarga aralashish orqali to'g'ridan-to'g'ri qiyinchiliklarni neytrallashtirishi mumkin.[76]

Yangi tug'ilgan chaqaloqlarda mikroblar oldindan ta'sirlanmagan va ayniqsa infektsiyaga chalingan. Ona tomonidan passiv himoyaning bir necha qatlamlari ta'minlanadi. Homiladorlik paytida antikorning ma'lum bir turi chaqiriladi IgG, onadan bolaga to'g'ridan-to'g'ri orqali uzatiladi platsenta, shuning uchun inson bolalari tug'ilish paytida ham antikorlarning yuqori darajasiga ega bo'lib, ularning onasi kabi antigen o'ziga xos xususiyatlariga ega.[77] Ona suti yoki og'iz suti shuningdek, yangi tug'ilgan chaqaloq o'zining antikorlarini sintez qilmaguncha, chaqaloqning ichaklariga o'tkaziladigan va bakterial infektsiyalardan himoya qiluvchi antikorlarni o'z ichiga oladi.[78] Bu passiv immunitet chunki homila aslida hech qanday xotira hujayralari yoki antikorlarni hosil qilmaydi - bu ularni faqat qarzga oladi. Ushbu passiv immunitet odatda qisqa muddatli bo'lib, bir necha kundan bir necha oygacha davom etadi. Tibbiyotda himoya passiv immunitet ham bo'lishi mumkin sun'iy ravishda ko'chirildi bir kishidan boshqasiga.[79]

Immunologik xotira

B hujayralari va T hujayralari faollashib, takrorlana boshlaganda, ularning ba'zi avlodlari uzoq umr ko'radigan xotira hujayralariga aylanadi. Hayvonning butun hayoti davomida ushbu xotira hujayralari duch kelgan har bir o'ziga xos patogenni eslab qoladi va agar patogen yana aniqlansa, kuchli ta'sir ko'rsatishi mumkin. Bu "moslashuvchan", chunki u shaxsning hayoti davomida ushbu patogen bilan yuqtirishga moslashish sifatida yuzaga keladi va immunitet tizimini kelajakdagi muammolarga tayyorlaydi. Immunologik xotira passiv qisqa muddatli yoki faol uzoq muddatli xotira shaklida bo'lishi mumkin.[80]

Fiziologik tartibga solish

The initial response involves antibody and effector T-cells. The resulting protective immunity lasts for weeks. Immunological memory often lasts for years.
Immunitetga javob berish vaqti patogen bilan uchrashish (yoki dastlabki emlash) bilan boshlanadi va faol immunologik xotiraning shakllanishi va saqlanishiga olib keladi.

Immunitet tizimi tanadagi fiziologik regulyatsiyaning ko'p jihatlarida ishtirok etadi. Immun tizimi boshqa tizimlar bilan chambarchas bog'liq, masalan endokrin [81][82] va asabiy [83][84][85] tizimlar. Immunitet tizimi ham hal qiluvchi rol o'ynaydi embriogenez (embrionning rivojlanishi), shuningdek to'qima ta'mirlash va yangilanish.[86]

Gormonlar

Gormonlar kabi harakat qilishi mumkin immunomodulyatorlar, immunitet tizimining sezgirligini o'zgartirish. Masalan, ayol jinsiy gormonlar ma'lum immunostimulyatorlar ikkalasi ham moslashuvchan[87] va tug'ma immunitet reaktsiyalari.[88] Kabi ba'zi bir otoimmun kasalliklar qizil yuguruk eritematozi ayollarga imtiyozli ravishda zarba berish va ularning paydo bo'lishi ko'pincha mos keladi balog'at yoshi. Aksincha, erkak jinsiy gormonlar kabi testosteron ko'rinadi immunosupressiv.[89] Boshqa gormonlar immunitet tizimini ham tartibga soladigan ko'rinadi, eng muhimi prolaktin, o'sish gormoni va D vitamini.[90][91]

D vitamini

T xujayrasi chet elga duch kelganda patogen, u kengayadi a D vitamini retseptorlari. Bu asosan T-hujayrasini D vitamini, steroid gormoni bilan faol bog'lanishiga imkon beruvchi signal beruvchi moslama. kalsitriol. T-hujayralar D vitamini bilan simbiyotik munosabatlarga ega, T-hujayrasi nafaqat D vitamini retseptorini kengaytiradi, balki aslida D vitamini, kalsitriolning steroid gormoni bilan bog'lanishni so'raydi, ammo T-hujayrasi genni ifoda etadi. CYP27B1, D vitaminining gormondan oldingi versiyasini konversiyalash uchun mas'ul bo'lgan gen, kalsidiol kalsitriolga aylanadi. Kalsitriol bilan bog'langandan keyingina T-hujayralar mo'ljallangan funktsiyasini bajarishi mumkin. CYP27B1ni ekspresatsiya qilishi va shu bilan D vitamini kalsidiolini faollashtirishi ma'lum bo'lgan boshqa immun tizim hujayralari dendritik hujayralar, keratinotsitlar va makrofaglar.[92][93]

Uxlash va dam olish

Immunitet tizimiga uyqu va dam olish ta'sir qiladi va uyqusizlik immunitet funktsiyasi uchun zararli.[94] O'z ichiga olgan murakkab teskari aloqa ko'chadan sitokinlar, kabi interleykin-1 va o'sma nekrozi omil-a infektsiyaga javoban ishlab chiqarilgan, ko'zning tezkor bo'lmagan harakatini boshqarishda ham rol o'ynaydi (REM ) uxlash.[95] Shunday qilib infektsiyaga qarshi immunitet uyqu tsiklining o'zgarishiga, shu jumladan ko'payishiga olib kelishi mumkin sekin uyqu REM uyqusiga nisbatan.[96]

Uyqusiz qolishdan aziyat chekadigan odamlarda faol emlashlar susayib, antitel ishlab chiqarilishiga va immunitetning pasayishiga olib kelishi mumkin, chunki u yaxshi dam olgan odamda qayd etilgan.[97] Bundan tashqari, kabi oqsillar NFIL3 T hujayralari differentsiatsiyasi bilan ham, bizning tsirkadiyan ritmlarimiz bilan ham chambarchas bog'liq ekanligi isbotlangan, tabiiy yorug'lik va qorong'u tsikllarning buzilishi, uyqusizlik holatlari, smenali ish bilan ta'sir qilishi mumkin. Natijada, ushbu uzilishlar yurak xastaligi, surunkali og'riq va astma kabi surunkali holatlarning ko'payishiga olib kelishi mumkin.[98]

Uyqusizlikning salbiy oqibatlaridan tashqari, uxlash va bir-biriga bog'langan sirkadiyan tizimi immunologik funktsiyalarga tug'ma va adaptiv immunitetga ta'sir ko'rsatadigan kuchli tartibga soluvchi ta'sir ko'rsatgan. Birinchidan, erta sekin to'lqinli uyqu bosqichida qon darajasining to'satdan pasayishi kortizol, epinefrin va noradrenalin leptin, gipofiz o'sish gormoni va prolaktin gormonlarining qon darajasining oshishiga olib keladi. Ushbu signallar yallig'lanishga qarshi sitokinlar interleykin-1 ishlab chiqarish orqali yallig'lanishga qarshi holatni keltirib chiqaradi, interleykin-12, TNF-alfa va IFN-gamma. Ushbu sitokinlar keyinchalik immunitet hujayralarini faollashishi, ko'payishi va kabi immun funktsiyalarini rag'batlantiradi farqlash. Aynan shu davrda noaniq va markaziy xotira T hujayralari singari farqlanmagan yoki kamroq farqlangan (ya'ni asta-sekin rivojlanib boruvchi adaptiv immunitet reaktsiyasi davrida) avjiga chiqadi. Ushbu ta'sirlarga qo'shimcha ravishda, hozirgi vaqtda ishlab chiqarilgan gormonlar (leptin, gipofiz o'sish gormoni va prolaktin) miyasi APC va T hujayralari o'rtasidagi o'zaro ta'sirni qo'llab-quvvatlaydi. Th1 / Th2 sitokin muvozanati T ni qo'llab-quvvatlaydigan tomonga qarabh1, umumiy T ning o'sishih hujayra proliferatsiyasi va sodda T hujayralarining limfa tugunlariga ko'chishi. Bu, shuningdek, Th1 immunitet reaktsiyalarini boshlash orqali uzoq muddatli immunitet xotirasini shakllantirishni qo'llab-quvvatlaydi deb o'ylashadi.[99]

Uyg'onish davrida tsitotoksik tabiiy qotil hujayralari va sitotoksik T limfotsitlari kabi differentsiatsiyalangan effektor hujayralari har qanday kiruvchi patogenlarga qarshi samarali ta'sir ko'rsatadi. Yallig'lanishga qarshi molekulalar, masalan, kortizol va katekolaminlar, shuningdek, uyg'ongan faol vaqtlarda eng yuqori darajaga ko'tariladi. Yallig'lanish jiddiy kognitiv va jismoniy buzilishlarni keltirib chiqaradi, agar u uyg'onish vaqtida yuzaga kelsa va uxlash vaqtida yallig'lanish paydo bo'lishi mumkin melatonin. Yallig'lanish juda ko'p narsalarni keltirib chiqaradi oksidlovchi stress va uxlash vaqtida melatonin mavjudligi bu vaqt ichida erkin radikallar ishlab chiqarilishiga faol qarshi turishi mumkin.[99][100]

Oziqlanish va ovqatlanish

Ortiqcha ovqatlanish kabi kasalliklar bilan bog'liq diabet va semirish immunitet funktsiyasiga ta'sir qilishi ma'lum bo'lgan. Ko'proq mo''tadil to'yib ovqatlanmaslik, shuningdek o'ziga xos mikroelementlar va ozuqa moddalarining etishmasligi ham immunitet ta'sirini buzishi mumkin.[101]

Oziq-ovqatlarga boy mahsulotlar yog 'kislotalari sog'lom immunitet tizimini kuchaytirishi mumkin,[102] va homila etishmovchiligi immunitet tizimining umrbod buzilishiga olib kelishi mumkin.[103]

Ta'mirlash va qayta tiklash

Immun tizimi, xususan tug'ma tarkibiy qism, haqoratdan keyin to'qimalarni tiklashda hal qiluvchi rol o'ynaydi. Asosiy aktyorlarga quyidagilar kiradi makrofaglar va neytrofillar, ammo boshqa uyali aktyorlar, shu jumladan γδ T hujayralari, tug'ma limfoid hujayralar (AKM) va tartibga soluvchi T hujayralari (Tregs), shuningdek, muhimdir. Immunitet hujayralarining plastikligi va yallig'lanishga qarshi va yallig'lanishga qarshi signallar o'rtasidagi muvozanat to'qimalarni samarali tiklashning hal qiluvchi jihatlaridir. Immunitet tarkibiy qismlar va yo'llar regeneratsiyaga, masalan, amfibiyalarda ham kiradi. Bir farazga ko'ra, qayta tiklanishi mumkin bo'lgan organizmlar, qayta tiklana olmaydigan organizmlarga qaraganda kamroq immunokompetent bo'lishi mumkin.[104]

Inson immunitetining buzilishi

Uy egalarini himoya qilishda muvaffaqiyatsizliklar yuzaga keladi va uchta keng toifaga bo'linadi: immunitet tanqisligi,[105] otoimmunitet,[106] va yuqori sezuvchanlik.[107]

Immunitet tanqisligi

Immunitet tanqisligi immunitet tizimining bir yoki bir nechtasi harakatsiz bo'lganda paydo bo'ladi. Immunitet tizimining patogenlarga javob berish qobiliyati yoshlarda ham, yoshlarda ham kamayadi qariyalar, immunitet reaktsiyalari tufayli taxminan 50 yoshda pasayishni boshlaydi immunosenesensiya.[108][109] Yilda rivojlangan mamlakatlar, semirish, alkogolizm, va giyohvand moddalarni iste'mol qilish zaif immunitet funktsiyalarining keng tarqalgan sabablari hisoblanadi to'yib ovqatlanmaslik immunitet tanqisligining eng keng tarqalgan sababidir rivojlanayotgan davlatlar.[109] Etarli oqsilga ega bo'lmagan dietalar hujayra vositachiligi immuniteti, komplement faoliyati, fagotsitlar faoliyati, IgA antikor konsentratsiyasi va sitokin ishlab chiqarish. Bundan tashqari, timus orqali erta yoshda genetik mutatsiya yoki jarrohlik yo'li bilan olib tashlash og'ir immunitet tanqisligi va infektsiyaga yuqori sezuvchanlikka olib keladi.[110] Immunitet tanqisligi meros qilib olinishi mumkin yoki "sotib olingan '.[111] Kuchli kombinatsiyalangan immunitet tanqisligi kamdan-kam uchraydi genetik buzilish ko'pgina genetik mutatsiyalar natijasida yuzaga kelgan funktsional T hujayralari va B hujayralarining buzilgan rivojlanishi bilan tavsiflanadi.[112] Surunkali granulomatoz kasallik, qayerda fagotsitlar patogenlarni yo'q qilish qobiliyatining pasayishi, merosxo'rlikning namunasi yoki tug'ma, immunitet tanqisligi. OITS va ba'zi turlari saraton orttirilgan immunitet tanqisligini keltirib chiqaradi.[113][114]

Otoimmunitet

Taglavhani ko'ring
Shishgan va deformatsiyalangan qo'lning bo'g'imlari romatoid artrit, otoimmun kasallik

Haddan tashqari faol immunitet reaktsiyalari immunitet buzilishining boshqa uchini hosil qiladi, xususan otoimmun kasalliklar. Bu erda immunitet tizimi o'zini o'zi va o'zini o'zi emasligini to'g'ri ajrata olmaydi va tananing bir qismiga hujum qiladi. Oddiy sharoitlarda ko'plab T hujayralari va antikorlar "o'z-o'zidan" peptidlar bilan reaksiyaga kirishadi.[115] Ixtisoslashgan hujayralarning funktsiyalaridan biri (.da joylashgan timus va ilik ) yosh limfotsitlarni tanada hosil bo'lgan o'z antigenlari bilan taqdim etish va o'z-o'zini antigenlarini taniydigan hujayralarni yo'q qilish, otoimmünitenin oldini olish.[74] Oddiy otoimmun kasalliklarga quyidagilar kiradi Hashimoto tiroiditi,[116] romatoid artrit,[117] diabetes mellitus 1 turi,[118] va tizimli eritematoz.[119]

Yuqori sezuvchanlik

Yuqori sezuvchanlik organizmning o'z to'qimalariga zarar etkazadigan immunitet reaktsiyasi. Ta'sir mexanizmlari va yuqori sezgir reaktsiyaning vaqt yo'nalishi asosida to'rt sinfga bo'linadi (I - IV tip). I turdagi yuqori sezuvchanlik darhol yoki anafilaktik ko'pincha allergiya bilan bog'liq bo'lgan reaktsiya. Semptomlar engil noqulaylikdan o'limga qadar bo'lishi mumkin. I turdagi yuqori sezuvchanlik vositachilik qiladi IgE, bu degranulyatsiyani keltirib chiqaradi mast hujayralari va bazofillar antijen bilan o'zaro bog'langanda.[120]II darajali yuqori sezuvchanlik antikorlar antigenlarga individual hujayralar bilan bog'lanib, ularni yo'q qilish uchun belgilaganda paydo bo'ladi. Bu shuningdek antikorga bog'liq (yoki sitotoksik) yuqori sezuvchanlik deb ataladi va vositachilik qiladi IgG va IgM antikorlar.[120]Immunitet komplekslari (turli xil to'qimalarda to'plangan antijenler, komplement oqsillari va IgG va IgM antikorlari agregatlari) III turdagi yuqori sezuvchanlik reaktsiyalarini keltirib chiqaradi.[120] IV turdagi yuqori sezuvchanlik (hujayra vositachiligi deb ham ataladi yoki kechiktirilgan turdagi yuqori sezuvchanlik) odatda ikki-uch kun orasida rivojlanadi. IV turdagi reaktsiyalar ko'plab otoimmun va yuqumli kasalliklarda ishtirok etadi, ammo ular ham o'z ichiga olishi mumkin kontakt dermatit. Ushbu reaktsiyalar vositachilik qiladi T hujayralari, monotsitlar va makrofaglar.[120]

Idiopatik yallig'lanish

Yallig'lanish - bu immunitet tizimining infektsiyaga qarshi birinchi reaktsiyalaridan biri,[44] ammo ma'lum sababsiz paydo bo'lishi mumkin.

Yallig'lanish tomonidan ishlab chiqariladi eikosanoidlar va sitokinlar shikastlangan yoki yuqtirilgan hujayralar tomonidan chiqariladigan. Eikosanoidlar kiradi prostaglandinlar isitma va qon tomirlarining kengayishi yallig'lanish bilan bog'liq va leykotrienlar ba'zi oq qon hujayralarini (leykotsitlar) o'ziga jalb qiladi.[45][46] Umumiy sitokinlarga kiradi interleykinlar oq qon hujayralari o'rtasidagi aloqa uchun javobgardir; kimyoviy moddalar targ'ib qiladigan kemotaksis; va interferonlar o'chirish kabi virusga qarshi ta'sirga ega oqsil sintezi mezbon katakchada.[47] O'sish omillari va sitotoksik omillar ham chiqarilishi mumkin. Ushbu sitokinlar va boshqa kimyoviy moddalar immunitet hujayralarini yuqtirish joyiga to'playdi va patogenlarni olib tashlaganidan keyin zararlangan to'qimalarning davolanishiga yordam beradi.[48]

Tibbiyotda manipulyatsiya

Skeletal structural formula of dexamethasone, C22 H29 F O5
Skeletning strukturaviy formulasi immunosupressiv dori deksametazon

Immunitet reaktsiyasini otoimmunitet, allergiya va transplantatsiyani rad etish va immunitet tizimini deyarli chetlab o'tadigan patogenlarga qarshi himoya ta'sirini rag'batlantirish (qarang) immunizatsiya ) yoki saraton.[121]

Immunosupressiya

Immunosupressiv dorilar otoimmun kasalliklarni boshqarish uchun ishlatiladi yoki yallig'lanish ortiqcha to'qimalarga zarar yetganda va undan keyin rad etishni oldini olish uchun organ transplantatsiyasi.[122][123]

Yallig'lanishga qarshi dorilar ko'pincha yallig'lanish ta'sirini nazorat qilish uchun ishlatiladi. Glyukokortikoidlar ushbu dorilarning eng qudratlisi va ko'plab kiruvchi moddalar bo'lishi mumkin yon effektlar, kabi markaziy semirish, giperglikemiya va osteoporoz.[124] Ulardan foydalanish qat'iy nazorat ostida. Yallig'lanishga qarshi dorilarning past dozalari ko'pincha sitotoksik yoki immunosupressiv dorilar bilan birgalikda qo'llaniladi. metotreksat yoki azatiyoprin.

Sitotoksik dorilar faollashtirilgan T hujayralari kabi bo'linadigan hujayralarni o'ldirish orqali immunitet reaktsiyasini inhibe qilish. Ushbu qotillik beg'araz va boshqalardir doimiy ravishda bo'linadigan hujayralar va ularning a'zolari ta'sir qiladi, bu toksik yon ta'sirga olib keladi.[123] Kabi immunosupressiv dorilar siklosporin inhibisyon orqali T hujayralarining signallarga to'g'ri javob berishiga yo'l qo'ymaslik signal uzatish yo'llar.[125]

Immunostimulyatsiya

Emlash

A child receiving drops of polio vaccine in her mouth
Misrda poliomiyelitga qarshi emlash

Uzoq muddat faol B va T hujayralarining faollashishi natijasida infektsiyadan keyin xotira olinadi. Faol immunitet sun'iy ravishda, orqali hosil bo'lishi mumkin emlash. Emlashning asosiy printsipi (shuningdek, deyiladi) immunizatsiya ) ni tanishtirishdir antigen from a pathogen to stimulate the immune system and develop specific immunity against that particular pathogen without causing disease associated with that organism.[126] This deliberate induction of an immune response is successful because it exploits the natural specificity of the immune system, as well as its inducibility. With infectious disease remaining one of the leading causes of death in the human population, vaccination represents the most effective manipulation of the immune system mankind has developed.[57][127]

Many vaccines are based on hujayrali components of micro-organisms, including harmless toksin komponentlar.[126] Since many antigens derived from acellular vaccines do not strongly induce the adaptive response, most bacterial vaccines are provided with additional yordamchi moddalar that activate the antigen taqdim etuvchi hujayralar ning tug'ma immunitet tizimi va maksimal darajaga ko'taring immunogenlik.[128]

Shish immunologiyasi

Another important role of the immune system is to identify and eliminate o'smalar. Bu deyiladi immunitet nazorati. The transformed cells of tumors express antijenler that are not found on normal cells. To the immune system, these antigens appear foreign, and their presence causes immune cells to attack the transformed tumor cells. The antigens expressed by tumors have several sources;[129] some are derived from onkogen viruses like inson papillomavirusi, which causes cancer of the bachadon bo'yni,[130] vulva, qin, jinsiy olatni, anus, mouth, and throat,[131] while others are the organism's own proteins that occur at low levels in normal cells but reach high levels in tumor cells. One example is an enzyme called tirozinaza that, when expressed at high levels, transforms certain skin cells (for example, melanotsitlar ) into tumors called melanomalar.[132][133] A third possible source of tumor antigens are proteins normally important for regulating hujayralar o'sishi and survival, that commonly mutate into cancer inducing molecules called onkogenlar.[129][134][135]

Taglavhani ko'ring
Makrofaglar have identified a cancer cell (the large, spiky mass). Upon fusing with the cancer cell, the macrophages (smaller white cells) inject toxins that kill the tumor cell. Immunoterapiya davolash uchun saraton is an active area of medical research.[136]

The main response of the immune system to tumors is to destroy the abnormal cells using killer T cells, sometimes with the assistance of helper T cells.[133][137] Tumor antigens are presented on MHC class I molecules in a similar way to viral antigens. This allows killer T cells to recognize the tumor cell as abnormal.[138] NK cells also kill tumorous cells in a similar way, especially if the tumor cells have fewer MHC class I molecules on their surface than normal; this is a common phenomenon with tumors.[139] Sometimes antibodies are generated against tumor cells allowing for their destruction by the komplement tizimi.[134]

Some tumors evade the immune system and go on to become cancers.[140][141] Tumor cells often have a reduced number of MHC class I molecules on their surface, thus avoiding detection by killer T cells.[138][140] Some tumor cells also release products that inhibit the immune response; for example by secreting the cytokine TGF-β, which suppresses the activity of makrofaglar va limfotsitlar.[140][142] Bunga qo'chimcha, immunologik bag'rikenglik may develop against tumor antigens, so the immune system no longer attacks the tumor cells.[140][141]

Paradoxically, macrophages can promote tumor growth[143] when tumor cells send out cytokines that attract macrophages, which then generate cytokines and growth factors such as tumor-necrosis factor alpha that nurture tumor development or promote stem-cell-like plasticity.[140] In addition, a combination of hypoxia in the tumor and a cytokine produced by macrophages induces tumor cells to decrease production of a protein that blocks metastaz and thereby assists spread of cancer cells.[140] Anti-tumor M1 macrophages are recruited in early phases to tumor development but are progressively differentiated to M2 with pro-tumor effect, an immunosuppressor switch. The hypoxia reduces the cytokine production for the anti-tumor response and progressively macrophages acquire pro-tumor M2 functions driven by the tumor microenvironment, including IL-4 and IL-10. [144] Saratonga qarshi immunoterapiya covers the medical ways to stimulate the immune system to attack cancer tumors.[145]

Predicting immunogenicity

Some drugs can cause a neutralizing immune response, meaning that the immune system produces neytrallashtiruvchi antikorlar that counteract the action of the drugs, particularly if the drugs are administered repeatedly, or in larger doses. This limits the effectiveness of drugs based on larger peptides and proteins (which are typically larger than 6000 Da ).[146] In some cases, the drug itself is not immunogenic, but may be co-administered with an immunogenic compound, as is sometimes the case for Taxol. Computational methods have been developed to predict the immunogenicity of peptides and proteins, which are particularly useful in designing therapeutic antibodies, assessing likely virulence of mutations in viral coat particles, and validation of proposed peptide-based drug treatments. Early techniques relied mainly on the observation that hidrofilik aminokislotalar are overrepresented in epitop regions than hidrofob amino acids;[147] however, more recent developments rely on mashinada o'rganish techniques using databases of existing known epitopes, usually on well-studied virus proteins, as a o'quv to'plami.[148] A publicly accessible database has been established for the cataloguing of epitopes from pathogens known to be recognizable by B cells.[149] Rivojlanayotgan maydon bioinformatika -based studies of immunogenicity is referred to as immunoinformatics.[150] Immunoproteomics is the study of large sets of proteins (proteomika ) involved in the immune response.[151]

Evolution and other mechanisms

Evolution of the immune system

It is likely that a multicomponent, adaptive immune system arose with the first umurtqali hayvonlar, kabi umurtqasizlar do not generate lymphocytes or an antibody-based humoral response.[152] Many species, however, use mechanisms that appear to be precursors of these aspects of vertebrate immunity. Immune systems appear even in the structurally simplest forms of life, with bacteria using a unique defense mechanism, called the cheklovlarni o'zgartirish tizimi to protect themselves from viral pathogens, called bakteriofaglar.[153] Prokaryotlar also possess acquired immunity, through a system that uses CRISPR sequences to retain fragments of the genomes of phage that they have come into contact with in the past, which allows them to block virus replication through a form of RNK aralashuvi.[154][155] Prokaryotes also possess other defense mechanisms.[156][157] Offensive elements of the immune systems are also present in unicellular eukaryotes, but studies of their roles in defense are few.[158]

Naqshni aniqlash retseptorlari are proteins used by nearly all organisms to identify molecules associated with pathogens. Antimikrobiyal peptidlar called defensins are an evolutionarily conserved component of the innate immune response found in all animals and plants, and represent the main form of invertebrate systemic immunity.[152] The komplement tizimi and phagocytic cells are also used by most forms of invertebrate life. Ribonukleazlar va RNK aralashuvi pathway are conserved across all eukaryotlar, and are thought to play a role in the immune response to viruses.[159]

Unlike animals, plants lack phagocytic cells, but many plant immune responses involve systemic chemical signals that are sent through a plant.[160] Individual plant cells respond to molecules associated with pathogens known as patogen bilan bog'liq bo'lgan molekulyar naqshlar or PAMPs.[161] When a part of a plant becomes infected, the plant produces a localized yuqori sezgir javob, whereby cells at the site of infection undergo rapid apoptoz to prevent the spread of the disease to other parts of the plant. Tizimli erishilgan qarshilik is a type of defensive response used by plants that renders the entire plant chidamli to a particular infectious agent.[160] RNKning sustlashuvi mechanisms are particularly important in this systemic response as they can block virus replication.[162]

Alternative adaptive immune system

Adaptiv immun tizim evolyutsiyasi occurred in an ancestor of the jawed vertebrates. Many of the classical molecules of the adaptive immune system (for example, immunoglobulinlar va T-hujayrali retseptorlari ) exist only in jawed vertebrates. Aniq limfotsit -derived molecule has been discovered in primitive jag'siz umurtqali hayvonlar kabi lamprey va xagfish. These animals possess a large array of molecules called O'zgaruvchan limfotsit retseptorlari (VLRs) that, like the antigen receptors of jawed vertebrates, are produced from only a small number (one or two) of genlar. These molecules are believed to bind pathogenic antijenler in a similar way to antibodies, and with the same degree of specificity.[163]

Manipulation by pathogens

The success of any pathogen depends on its ability to elude host immune responses. Therefore, pathogens evolved several methods that allow them to successfully infect a host, while evading detection or destruction by the immune system.[164] Bacteria often overcome physical barriers by secreting enzymes that digest the barrier, for example, by using a type II secretion system.[165] Alternatively, using a III turdagi sekretsiya tizimi, they may insert a hollow tube into the host cell, providing a direct route for proteins to move from the pathogen to the host. These proteins are often used to shut down host defenses.[166]

An evasion strategy used by several pathogens to avoid the innate immune system is to hide within the cells of their host (also called hujayra ichidagi patogenez ). Here, a pathogen spends most of its hayot davrasi inside host cells, where it is shielded from direct contact with immune cells, antibodies and complement. Some examples of intracellular pathogens include viruses, the ovqatdan zaharlanish bakteriya Salmonella va ökaryotik parasites that cause bezgak (Plazmodium spp.) va leyshmanioz (Leyshmaniya spp.). Other bacteria, such as Tuberkulyoz mikobakteriyasi, live inside a protective capsule that prevents lizis by complement.[167] Many pathogens secrete compounds that diminish or misdirect the host's immune response.[164] Some bacteria form biofilmlar to protect themselves from the cells and proteins of the immune system. Such biofilms are present in many successful infections, such as the chronic Pseudomonas aeruginosa va Burxolderiya senosepatsiyasi infections characteristic of kistik fibroz.[168] Other bacteria generate surface proteins that bind to antibodies, rendering them ineffective; misollar kiradi Streptokokk (protein G), Staphylococcus aureus (protein A), and Peptostreptokokk magnus (protein L).[169]

The mechanisms used to evade the adaptive immune system are more complicated. The simplest approach is to rapidly change non-essential epitoplar (aminokislotalar and/or sugars) on the surface of the pathogen, while keeping essential epitopes concealed. Bu deyiladi antijenik o'zgarish. An example is HIV, which mutates rapidly, so the proteins on its virusli konvert that are essential for entry into its host target cell are constantly changing. These frequent changes in antigens may explain the failures of vaksinalar directed at this virus.[170] Parazit Trypanosoma brucei uses a similar strategy, constantly switching one type of surface protein for another, allowing it to stay one step ahead of the antibody response.[171] Masking antigens with host molecules is another common strategy for avoiding detection by the immune system. In HIV, the envelope that covers the virion is formed from the outermost membrane of the host cell; such "self-cloaked" viruses make it difficult for the immune system to identify them as "non-self" structures.[172]

Immunologiya tarixi

Portrait of an older, thin man with a beard wearing glasses and dressed in a suit and tie
Pol Ehrlich (1854–1915) was awarded a Nobel Prize in 1908 for his contributions to immunology.[173]

Immunologiya is a science that examines the structure and function of the immune system. U kelib chiqadi Dori and early studies on the causes of immunity to disease. The earliest known reference to immunity was during the plague of Athens miloddan avvalgi 430 yilda. Fukidid noted that people who had recovered from a previous bout of the disease could nurse the sick without contracting the illness a second time.[174] 18-asrda, Per-Lui Mau-de-Maupertuis experimented with scorpion venom and observed that certain dogs and mice were immune to this venom.[175] In the 10th century, Persian physician ar-Roziy (also known as Rhazes) wrote the first recorded theory of acquired immunity,[176][177] deb ta'kidlab, a chechak bout protected its survivors from future infections. Although he explained the immunity in terms of "excess moisture" being expelled from the blood—therefore preventing a second occurrence of the disease—this theory explained many observations about smallpox known during this time.[178]

These and other observations of acquired immunity were later exploited by Lui Paster in his development of vaccination and his proposed kasallikning mikrob nazariyasi.[179] Pasteur's theory was in direct opposition to contemporary theories of disease, such as the miazma nazariyasi. Bu qadar emas edi Robert Koch 1891 yil dalillar, buning uchun u mukofotlandi a Nobel mukofoti in 1905, that mikroorganizmlar were confirmed as the cause of yuqumli kasallik.[180] Viruses were confirmed as human pathogens in 1901, with the discovery of the sariq isitma virus by Uolter Rid.[181]

Immunology made a great advance towards the end of the 19th century, through rapid developments in the study of gumoral immunitet va uyali immunitet.[182] Particularly important was the work of Pol Ehrlich, kim taklif qildi yon zanjir nazariyasi to explain the specificity of the antigen-antibody reaction; his contributions to the understanding of humoral immunity were recognized by the award of a joint Nobel Prize in 1908, along with the founder of cellular immunology, Elie Metchnikoff.[173] 1974 yilda, Nilz Kaj Jerne ishlab chiqilgan immunitet tarmog'i nazariyasi; he shared a Nobel Prize in 1984 with Georges J. F. Köler va Sezar Milshteyn for theories related to the immune system.[183][184]

Shuningdek qarang

Adabiyotlar

  1. ^ Sompayrac 2019, p. 1.
  2. ^ a b Litman GW, Cannon JP, Dishaw LJ (November 2005). "Reconstructing immune phylogeny: new perspectives". Tabiat sharhlari. Immunologiya. 5 (11): 866–79. doi:10.1038/nri1712. PMC  3683834. PMID  16261174.
  3. ^ Sompayrac 2019, p. 4.
  4. ^ Restifo NP, Gattinoni L (October 2013). "Lineage relationship of effector and memory T cells". Immunologiyaning hozirgi fikri. 25 (5): 556–63. doi:10.1016/j.coi.2013.09.003. PMC  3858177. PMID  24148236.
  5. ^ Kurosaki T, Kometani K, Ise W (March 2015). "Memory B cells". Tabiat sharhlari. Immunologiya. 15 (3): 149–59. doi:10.1038/nri3802. PMID  25677494. S2CID  20825732.
  6. ^ Sompayrac 2019, p. 11.
  7. ^ Sompayrac 2019, p. 146.
  8. ^ Alberts et al. 2002 yil, sek. "Pathogens Cross Protective Barriers to Colonize the Host".
  9. ^ Boyton RJ, Openshaw PJ (2002). "Pulmonary defences to acute respiratory infection". Britaniya tibbiyot byulleteni. 61 (1): 1–12. doi:10.1093/bmb/61.1.1. PMID  11997295.
  10. ^ Agerberth B, Gudmundsson GH (2006). "Host antimicrobial defence peptides in human disease". Mikrobiologiya va immunologiyaning dolzarb mavzulari. 306: 67–90. doi:10.1007/3-540-29916-5_3. ISBN  978-3-540-29915-8. PMID  16909918.
  11. ^ Moreau JM, Girgis DO, Hume EB, Dajcs JJ, Austin MS, O'Callaghan RJ (September 2001). "Phospholipase A(2) in rabbit tears: a host defense against Staphylococcus aureus". Tergovchi oftalmologiya va vizual fan. 42 (10): 2347–54. PMID  11527949.
  12. ^ Hankiewicz J, Swierczek E (December 1974). "Lysozyme in human body fluids". Clinica Chimica Acta; Xalqaro Klinik Kimyo jurnali. 57 (3): 205–09. doi:10.1016/0009-8981(74)90398-2. PMID  4434640.
  13. ^ Fair WR, Couch J, Wehner N (February 1976). "Prostatic antibacterial factor. Identity and significance". Urologiya. 7 (2): 169–77. doi:10.1016/0090-4295(76)90305-8. PMID  54972.
  14. ^ Yenugu S, Hamil KG, Birse CE, Ruben SM, French FS, Hall SH (June 2003). "Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli". Biokimyoviy jurnal. 372 (Pt 2): 473–83. doi:10.1042/BJ20030225. PMC  1223422. PMID  12628001.
  15. ^ Smith JL (2003). "The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions". J Food Prot. 66 (7): 1292–1303. doi:10.4315/0362-028X-66.7.1292. PMID  12870767.
  16. ^ Gorbach SL (1990 yil fevral). "Lactic acid bacteria and human health". Tibbiyot yilnomalari. 22 (1): 37–41. doi:10.3109/07853899009147239. PMID  2109988.
  17. ^ Medzhitov R (October 2007). "Recognition of microorganisms and activation of the immune response". Tabiat. 449 (7164): 819–26. Bibcode:2007Natur.449..819M. doi:10.1038/nature06246. PMID  17943118. S2CID  4392839.
  18. ^ Matzinger P (April 2002). "The danger model: a renewed sense of self" (PDF). Ilm-fan. 296 (5566): 301–05. Bibcode:2002Sci...296..301M. doi:10.1126 / science.1071059. PMID  11951032. S2CID  13615808.
  19. ^ a b Alberts et al. 2002 yil, Bob: "Innate Immunity".
  20. ^ Iriti 2019, p. xi.
  21. ^ Kumar H, Kawai T, Akira S (February 2011). "Pathogen recognition by the innate immune system". International Reviews of Immunology. 30 (1): 16–34. doi:10.3109/08830185.2010.529976. PMID  21235323. S2CID  42000671.
  22. ^ Schroder K, Tschopp J (mart 2010). "Inflammasomalar". Hujayra. 140 (6): 821–32. doi:10.1016 / j.cell.2010.01.040. PMID  20303873. S2CID  16916572.
  23. ^ Sompayrac 2019, p. 20.
  24. ^ Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K (2006). "Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large". Immunologiyaning yillik sharhi. 24: 353–89. doi:10.1146/annurev.immunol.24.021605.090552. PMID  16551253. S2CID  20991617.
  25. ^ Botos I, Segal DM, Davies DR (April 2011). "The structural biology of Toll-like receptors". Tuzilishi. 19 (4): 447–59. doi:10.1016/j.str.2011.02.004. PMC  3075535. PMID  21481769.
  26. ^ Vijay K (June 2018). "Toll-like receptors in immunity and inflammatory diseases: Past, present, and future". Immunofarmakol. 59: 391–412. doi:10.1016/j.intimp.2018.03.002. PMC  7106078. PMID  29730580.
  27. ^ Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA (June 2011). "Pattern recognition receptors and the innate immune response to viral infection". Viruslar. 3 (6): 920–40. doi:10.3390/v3060920. PMC  3186011. PMID  21994762.
  28. ^ Sompayrac 2019, 1-4 betlar.
  29. ^ Alberts et al. 2002 yil, sek. "Phagocytic Cells Seek, Engulf, and Destroy Pathogens".
  30. ^ Ryter A (1985). "Relationship between ultrastructure and specific functions of macrophages". Qiyosiy immunologiya, mikrobiologiya va yuqumli kasalliklar. 8 (2): 119–33. doi:10.1016/0147-9571(85)90039-6. PMID  3910340.
  31. ^ Langermans JA, Hazenbos WL, van Furth R (September 1994). "Antimicrobial functions of mononuclear phagocytes". Immunologik usullar jurnali. 174 (1–2): 185–94. doi:10.1016/0022-1759(94)90021-3. PMID  8083520.
  32. ^ May RC, Machesky LM (March 2001). "Phagocytosis and the actin cytoskeleton". Hujayra fanlari jurnali. 114 (Pt 6): 1061–77. PMID  11228151.
  33. ^ Salzet M, Tasiemski A, Cooper E (2006). "Innate immunity in lophotrochozoans: the annelids". Amaldagi farmatsevtika dizayni. 12 (24): 3043–50. doi:10.2174/138161206777947551. PMID  16918433. S2CID  28520695.
  34. ^ Zen K, Parkos CA (October 2003). "Leukocyte-epithelial interactions". Hujayra biologiyasidagi hozirgi fikr. 15 (5): 557–64. doi:10.1016/S0955-0674(03)00103-0. PMID  14519390.
  35. ^ a b Stvrtinová, Jakubovský & Hulín 1995, Bob: Inflammation and Fever.
  36. ^ Rua R, McGavern DB (September 2015). "Elucidation of monocyte/macrophage dynamics and function by intravital imaging". Leykotsitlar biologiyasi jurnali. 98 (3): 319–32. doi:10.1189/jlb.4RI0115-006RR. PMC  4763596. PMID  26162402.
  37. ^ a b Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S (2002). "Antigen presentation and T cell stimulation by dendritic cells". Immunologiyaning yillik sharhi. 20 (1): 621–67. doi:10.1146/annurev.immunol.20.100301.064828. PMID  11861614.
  38. ^ Krishnaswamy, Ajitawi & Chi 2006, pp. 13–34.
  39. ^ Kariyawasam HH, Robinson DS (April 2006). "The eosinophil: the cell and its weapons, the cytokines, its locations". Nafas olish va tanqidiy tibbiyot bo'yicha seminarlar. 27 (2): 117–27. doi:10.1055/s-2006-939514. PMID  16612762.
  40. ^ Spits H, Cupedo T (2012). "Innate lymphoid cells: emerging insights in development, lineage relationships, and function". Immunologiyaning yillik sharhi. 30: 647–75. doi:10.1146/annurev-immunol-020711-075053. PMID  22224763.
  41. ^ Gabrielli S, Ortolani C, Del Zotto G, Luchetti F, Canonico B, Buccella F, Artico M, Papa S, Zamai L (2016). "The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk". Immunologiya tadqiqotlari jurnali. 2016: 1376595. doi:10.1155/2016/1376595. PMC  5204097. PMID  28078307.
  42. ^ Bertok & Chow 2005, p.17.
  43. ^ Rajalingam 2012, Chapter: Overview of the killer cell immunoglobulin-like receptor system.
  44. ^ a b Kawai T, Akira S (February 2006). "Innate immune recognition of viral infection". Tabiat immunologiyasi. 7 (2): 131–37. doi:10.1038/ni1303. PMID  16424890. S2CID  9567407.
  45. ^ a b Miller SB (August 2006). "Prostaglandins in health and disease: an overview". Artrit va revmatizm bo'yicha seminarlar. 36 (1): 37–49. doi:10.1016/j.semarthrit.2006.03.005. PMID  16887467.
  46. ^ a b Ogawa Y, Calhoun WJ (October 2006). "The role of leukotrienes in airway inflammation". Allergiya va klinik immunologiya jurnali. 118 (4): 789–98, quiz 799–800. doi:10.1016/j.jaci.2006.08.009. PMID  17030228.
  47. ^ a b Le Y, Zhou Y, Iribarren P, Wang J (April 2004). "Chemokines and chemokine receptors: their manifold roles in homeostasis and disease" (PDF). Uyali va molekulyar immunologiya. 1 (2): 95–104. PMID  16212895.
  48. ^ a b Martin P, Leibovich SJ (November 2005). "Inflammatory cells during wound repair: the good, the bad and the ugly". Hujayra biologiyasining tendentsiyalari. 15 (11): 599–607. doi:10.1016/j.tcb.2005.09.002. PMID  16202600.
  49. ^ Platnich JM, Muruve DA (February 2019). "NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways". Biokimyo va biofizika arxivlari. 670: 4–14. doi:10.1016/j.abb.2019.02.008. PMID  30772258.
  50. ^ a b Rus H, Cudrici C, Niculescu F (2005). "Komplement tizimining tug'ma immunitetdagi o'rni". Immunologik tadqiqotlar. 33 (2): 103–12. doi:10.1385 / IQ: 33: 2: 103. PMID  16234578. S2CID  46096567.
  51. ^ Degn SE, Thiel S (August 2013). "Humoral pattern recognition and the complement system". Skandinaviya Immunologiya jurnali. 78 (2): 181–93. doi:10.1111/sji.12070. PMID  23672641.
  52. ^ Bertok & Chow 2005, pp.112–113.
  53. ^ Liszewski MK, Farries TC, Lublin DM, Rooney IA, Atkinson JP (1996). "Control of the complement system". Immunologiya yutuqlari. 61: 201–283. doi:10.1016/S0065-2776(08)60868-8. ISBN  978-0-12-022461-6. PMID  8834497.
  54. ^ Sim RB, Tsiftsoglou SA (February 2004). "Proteases of the complement system". Biokimyoviy jamiyat bilan operatsiyalar. 32 (Pt 1): 21–27. doi:10.1042/BST0320021. PMID  14748705. S2CID  24505041.
  55. ^ Pancer Z, Cooper MD (2006). "The evolution of adaptive immunity". Immunologiyaning yillik sharhi. 24 (1): 497–518. doi:10.1146/annurev.immunol.24.021605.090542. PMID  16551257.
  56. ^ Sompayrac 2019, p. 38.
  57. ^ a b v Janeway 2005.
  58. ^ a b Holtmeier W, Kabelitz D (2005). "gammadelta T cells link innate and adaptive immune responses". Kimyoviy immunologiya va allergiya. 86: 151–83. doi:10.1159/000086659. ISBN  3-8055-7862-8. PMID  15976493.
  59. ^ Venturi S, Venturi M (September 2009). "Iodine, thymus, and immunity". Oziqlanish. 25 (9): 977–79. doi:10.1016/j.nut.2009.06.002. PMID  19647627.
  60. ^ Janeway, Travers & Walport 2001, sek. 12-10.
  61. ^ Sompayrac 2019, 5-6 bet.
  62. ^ Sompayrac 2019, 51-53 betlar.
  63. ^ Sompayrac 2019, 7-8 betlar.
  64. ^ Harty JT, Tvinnereim AR, White DW (2000). "CD8+ T cell effector mechanisms in resistance to infection". Immunologiyaning yillik sharhi. 18 (1): 275–308. doi:10.1146/annurev.immunol.18.1.275. PMID  10837060.
  65. ^ a b Radoja S, Frey AB, Vukmanovic S (2006). "T-cell receptor signaling events triggering granule exocytosis". Immunologiyada tanqidiy sharhlar. 26 (3): 265–90. doi:10.1615/CritRevImmunol.v26.i3.40. PMID  16928189.
  66. ^ Abbas AK, Murphy KM, Sher A (October 1996). "Functional diversity of helper T lymphocytes". Tabiat. 383 (6603): 787–93. Bibcode:1996Natur.383..787A. doi:10.1038/383787a0. PMID  8893001. S2CID  4319699.
  67. ^ McHeyzer-Williams LJ, Malherbe LP, McHeyzer-Williams MG (2006). "Helper T cell-regulated B cell immunity". Mikrobiologiya va immunologiyaning dolzarb mavzulari. 311: 59–83. doi:10.1007/3-540-32636-7_3. ISBN  978-3-540-32635-9. PMID  17048705.
  68. ^ Sompayrac 2019, p. 8.
  69. ^ Kovacs B, Maus MV, Riley JL, Derimanov GS, Koretzky GA, June CH, Finkel TH (November 2002). "Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 99 (23): 15006–11. Bibcode:2002PNAS...9915006K. doi:10.1073/pnas.232058599. PMC  137535. PMID  12419850.
  70. ^ Alberts et al. 2002 yil, Chapter. "Helper T Cells and Lymphocyte Activation".
  71. ^ Grewal IS, Flavell RA (1998). "CD40 va CD154 hujayralar vositachiligidagi immunitetda". Immunologiyaning yillik sharhi. 16 (1): 111–35. doi:10.1146 / annurev.immunol.16.1.111. PMID  9597126.
  72. ^ Girardi M (January 2006). "Immunosurveillance and immunoregulation by gammadelta T cells". Tergov dermatologiyasi jurnali. 126 (1): 25–31. doi:10.1038 / sj.jid.5700003. PMID  16417214.
  73. ^ "Understanding the Immune System: How it Works" (PDF). Milliy allergiya va yuqumli kasalliklar instituti (NIAID). Arxivlandi asl nusxasi (PDF) 2007 yil 3-yanvarda. Olingan 1 yanvar 2007.
  74. ^ a b Sproul TW, Cheng PC, Dykstra ML, Pierce SK (2000). "A role for MHC class II antigen processing in B cell development". International Reviews of Immunology. 19 (2–3): 139–55. doi:10.3109/08830180009088502. PMID  10763706. S2CID  6550357.
  75. ^ Parker DC (1993). "T cell-dependent B cell activation". Immunologiyaning yillik sharhi. 11: 331–60. doi:10.1146/annurev.iy.11.040193.001555. PMID  8476565.
  76. ^ Murphy & Weaver 2016, Chapter 10: The Humoral Immune Response.
  77. ^ Saji F, Samejima Y, Kamiura S, Koyama M (May 1999). "Dynamics of immunoglobulins at the feto-maternal interface". Reviews of Reproduction. 4 (2): 81–89. doi:10.1530/ror.0.0040081. PMID  10357095.
  78. ^ Van de Perre P (July 2003). "Transfer of antibody via mother's milk". Vaktsina. 21 (24): 3374–76. doi:10.1016/S0264-410X(03)00336-0. PMID  12850343.
  79. ^ Keller MA, Stiehm ER (oktyabr 2000). "Yuqumli kasalliklarning oldini olish va davolashda passiv immunitet". Klinik mikrobiologiya sharhlari. 13 (4): 602–14. doi:10.1128 / CMR.13.4.602-614.2000. PMC  88952. PMID  11023960.
  80. ^ Sompayrac 2019, p. 98.
  81. ^ Wick G, Hu Y, Schwarz S, Kroemer G (October 1993). "Immunoendocrine communication via the hypothalamo-pituitary-adrenal axis in autoimmune diseases". Endokrin sharhlar. 14 (5): 539–63. doi:10.1210/edrv-14-5-539. PMID  8262005.
  82. ^ Kroemer G, Brezinschek HP, Faessler R, Schauenstein K, Wick G (June 1988). "Physiology and pathology of an immunoendocrine feedback loop". Bugungi kunda immunologiya. 9 (6): 163–5. doi:10.1016/0167-5699(88)91289-3. PMID  3256322.
  83. ^ Trakhtenberg EF, Goldberg JL (October 2011). "Immunology. Neuroimmune communication". Ilm-fan. 334 (6052): 47–8. Bibcode:2011Sci...334...47T. doi:10.1126/science.1213099. PMID  21980100. S2CID  36504684.
  84. ^ Veiga-Fernandes H, Mucida D (May 2016). "Neuro-Immune Interactions at Barrier Surfaces". Hujayra. 165 (4): 801–11. doi:10.1016/j.cell.2016.04.041. PMC  4871617. PMID  27153494.
  85. ^ "Neuroimmune communication". Tabiat nevrologiyasi. 20 (2): 127. February 2017. doi:10.1038/nn.4496. PMID  28092662.
  86. ^ Wilcox SM, Arora H, Munro L, Xin J, Fenninger F, Johnson LA, Pfeifer CG, Choi KB, Hou J, Hoodless PA, Jefferies WA (2017). "The role of the innate immune response regulatory gene ABCF1 in mammalian embryogenesis and development". PLOS ONE. 12 (5): e0175918. Bibcode:2017PLoSO..1275918W. doi:10.1371/journal.pone.0175918. PMC  5438103. PMID  28542262.
  87. ^ Wira, Crane-Godreau & Grant 2004, Chapter: Endocrine regulation of the mucosal immune system in the female reproductive tract.
  88. ^ Lang TJ (December 2004). "Estrogen as an immunomodulator". Klinik immunologiya. 113 (3): 224–30. doi:10.1016/j.clim.2004.05.011. PMID  15507385.
    Moriyama A, Shimoya K, Ogata I, Kimura T, Nakamura T, Wada H, Ohashi K, Azuma C, Saji F, Murata Y (July 1999). "Secretory leukocyte protease inhibitor (SLPI) concentrations in cervical mucus of women with normal menstrual cycle". Molekulyar inson ko'payishi. 5 (7): 656–61. doi:10.1093/molehr/5.7.656. PMID  10381821.
    Cutolo M, Sulli A, Capellino S, Villaggio B, Montagna P, Seriolo B, Straub RH (2004). "Sex hormones influence on the immune system: basic and clinical aspects in autoimmunity". Lupus. 13 (9): 635–38. doi:10.1191/0961203304lu1094oa. PMID  15485092. S2CID  23941507.
    King AE, Critchley HO, Kelly RW (February 2000). "Presence of secretory leukocyte protease inhibitor in human endometrium and first trimester decidua suggests an antibacterial protective role". Molekulyar inson ko'payishi. 6 (2): 191–96. doi:10.1093/molehr/6.2.191. PMID  10655462.
  89. ^ Fimmel S, Zouboulis CC (2005). "Influence of physiological androgen levels on wound healing and immune status in men". Qarigan erkak. 8 (3–4): 166–74. doi:10.1080/13685530500233847. PMID  16390741. S2CID  1021367.
  90. ^ Dorshkind K, Horseman ND (June 2000). "The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency". Endokrin sharhlar. 21 (3): 292–312. doi:10.1210/er.21.3.292. PMID  10857555.
  91. ^ Nagpal S, Na S, Rathnachalam R (avgust 2005). "D vitamini retseptorlari ligandlarining kalkemik bo'lmagan harakatlari". Endokrin sharhlar. 26 (5): 662–87. doi:10.1210 / er.2004-0002. PMID  15798098.
  92. ^ von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Odum N, Geisler C (April 2010). "Vitamin D controls T cell antigen receptor signaling and activation of human T cells". Tabiat immunologiyasi. 11 (4): 344–49. doi:10.1038/ni.1851. PMID  20208539. S2CID  6119729.
  93. ^ Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D, Butcher EC (March 2007). "DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27". Tabiat immunologiyasi. 8 (3): 285–93. doi:10.1038/ni1433. PMID  17259988. S2CID  9540123.
  94. ^ Bryant PA, Trinder J, Curtis N (June 2004). "Sick and tired: Does sleep have a vital role in the immune system?". Tabiat sharhlari. Immunologiya. 4 (6): 457–67. doi:10.1038/nri1369. PMID  15173834. S2CID  29318345.
  95. ^ Krueger JM, Majde JA (May 2003). "Humoral links between sleep and the immune system: research issues". Nyu-York Fanlar akademiyasining yilnomalari. 992 (1): 9–20. Bibcode:2003NYASA.992....9K. doi:10.1111/j.1749-6632.2003.tb03133.x. PMID  12794042. S2CID  24508121.
  96. ^ Majde JA, Krueger JM (December 2005). "Links between the innate immune system and sleep". Allergiya va klinik immunologiya jurnali. 116 (6): 1188–98. doi:10.1016/j.jaci.2005.08.005. PMID  16337444.
  97. ^ Taylor DJ, Kelly K, Kohut ML, Song KS (2017). "Is Insomnia a Risk Factor for Decreased Influenza Vaccine Response?". Xulq-atvorda uyqu. 15 (4): 270–287. doi:10.1080/15402002.2015.1126596. PMC  5554442. PMID  27077395.
  98. ^ Krueger JM (2008). "The role of cytokines in sleep regulation". Amaldagi farmatsevtika dizayni. 14 (32): 3408–16. doi:10.2174/138161208786549281. PMC  2692603. PMID  19075717.
  99. ^ a b Besedovsky L, Lange T, Born J (January 2012). "Sleep and immune function". Pflügers Archiv. 463 (1): 121–37. doi:10.1007/s00424-011-1044-0. PMC  3256323. PMID  22071480.
  100. ^ "Can Better Sleep Mean Catching fewer Colds?". Arxivlandi asl nusxasi 2014 yil 9 mayda. Olingan 28 aprel 2014.
  101. ^ Suskind RM, Lachney CL, Udall JN (1994). "Malnutrition and the Immune Response ", in Serrano-Ríos M, ed., Dairy products in human health and nutrition, CRC Press, pp. 285–300
  102. ^ Pond CM (July 2005). "Adipose tissue and the immune system". Prostaglandinlar, leykotrienlar va ajralmas yog 'kislotalari. 73 (1): 17–30. doi:10.1016/j.plefa.2005.04.005. PMID  15946832.
  103. ^ Langley-Evans SC, Carrington LJ (2006). "Diet and the developing immune system". Lupus. 15 (11): 746–52. doi:10.1177/0961203306070001. PMID  17153845. S2CID  30576003.
  104. ^ Godwin JW, Pinto AR, Rosenthal NA (January 2017). "Chasing the recipe for a pro-regenerative immune system". Hujayra va rivojlanish biologiyasi bo'yicha seminarlar. Innate immune pathways in wound healing/Peromyscus as a model system. 61: 71–79. doi:10.1016/j.semcdb.2016.08.008. PMC  5338634. PMID  27521522.
  105. ^ Sompayrac 2019, pp. 120–24.
  106. ^ Sompayrac 2019, pp. 114–18.
  107. ^ Sompayrac 2019, 111-14 betlar.
  108. ^ Aw D, Silva AB, Palmer DB (April 2007). "Immunosenescence: emerging challenges for an ageing population". Immunologiya. 120 (4): 435–46. doi:10.1111/j.1365-2567.2007.02555.x. PMC  2265901. PMID  17313487.
  109. ^ a b Chandra RK (August 1997). "Nutrition and the immune system: an introduction". Amerika Klinik Ovqatlanish Jurnali. 66 (2): 460S–63S. doi:10.1093/ajcn/66.2.460S. PMID  9250133.
  110. ^ Miller JF (July 2002). "The discovery of thymus function and of thymus-derived lymphocytes". Immunologik sharhlar. 185 (1): 7–14. doi:10.1034/j.1600-065X.2002.18502.x. PMID  12190917. S2CID  12108587.
  111. ^ Reece 2011, p. 967.
  112. ^ Burg M, Gennery AR (2011). "O'quv qo'llanma: og'ir birlashgan immunitet tanqisligining kengayadigan klinik va immunologik spektri". Eur J Pediatr. 170 (5): 561–571. doi:10.1007 / s00431-011-1452-3. PMC  3078321. PMID  21479529.
  113. ^ Joos L, Tamm M (2005). "Breakdown of pulmonary host defense in the immunocompromised host: cancer chemotherapy". Amerika ko'krak qafasi jamiyatining materiallari. 2 (5): 445–48. doi:10.1513/pats.200508-097JS. PMID  16322598.
  114. ^ Copeland KF, Heeney JL (December 1996). "T helper cell activation and human retroviral pathogenesis". Mikrobiologik sharhlar. 60 (4): 722–42. doi:10.1128/MMBR.60.4.722-742.1996. PMC  239461. PMID  8987361.
  115. ^ Miller JF (1993). "Self-nonself discrimination and tolerance in T and B lymphocytes". Immunologik tadqiqotlar. 12 (2): 115–30. doi:10.1007/BF02918299. PMID  8254222. S2CID  32476323.
  116. ^ "Xashimoto kasalligi". Office on Women’s Health, U.S. Department of Health and Human Services. 12 iyun 2017 yil. Arxivlandi asl nusxasidan 2017 yil 28 iyuldagi. Olingan 17 iyul 2017. Ushbu maqola ushbu manbadagi matnni o'z ichiga oladi jamoat mulki.
  117. ^ Smolen JS, Aletaha D, McInnes IB (October 2016). "Rheumatoid arthritis" (PDF). Lanset. 388 (10055): 2023–2038. doi:10.1016/S0140-6736(16)30173-8. PMID  27156434. S2CID  37973054.
  118. ^ Farhy LS, McCall AL (July 2015). "Glucagon - the new 'insulin' in the pathophysiology of diabetes". Klinik ovqatlanish va metabolik parvarish bo'yicha hozirgi fikr. 18 (4): 407–14. doi:10.1097/mco.0000000000000192. PMID  26049639. S2CID  19872862.
  119. ^ "Handout on Health: Systemic Lupus Erythematosus". www.niams.nih.gov. 2015 yil fevral. Arxivlandi asl nusxasidan 2016 yil 17 iyunda. Olingan 12 iyun 2016.
  120. ^ a b v d Ghaffar A (2006). "Immunology – Chapter Seventeen: Hypersensitivity States". On-layn mikrobiologiya va immunologiya. University of South Carolina School of Medicine. Olingan 29 may 2016.
  121. ^ Sompayrac 2019, 83-85-betlar.
  122. ^ Ciccone 2015, Bob 37.
  123. ^ a b Taylor AL, Watson CJ, Bradley JA (October 2005). "Immunosuppressive agents in solid organ transplantation: Mechanisms of action and therapeutic efficacy". Onkologiya / gematologiya bo'yicha tanqidiy sharhlar. 56 (1): 23–46. doi:10.1016 / j.critrevonc.2005.03.012. PMID  16039869.
  124. ^ Barnes PJ (2006 yil mart). "Kortikosteroidlar: urish uchun dorilar". Evropa farmakologiya jurnali. 533 (1–3): 2–14. doi:10.1016 / j.ejphar.2005.12.052. PMID  16436275.
  125. ^ Masri MA (2003 yil iyul). "Immunosupressiv dorilar mozaikasi". Molekulyar immunologiya. 39 (17–18): 1073–77. doi:10.1016 / S0161-5890 (03) 00075-0. PMID  12835079.
  126. ^ a b Reece 2011 yil, p. 965.
  127. ^ Jahon sog'liqni saqlash tashkilotiga a'zo davlatlar uchun 2002 yil uchun o'lim va DALY taxminlari. Jahon Sog'liqni saqlash tashkiloti. Qabul qilingan 1 yanvar 2007 yil.
  128. ^ Singh M, O'Hagan D (1999 yil noyabr). "Vaktsinani yordamchi vositalarining yutuqlari". Tabiat biotexnologiyasi. 17 (11): 1075–81. doi:10.1038/15058. PMID  10545912. S2CID  21346647.
  129. ^ a b Andersen MH, Schrama D, Thor Straten P, Becker JK (2006 yil yanvar). "Sitotoksik T hujayralari". Tergov dermatologiyasi jurnali. 126 (1): 32–41. doi:10.1038 / sj.jid.5700001. PMID  16417215.
  130. ^ Boon T, van der Bryuggen P (1996 yil mart). "T limfotsitlari tomonidan tan olingan odam o'simta antijenleri". Eksperimental tibbiyot jurnali. 183 (3): 725–29. doi:10.1084 / jem.183.3.725. PMC  2192342. PMID  8642276.
  131. ^ Lyuboyevich S, Skerlev M (2014). "HPV bilan bog'liq kasalliklar". Dermatologiya klinikalari. 32 (2): 227–34. doi:10.1016 / j.clindermatol.2013.08.007. PMID  24559558.
  132. ^ Castelli C, Rivoltini L, Andreola G, Carrabba M, Renkvist N, Parmiani G (2000 yil mart). "Melanoma bilan bog'liq antigenlarning T-hujayralarini tanib olish". Uyali fiziologiya jurnali. 182 (3): 323–31. doi:10.1002 / (SICI) 1097-4652 (200003) 182: 3 <323 :: AID-JCP2> 3.0.CO; 2- #. PMID  10653598.
  133. ^ a b Romero P, Cerottini JK, Speiser DE (2006). "Melanoma antigenlariga odamning T hujayralari reaktsiyasi". Immunologiya yutuqlari. 92: 187–224. doi:10.1016 / S0065-2776 (06) 92005-7. ISBN  978-0-12-373636-9. PMID  17145305.
  134. ^ a b Gevara-Patiño JA, Turk MJ, Volchok JD, Xyuton AN (2003). "O'zgargan immunitetni tanib olish orqali saratonga qarshi immunitet: melanoma bilan tadqiqotlar". Saraton kasalligini o'rganish bo'yicha yutuqlar. 90: 157–77. doi:10.1016 / S0065-230X (03) 90005-4. ISBN  978-0-12-006690-2. PMID  14710950.
  135. ^ Renkvist N, Castelli C, Robbins PF, Parmiani G (2001 yil mart). "T hujayralari tomonidan tan olingan inson o'smasi antijenlerinin ro'yxati". Saraton kasalligi immunologiyasi, immunoterapiya. 50 (1): 3–15. doi:10.1007 / s002620000169. PMID  11315507. S2CID  42681479.
  136. ^ Morgan RA, Dadli ME, Vunderlich JR va boshq. (2006 yil oktyabr). "Genetik injenlangan limfotsitlar o'tkazilgandan keyin bemorlarda saraton regressiyasi". Ilm-fan. 314 (5796): 126–29. Bibcode:2006 yil ... 314..126M. doi:10.1126 / science.1129003. PMC  2267026. PMID  16946036.
  137. ^ Gerloni M, Zanetti M (iyun 2005). "O'simta immunitetidagi CD4 T hujayralari". Immunopatologiyada Springer seminarlari. 27 (1): 37–48. doi:10.1007 / s00281-004-0193-z. PMID  15965712. S2CID  25182066.
  138. ^ a b Seliger B, Ritz U, Ferrone S (2006 yil yanvar). "Virusli infektsiya va transformatsiyadan keyingi I darajali antigen anormalliklarining HLA molekulyar mexanizmlari". Xalqaro saraton jurnali. 118 (1): 129–38. doi:10.1002 / ijc.21312. PMID  16003759. S2CID  5655726.
  139. ^ Xayakava Y, Smit MJ (2006). "Tug'ma immunitetni aniqlash va shishlarni bostirish". Saraton kasalligini o'rganish bo'yicha yutuqlar. 95: 293–322. doi:10.1016 / S0065-230X (06) 95008-8. ISBN  978-0-12-006695-7. PMID  16860661.
  140. ^ a b v d e f Syn NL, Teng MW, Mok TS, Soo RA (2017 yil dekabr). "De-novo va immunitetni nazorat qilish punktlarini nishonga olishga qarshi qarshilik". Lanset. Onkologiya. 18 (12): e731-e741. doi:10.1016 / s1470-2045 (17) 30607-1. PMID  29208439.
  141. ^ a b Seliger B (2005). "O'simta immunitetidan qochish strategiyasi". BioDrugs. 19 (6): 347–54. doi:10.2165/00063030-200519060-00002. PMID  16392887. S2CID  1838144.
  142. ^ Frumento G, Piazza T, Di Karlo E, Ferrini S (sentyabr 2006). "Saraton immunoterapiyasi uchun o'sma bilan bog'liq immunosupressiyani maqsad qilish". Endokrin, metabolik va immunitet buzilishlariga qarshi dorilar. 6 (3): 233–7. doi:10.2174/187153006778250019. PMID  17017974.
  143. ^ Stix G (2007 yil iyul). "Yomon olov. Yurak kasalligi, Altsgeymer va boshqa turli xil kasalliklarga sabab bo'ladigan surunkali yallig'lanishni tushunish saraton sirlarini ochish uchun kalit bo'lishi mumkin" (PDF). Ilmiy Amerika. 297 (1): 60–67. Bibcode:2007SciAm.297a..60S. doi:10.1038 / Scientificamerican0707-60. PMID  17695843. Arxivlandi asl nusxasi (PDF) 2011 yil 16-iyulda.
  144. ^ Servantes-Villagrana RD, Albores-García D, Servantes-Villagrana AR, García-Acevez SJ (18 iyun 2020). "Shish paydo bo'lishining neyrogenezi va immunitetdan qochish, saratonga qarshi innovatsion davolashning maqsadi". Signal uzatish maqsadlari. 5 (1): 99. doi:10.1038 / s41392-020-0205-z. PMC  7303203. PMID  32555170.
  145. ^ Yang Y (sentyabr 2015). "Saraton immunoterapiyasi: saraton kasalligiga qarshi kurashish uchun immunitet tizimidan foydalanish". Klinik tadqiqotlar jurnali. 125 (9): 3335–7. doi:10.1172 / JCI83871. PMC  4588312. PMID  26325031.
  146. ^ Beyker MP, Reynolds HM, Lumicisi B, Bryson CJ (oktyabr 2010). "Oqsil terapevtikasining immunogenligi: asosiy sabablari, oqibatlari va muammolari". O'z-o'zidan / o'z-o'zidan. 1 (4): 314–322. doi:10.4161 / self.1.4.13904. PMC  3062386. PMID  21487506.
  147. ^ Welling GW, Weijer WJ, van der Zee R, Welling-Wester S (sentyabr 1985). "Oqsillarda ketma-ket antigenik hududlarni bashorat qilish". FEBS xatlari. 188 (2): 215–18. doi:10.1016/0014-5793(85)80374-4. PMID  2411595.
  148. ^ Söllner J, Mayer B (2006). "B oqsillari bo'yicha chiziqli B hujayrali epitoplarni bashorat qilish uchun mashinada o'rganish yondashuvlari". Molekulyar tanib olish jurnali. 19 (3): 200–08. doi:10.1002 / jmr.771. PMID  16598694. S2CID  18197810.
  149. ^ Saha S, Bxasin M, Raghava GP (2005). "Bcipep: B ​​hujayralari epitoplari ma'lumotlar bazasi". BMC Genomics. 6: 79. doi:10.1186/1471-2164-6-79. PMC  1173103. PMID  15921533.
  150. ^ Gul DR, Doytchinova IA (2002). "Immunoinformatika va immunogenitsiyani bashorat qilish". Amaliy bioinformatika. 1 (4): 167–76. PMID  15130835.
  151. ^ Kanduc D (sentyabr, 2019). "Gepatit C virusi immunoproteomikasidan revmatologiyaga o'zaro reaktivlik orqali bitta jadvalda". Revmatologiyadagi hozirgi fikr. 31 (5): 488–492. doi:10.1097 / BOR.0000000000000606. PMID  31356379.
  152. ^ a b Flajnik MF, Kasaxara M (yanvar 2010). "Adaptiv immunitet tizimining kelib chiqishi va evolyutsiyasi: genetik hodisalar va selektiv bosim". Tabiat sharhlari. Genetika. 11 (1): 47–59. doi:10.1038 / nrg2703. PMC  3805090. PMID  19997068.
  153. ^ Bickle TA, Krüger DH (iyun 1993). "DNKni cheklash biologiyasi". Mikrobiologik sharhlar. 57 (2): 434–50. doi:10.1128 / MMBR.57.2.434-450.1993. PMC  372918. PMID  8336674.
  154. ^ Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (mart 2007). "CRISPR prokaryotlarda viruslarga qarshi qarshilikni ta'minlaydi". Ilm-fan. 315 (5819): 1709–12. Bibcode:2007 yil ... 315.1709B. doi:10.1126 / science.1138140. hdl:20.500.11794/38902. PMID  17379808. S2CID  3888761.
  155. ^ Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dikman MJ, Makarova KS, Koonin EV, van der Oost J (avgust 2008). "Kichik CRISPR RNKlari prokaryotlarda virusga qarshi himoya ko'rsatma". Ilm-fan. 321 (5891): 960–64. Bibcode:2008 yil ... 321..960B. doi:10.1126 / science.1159689. PMC  5898235. PMID  18703739.
  156. ^ Xill F, Charpentier E (2016 yil noyabr). "CRISPR-Cas: biologiya, mexanizmlari va dolzarbligi". London Qirollik Jamiyatining falsafiy operatsiyalari. B seriyasi, Biologiya fanlari. 371 (1707): 20150496. doi:10.1098 / rstb.2015.0496. PMC  5052741. PMID  27672148.
  157. ^ Koonin EV (fevral, 2017). "Prokaryotlar va eukaryotlarda RNK va DNK tomonidan boshqariladigan antivirusga qarshi himoya tizimlarining rivojlanishi: umumiy nasabga va yaqinlashishga". Biologiya to'g'ridan-to'g'ri. 12 (1): 5. doi:10.1186 / s13062-017-0177-2. PMC  5303251. PMID  28187792.
  158. ^ Bayne CJ (2003). "Immunitet tizimlarining tug'ma va moslashuvchan qo'llari o'rtasidagi kelib chiqish va evolyutsion munosabatlar". Integr. Komp. Biol. 43 (2): 293–99. doi:10.1093 / icb / 43.2.293. PMID  21680436.
  159. ^ Stram Y, Kuzntzova L (2006 yil iyun). "RNK aralashuvi bilan viruslarning inhibatsiyasi". Virus genlari. 32 (3): 299–306. doi:10.1007 / s11262-005-6914-0. PMC  7088519. PMID  16732482.
  160. ^ a b Shnayder D. "Tug'ma immunitet - 4-ma'ruza: O'simliklar immunitetiga javoblar" (PDF). Stenford universiteti mikrobiologiya va immunologiya kafedrasi. Olingan 1 yanvar 2007.
  161. ^ Jons JD, Dangl JL (2006 yil noyabr). "O'simliklar immuniteti". Tabiat. 444 (7117): 323–29. Bibcode:2006 yil natur.444..323J. doi:10.1038 / tabiat05286. PMID  17108957.
  162. ^ Baulcombe D (sentyabr 2004). "O'simliklarda RNKning sustlashuvi". Tabiat. 431 (7006): 356–63. Bibcode:2004 yil natur.431..356B. doi:10.1038 / tabiat02874. PMID  15372043. S2CID  4421274.
  163. ^ Alder MN, Rogozin IB, Iyer LM, Glazko GV, Cooper MD, Pancer Z (dekabr 2005). "Jag'siz umurtqali hayvondagi adaptiv immun retseptorlari xilma-xilligi va funktsiyasi". Ilm-fan. 310 (5756): 1970–73. Bibcode:2005 yil ... 310.1970A. doi:10.1126 / science.1119420. PMID  16373579.
  164. ^ a b Finlay BB, McFadden G (2006 yil fevral). "Anti-immunologiya: bakterial va virusli patogenlar bilan mezbon immunitet tizimidan qochish". Hujayra. 124 (4): 767–82. doi:10.1016 / j.cell.2006.01.034. PMID  16497587. S2CID  15418509.
  165. ^ Cianciotto NP (2005 yil dekabr). "II turdagi sekretsiya: barcha fasllar uchun oqsil sekretsiyasi tizimi". Mikrobiologiya tendentsiyalari. 13 (12): 581–88. doi:10.1016 / j.tim.2005.09.005. PMID  16216510.
  166. ^ Winstonley C, Hart CA (fevral, 2001). "III turdagi sekretsiya tizimlari va patogenligi orollari". Tibbiy mikrobiologiya jurnali. 50 (2): 116–26. doi:10.1099/0022-1317-50-2-116. PMID  11211218.
  167. ^ Finlay BB, Falkov S (iyun 1997). "Mikrobial patogenlikdagi umumiy mavzular qayta ko'rib chiqildi". Mikrobiologiya va molekulyar biologiya sharhlari. 61 (2): 136–69. doi:10.1128/.61.2.136-169.1997. PMC  232605. PMID  9184008.
  168. ^ Kobayashi H (2005). "Havo yo'llarining biofilmlari: patogenezi va nafas yo'llarining infektsiyalari terapiyasi". Nafas olish tibbiyotidagi davolash usullari. 4 (4): 241–53. doi:10.2165/00151829-200504040-00003. PMID  16086598. S2CID  31788349.
  169. ^ Xasden NG, Harrison S, Roberts SE, Bekkingem JA, Greyl M, Stura E, Gore MG (iyun 2003). "Immunoglobulin bilan bog'lovchi domenlar: Peptostreptococcus magnus dan oqsil L". Biokimyoviy jamiyat bilan operatsiyalar. 31 (Pt 3): 716-18. doi:10.1042 / BST0310716. PMID  12773190. S2CID  10322322.
  170. ^ Burton DR, Stenfild RL, Uilson IA (oktyabr 2005). "Evolyutsion titanlar to'qnashuvida antitel va OIVga qarshi kurash". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 102 (42): 14943–48. Bibcode:2005 yil PNAS..10214943B. doi:10.1073 / pnas.0505126102. PMC  1257708. PMID  16219699.
  171. ^ Teylor JE, Rudenko G (2006 yil noyabr). "Tripanozom paltosini almashtirish: shkafda nima bor?". Genetika tendentsiyalari. 22 (11): 614–20. doi:10.1016 / j.tig.2006.08.003. PMID  16908087.
  172. ^ Kantin R, Metot S, Tremblay MJ (iyun 2005). "Talon-taroj qilish: zararli viruslar bilan hujayra oqsillarini qo'shilishi". Virusologiya jurnali. 79 (11): 6577–87. doi:10.1128 / JVI.79.11.6577-6587.2005. PMC  1112128. PMID  15890896.
  173. ^ a b "Fiziologiya yoki tibbiyot bo'yicha Nobel mukofoti 1908". Nobel mukofoti. Olingan 8 yanvar 2007.
  174. ^ Retief FP, Cilliers L (1998 yil yanvar). "Afina epidemiyasi, miloddan avvalgi 430-426 yillar". Janubiy Afrika tibbiyot jurnali = Suid-Afrikaanse Tydskrif vir Geneeskunde. 88 (1): 50–53. PMID  9539938.
  175. ^ Ostoya P (1954). "Maupertuis et la biologie". Revue d'histoire des fanlar va de leurs dasturlari. 7 (1): 60–78. doi:10.3406 / rhs.1954.3379.
  176. ^ Silverstayn 1989 yil, p. 6.
  177. ^ Silverstayn 1989 yil, p. 7.
  178. ^ Plotkin SA (2005 yil aprel). "Vaksinalar: o'tmishi, hozirgi va kelajagi". Tabiat tibbiyoti. 11 (4 ta qo'shimcha): S5-11. doi:10.1038 / nm1209. PMC  7095920. PMID  15812490.
  179. ^ Fiziologiya yoki tibbiyot bo'yicha Nobel mukofoti 1905 yil Nobelprize.org 2009 yil 8-yanvarda olingan.
  180. ^ Mayor Valter Rid, tibbiyot korpusi, AQSh armiyasi Valter Rid armiyasining tibbiy markazi. Qabul qilingan 8 yanvar 2007 yil.
  181. ^ Metchnikoff E (1905). Yuqumli kasalliklarda immunitet (To'liq matnli versiya: Internet arxivi). Binnie FG tomonidan tarjima qilingan. Kembrij universiteti matbuoti. LCCN  68025143. gumoral immunitet tarixi.
  182. ^ "Nils K. Jerne". Nobel mukofoti. Olingan 27 noyabr 2020.
  183. ^ Yewdell J (2003 yil 4 oktyabr). "U Idiotype-ga id qo'ydi". EMBO hisobotlari (Kitoblarni ko'rib chiqish). 4 (10): 931. doi:10.1038 / sj.embor.embor951. PMC  1326409.

Bibliografiya

Tashqi havolalar