Rog'un GESi to'lqini - Rogue wave

The Draupner to'lqini, 1995 yil Yangi yilida o'lchangan bitta ulkan to'lqin, nihoyat, ilgari afsonaviy deb hisoblangan g'alati to'lqinlarning mavjudligini tasdiqladi.[1]
1943 yilda orol orolida katta to'lqin buzilganligi haqidagi fotosurat Rokoll, Shimoliy Atlantika okeanida. Rokollning cho'qqisi dengiz sathidan taxminan 17 m (56 fut) balandlikda, purkagichning balandligi esa taxminan 52 m (170 fut) ga baholangan.

Rog'un GESi to'lqinlari (shuningdek, nomi bilan tanilgan g'alati to'lqinlar, monster to'lqinlari, epizodik to'lqinlar, qotil to'lqinlari, haddan tashqari to'lqinlar, krossovka to'lqinlariva g'ayritabiiy to'lqinlar) g'ayrioddiy darajada katta, kutilmagan va to'satdan paydo bo'ladi sirt to'lqinlari bu juda xavfli bo'lishi mumkin, hatto katta darajada kemalar kabi okean kemalari.[2]

Rog'un GESi to'lqinlari bir necha sabablarga ko'ra katta xavf tug'diradi: ular kamdan-kam uchraydi, oldindan aytib bo'lmaydi, to'satdan yoki ogohlantirishsiz paydo bo'lishi va juda katta kuch bilan ta'sir qilishi mumkin. Oddiy "chiziqli" to'lqin modelidagi 12 m (39 fut) to'lqinning sindirish bosimi 6 ga teng bo'ladi metrik tonna per kvadrat metr [t / m2] (59 kPa; 8.5 psi ). Garchi zamonaviy kemalar 15 t / m gacha bo'lgan to'lqinlarga bardosh berishga mo'ljallangan2 (150 kPa; 21 psi), yolg'onchi to'lqin bu ikkala raqamni 100 t / m gacha bo'lgan bosim bilan mitti qilishi mumkin.2 (0,98 MPa; 140 psi).[3]

Yilda okeanografiya, yolg'onchi to'lqinlar aniqroq kimning to'lqinlari sifatida aniqlanadi balandlik ikki baravar ko'p muhim to'lqin balandligi (Hs yoki SWH), bu o'zi to'lqin yozuvidagi to'lqinlarning eng katta uchdan birining o'rtacha qiymati sifatida aniqlanadi. Shuning uchun, yolg'onchi to'lqinlar, albatta, suvda topilgan eng katta to'lqinlar emas; ular, aksincha, ma'lum bir narsa uchun juda katta to'lqinlardir dengiz davlati. Rog'un GESi to'lqinlarining sababi aniq emas, lekin kuchli shamollar va kuchli oqim kabi fizik omillar to'lqinlarning birlashib, juda katta to'lqin hosil bo'lishiga olib keladi.[2]

Rog'un GESi to'lqinlari suvdan tashqari boshqa muhitlarda ham paydo bo'lishi mumkin. Ular tabiatda hamma joyda uchraydi va suyuqlikda ham qayd etilgan geliy, kvant mexanikasida,[4] chiziqli bo'lmagan optikada va mikroto'lqinli bo'shliqlarda, Boz-Eynshteyn kondensatsiyasida,[5] issiqlik va diffuziyada[6] va moliya sohasida.[7] Yaqinda o'tkazilgan tadqiqotlarga e'tibor qaratildi optik yolg'on to'lqinlar bu hodisani o'rganishni osonlashtiradigan laboratoriya. 2015-yilda chop etilgan bir maqolada yolg'onchi to'lqin atrofidagi to'lqin xatti-harakatlari, shu jumladan optik va Draupner to'lqini, va "yolg'onchi hodisalar ogohlantirishsiz paydo bo'lishi shart emas, aksincha ko'pincha nisbiy tartibning qisqa fazasi keladi" degan xulosaga kelishdi.[8] 2012 yilgi tadqiqot okeanik mavjudligini tasdiqladi firibgar teshiklar, teshik chuqurligi to'lqin balandligining ikki baravaridan yuqori darajaga yetishi mumkin bo'lgan yolg'onchi to'lqinlarning teskarisi.

Fon

Rog'un GESi to'lqinlari - bu ochiq suv hodisasi, unda shamollar, oqimlar, chiziqli emas kabi hodisalar solitonlar va boshqa holatlar to'lqinning qisqa vaqt ichida paydo bo'lishiga olib keladi, bu "o'rtacha" katta paydo bo'lgan to'lqindan ancha katta ( muhim to'lqin balandligi yoki "SWH") o'sha vaqt va joy. Yalang'och to'lqinlar kabi hodisalarni yuzaga keltiradigan asosiy fizika shundan iboratki, har xil to'lqinlar har xil tezlikda harakatlanishi mumkin va shuning uchun ular ma'lum sharoitlarda "to'planib", "konstruktiv aralashuv ". (Chuqur okeanda a tezligi tortishish to'lqini uning to'lqin uzunligining kvadrat ildizi bilan mutanosib, ya'ni, qo'shni to'lqinlar orasidagi tepalikdan tepalikgacha bo'lgan masofa.) Biroq, boshqa holatlar ham yolg'onchi to'lqinlarni keltirib chiqarishi mumkin, ayniqsa chiziqli bo'lmagan effektlar yoki beqarorlik effektlari energiyani to'lqinlar o'rtasida harakatlanishiga va "normal" holatga qaytishdan oldin o'ta katta to'lqinlarning birida yoki juda oz qismida to'planishiga olib kelishi mumkin.

Bir paytlar afsonaviy deb hisoblangan va ularning mavjudligi to'g'risida aniq dalillarga ega bo'lmagan, yolg'onchi to'lqinlar hozirgi kunda mavjud bo'lib, tabiiy okean hodisasi ekanligi ma'lum bo'ldi. Dengizchilarning guvohlari va kemalarga etkazilgan zarar, ularning paydo bo'lishi haqida uzoq vaqtdan beri aytmoqdalar. Ularning mavjudligining dastlabki ilmiy dalillari markazdagi Gorm platformasi tomonidan yolg'onchi to'lqinni qayd etish bilan sodir bo'ldi Shimoliy dengiz 1984 yilda. Nisbatan past dengiz holatida to'lqinning balandligi 11 metr (36 fut) bo'lgan alohida to'lqin aniqlandi.[9] Biroq, ilmiy jamoatchilik e'tiborini tortgan narsa, yolg'onchi to'lqinning raqamli o'lchovidir Draupner platformasi 1995 yil 1 yanvarda Shimoliy dengizda; "deb nomlanganDraupner to'lqini, "u qayd etilgan maksimal to'lqin balandligi 25,6 metrni (84 fut) va balandlikni balandligi 18,5 metrni (61 fut) tashkil qildi. Ushbu voqea davomida dengiz sathidan ancha balandroq maydonchada kichik shikastlanishlar sodir bo'ldi. pastga yo'naltirilgan lazer sensori tomonidan.[1]

Ularning mavjudligi bundan buyon video va fotosuratlar bilan tasdiqlangan, sun'iy yo'ldosh tasvirlari, okean sathining radarlari,[10] stereo to'lqinli ko'rish tizimlari,[11] dengiz tubidagi bosim o'tkazgichlari va okeanografik tadqiqot kemalari.[12] 2000 yil fevral oyida Britaniyaning okeanografik tadqiqot kemasi RRS Kashfiyot, suzib yurish Rockall Trough Shotlandiyaning g'arbiy qismida ochiq okeandagi ilmiy asboblar tomonidan qayd etilgan eng katta to'lqinlarga duch keldi, SWH 18,5 metr (61 fut) va alohida to'lqinlar bilan 29,1 metrgacha (95 fut).[13] "2004 yilda olimlar Evropa kosmik agentligi sun'iy yo'ldoshlarining uch haftalik radar tasvirlaridan foydalangan holda har biri 25 metr (82 fut) va undan yuqori bo'lgan o'nta yolg'on to'lqinni topdilar."[14]

Yolg'on to'lqin - bu quruqlik harakati tufayli yuzaga kelmaydigan, faqat qisqa vaqtga cho'zilgan, cheklangan joyda sodir bo'lgan va ko'pincha dengizdan tashqarida sodir bo'lgan tabiiy okean hodisasi.[2] Rog'un GESi to'lqinlari kamdan-kam uchraydi, ammo juda xavfli hisoblanadi, chunki ular odatdagi kutgandan kattaroq massiv to'lqinlarning o'z-o'zidan paydo bo'lishini o'z ichiga olishi mumkin. kema dizaynerlari va bunday uchrashuvlar uchun mo'ljallanmagan okean kemalarining odatdagi imkoniyatlarini engib chiqishi mumkin. Rog'un GESi to'lqinlari, shuning uchun ajralib turadi tsunami.[2] Tsunamilar ko'pincha suvning siljishi natijasida kelib chiqadi to'satdan harakat ning okean tubi, shundan so'ng ular keng maydon bo'ylab yuqori tezlikda tarqaladilar. Ular chuqur suvda deyarli sezilmaydi va faqat qirg'oqqa yaqinlashganda va okean tubi sayozlashganda xavfli bo'lib qoladi;[15] shuning uchun tsunami dengizda tashish uchun xavf tug'dirmaydi. (Yo'qotilgan yagona kemalar 2004 yil Osiyo tsunami portda bo'lganlar.) Ular ham ajralib turadi megatsunamis kabi to'satdan ta'sirlanish natijasida kelib chiqqan yagona massiv to'lqinlar meteor ta'siri yoki ko'chkilar yopiq yoki cheklangan suv havzalarida. Ular, shuningdek, "deb ta'riflangan to'lqinlardan farq qiladiyuz yillik to'lqinlar ", bu butunlay statistik ma'lum bir suv havzasida yuz yillik davrda yuz berishi mumkin bo'lgan eng yuqori to'lqinni bashorat qilish.

Hozirda Rog'un GESi to'lqinlari ba'zi okean kemalarini to'satdan yo'qotishlariga sabab bo'lganligi isbotlangan. Yaxshi hujjatlashtirilgan misollarga yuk tashuvchi kiradi XONIM Myunxen, 1978 yilda yo'qolgan.[16] Boshqa tomirlarning yo'qolishiga, shu jumladan, yolg'onchi to'lqin sabab bo'lgan Ocean Ranger, bu edi a suv osti mobil burg'ulash qurilmasi 1982 yil 15 fevralda Kanada suvlarida cho'kib ketgan.[17] 2007 yilda Amerika Qo'shma Shtatlarining Okean va atmosfera milliy ma'muriyati, ehtimol, yovuz to'lqinlar bilan bog'liq bo'lgan 50 dan ortiq tarixiy hodisalarning katalogini tuzdi.[18]

Yolg'on to'lqinlari haqidagi bilimlar tarixi

Oldinda katta to'lqin kelayotgani kabi og'ir dengizlarda ishlayotgan savdo kemasi. 1940. Katta to'lqinlar keng tarqalgan Biskay ko'rfazi.

Afsonaviy holat

1826 yilda frantsuz olimi va dengiz zobiti kapitan Jyul Dyumont d'Urvil uchta hamkasbi guvoh sifatida Hind okeanida 33 fut balandlikdagi to'lqinlar haqida xabar bergan bo'lsa-da, u boshqa birodar olim tomonidan jamoat oldida masxara qilingan Fransua Arago. O'sha davrda biron bir to'lqin 9 metrdan oshmasligi mumkinligi keng tarqalgan edi.[19][20] Muallif Syuzan Keysi, bu kufrning aksariyati yolg'onchi to'lqinni ko'rganlar juda kam bo'lganligi sababli paydo bo'lganligini va 20-asrning po'lat ikki qavatli kemalari paydo bo'lguncha "100 metrlik qaroqchilar to'lqinlariga duch kelgan odamlar umuman bo'lmaganligini yozgan. odamlarga bu haqda aytib berish uchun qaytib kelish. "[21]

1995 yil Draupner to'lqini oldidagi bilimlarning holati

G'ayrioddiy to'lqinlar ko'p yillar davomida ilmiy o'rganilgan (masalan, Jon Skott Rassel "s Tarjima to'lqini, 1834 yilgi a soliton to'lqin), ammo bu kontseptsiya jihatidan dengizchilarning ulkan yovuz okean to'lqinlari bilan uchrashish haqidagi hikoyalari bilan bog'liq emas edi, chunki ikkinchisi ilmiy jihatdan ishonib bo'lmaydigan edi.

19-asrdan boshlab okeanograflar, meteorologlar, muhandislar va kema dizaynerlari statistik ma'lumotlardan foydalanmoqdalar model nomi bilan tanilgan Gauss funktsiyasi (yoki Gauss dengizi yoki standart chiziqli model) to'lqin balandligini taxmin qilish uchun, har qanday dengizdagi to'lqin balandliklari eng katta uchdan birining o'rtacha qiymatiga teng bo'lgan markaziy qiymat atrofida zich guruhlangan deb taxmin qilinadi. muhim to'lqin balandligi.[22] To'lqin balandligi 12 metr (39 fut) bo'lgan bo'ronli dengizda model 15 metrdan (49 fut) baland to'lqin bo'lishini taxmin qilmoqda. Bu haqiqatan ham 30 metrdan (98 fut) bittasi bo'lishi mumkinligini taxmin qilmoqda - ammo o'n ming yilda bir marta (to'lqin balandligi 12 metr (39 fut)). Ushbu asosiy taxmin yaxshi qabul qilindi (va taxminiy deb tan olindi). To'lqinlarni modellashtirish uchun Gauss formasidan foydalanish so'nggi 100 yil davomida ushbu mavzudagi deyarli har bir matnning asosi bo'lgan.[22][23][qachon? ]

"Freak to'lqinlari" haqidagi birinchi taniqli ilmiy maqola professor Lorens Dreper tomonidan 1964 yilda yozilgan. "Seminal maqola" deb ta'riflangan ushbu maqolada u 1960-yillarning boshlarida Milliy Okeanografiya Institutining yozish bo'yicha harakatlarini hujjatlashtirdi. to'lqin balandligi va o'sha paytda qayd etilgan eng yuqori to'lqin 20 m (67 fut) ga teng edi. Draper ham tasvirlangan g'alati to'lqin teshiklari.[24][25][26]

Biroq, 1990-yillarning o'rtalarida ham, Pirie tomonidan yozilgan okeanografiya bo'yicha eng mashhur matnlarda yolg'onchi yoki g'alati to'lqinlar haqida hech qanday ma'lumot yo'q edi.[27] 1995 yilgi Draupner to'lqindan keyin ham mashhur matn Okeanografiya Gross tomonidan (1996) faqat yolg'onchi to'lqinlar haqida so'z yuritilgan va shunchaki "g'ayrioddiy sharoitlarda g'ayrioddiy to'lqinlar deb nomlanadigan g'ayritabiiy katta to'lqinlar paydo bo'lishi mumkin", deb batafsil bayon qilmagan.[28]

Draupner to'lqini

Qadimgi dengizchilarning ulkan to'lqinlar haqidagi hikoyalarini masxara qilishdan uzoq, zamonaviy tadqiqotlar shuni ko'rsatadiki, bunday hayvonlar paydo bo'lishi mumkin va to'lqin balandliklari mas'ul doiralarda qabul qilingan maksimal qiymatlardan sezilarli darajada oshib ketishi mumkin.

Professor Laurens Draper (1971)[26]

1995 yilda yolg'onchi to'lqinlarning mavjudligiga oid kuchli ilmiy dalillar, deb nomlangan narsalarni yozib olish bilan birga keldi Draupner to'lqini. The Draupner E tomonidan boshqariladigan gaz quvurlarini qo'llab-quvvatlash majmuasidagi bitta inshootdir Statoil taxminan 160 kilometr (100 mil)58 ° 11′19.30 ″ N. 2 ° 28′0.00 ″ E / 58.1886944 ° N 2.4666667 ° E / 58.1886944; 2.4666667 Norvegiyaning janubiy uchidan offshor va g'arbiy-g'arbiy qismida.[29][30][31] Draupner E platformasi ko'ylagi tipidagi birinchi yirik yog 'platformasi bo'lib, poydevor o'rniga paqir poydevori va assimilyatsiya ankraj tizimi bilan biriktirilgan.[31] Ehtiyotkorlik bilan operator (Statoil) platformani keng ko'lamli asbob-uskunalar bilan jihozladi. Asboblar doimiy ravishda platformaning harakatlarini, xususan, bo'ronli hodisalar paytida poydevorlarning harakatlarini tekshiradi. Platformaga o'rnatilgan eng zamonaviy asboblar oltita asosiy parametrlarni doimiy ravishda o'lchashga qodir edi:[31]

  • to'lqin balandligi
  • to'lqin nishab
  • to'lqinni ushlab turish
  • paqir asoslarining bosimi
  • platforma ustunlaridagi kuchlanish
  • pastki va poydevorlarda tezlashtirish

Burg'ilash moslamasi taxmin qilingan balandligi 20 m (64 fut) bo'lgan 1 000 000 yil ichida hisoblab chiqilgan to'lqinlarga bardosh berish uchun qurilgan va shuningdek, platformaning pastki qismida eng zamonaviy lazer to'lqin yozuvchisi o'rnatilgan. Soat 15 da. 1995 yil 1-yanvarda 26 metr (85 fut) yolg'on to'lqinni qayd etdi ya'ni, Taxmin qilingan 10 000 yillik to'lqindan 6 m (21 fut) balandroq bo'lib, burg'ulash minorasini 72 km / soat (45 milya) ga urdi. Bu har qanday ma'lum to'lqin modelidan tashqariga tushgan xususiyatlarga ega bo'lgan, qo'shnilariga qaraganda ikki baravar baland va tik bo'lgan freak to'lqinining birinchi tasdiqlangan o'lchovi edi. To'lqinni platformaga o'rnatilgan barcha sensorlar qayd etdi[31] va bu ilmiy jamoatchilikka katta qiziqish uyg'otdi.[29][31]

1995 yildan beri zamonaviy bilimlar

Draupner to'lqinining dalillaridan so'ng, ushbu sohada tadqiqotlar keng tarqaldi.

Gauss to'lqinlari doirasidan tashqarida bo'lgan g'aroyib to'lqinlar mavjudligini har tomonlama isbotlaydigan birinchi ilmiy tadqiqot 1997 yilda nashr etilgan.[32] Ba'zi tadqiqotlar shuni tasdiqlaydiki, to'lqin balandligi taqsimoti umuman kuzatiladi Rayleigh taqsimoti, lekin yuqori energiya hodisalari paytida sayoz suvlarda juda yuqori to'lqinlar ushbu model taxmin qilganidan kam uchraydi.[14] Taxminan 1997 yildan boshlab aksariyat etakchi mualliflar to'lqin modellari yolg'onchi to'lqinlarni takrorlay olmaganligi sababli, yolg'onchi to'lqinlarning mavjudligini tan olishdi.[19]

Statoil tadqiqotchilari 2000 yilda g'ayritabiiy to'lqinlarning odatiy yoki ozgina gauss bo'lmagan dengiz sathidagi populyatsiyasining kamdan-kam uchraydigan tushunchasi emasligi haqidagi dalillarni birlashtirgan holda (klassik haddan tashqari to'lqinlar), aksincha ular noyob va g'ayratli dengiz sathidagi to'lqin populyatsiyasining odatiy tushunchalari edi (g'alati haddan tashqari to'lqinlar).[33] Dunyodagi etakchi tadqiqotchilarning ustaxonasi 2000 yil noyabr oyida Brestda bo'lib o'tgan birinchi Rogue Waves 2000 seminariga tashrif buyurdi.[34]

2000 yilda Britaniya okeanografik kemasi RRS Kashfiyot yaqinidagi Shotlandiya qirg'og'ida 29 metrlik (95 fut) to'lqinni qayd etdi Rokoll. Bu ilmiy tadqiqot kemasi edi va yuqori sifatli asboblar bilan jihozlangan edi. Keyingi tahlillar shuni ko'rsatdiki, shamolning tezligi o'rtacha sekundiga 21 metr (41 kn) bo'lgan kema kuchi bilan to'lqinlarni yozish qurilmasi tepadan tepaga 29,1 metrgacha (95,5 fut) individual to'lqinlarni va to'lqinlarning maksimal balandligini o'lchagan. 18,5 metrdan (60,7 fut). Bu o'sha paytgacha ilmiy asboblar tomonidan qayd etilgan eng katta to'lqinlardan biri edi. Mualliflarning ta'kidlashicha, zamonaviy to'lqinlarni bashorat qilish modellari ma'lum a bilan to'lqinlar uchun haddan tashqari dengiz davlatlarini sezilarli darajada bashorat qilish muhim balandlik (Hs) 12 metrdan yuqori (39,4 fut). Ushbu hodisani tahlil qilish bir necha yil davom etdi va "hech qanday zamonaviy ob-havo prognozlari va to'lqin modellari - barcha kemalar, neft platformalari, baliqchilik va yo'lovchi kemalari ishonadigan ma'lumot - bashorat qilmaganligini ta'kidladi. bu begemotlar. " Oddiy qilib aytganda, duch kelgan to'lqinlarni tavsiflovchi ilmiy model (shuningdek, kema dizayni uslubi) mavjud emas edi. Ushbu topilma matbuotda keng tarqalgan bo'lib, u "o'sha paytdagi barcha nazariy modellarga ko'ra ob-havo sharoitida ushbu o'lchamdagi to'lqinlar bo'lmasligi kerak edi" deb yozgan edi.[2][13][29][35][36]

2004 yilda ESA MaxWave loyihasi Janubiy Atlantika cheklangan hududida uch hafta davomida o'tkazilgan qisqa tadqiqot davomida balandligi 25 metrdan (82 fut) oshgan o'ndan ziyod ulkan to'lqinlarni aniqladi. ESA ning ERS sun'iy yo'ldoshlari ushbu "yolg'onchi" to'lqinlarning keng tarqalishiga yordam berdi.[37][38] 2007 yilga kelib, sun'iy yo'ldosh radiolokatsion tadqiqotlari natijasida yana 20 metr (66 fut) dan 30 metrgacha (98 fut) balandlikdagi tepalikka qadar to'lqinlar ilgari o'ylanganidan ancha tez-tez sodir bo'lishi isbotlandi.[39] Hozir ma'lumki, yolg'on to'lqinlari har kuni butun dunyo okeanida ko'p marta sodir bo'ladi.

Shunday qilib, yolg'onchi to'lqinlarning mavjudligini tan olish (ularni oddiy statistik modellarga asoslanib tushuntirish mumkin emasligiga qaramay) juda zamonaviy ilmiy paradigma.[40] Hozir yolg'on to'lqinlari odatiy hodisa ekanligi yaxshi qabul qilindi. Professor Axmediev Avstraliya milliy universiteti, ushbu sohadagi dunyoning etakchi tadqiqotchilaridan biri, har qanday vaqtda dunyo okeanida qariyb 10 ta qaroqchi to'lqin borligini aytdi.[41] Ba'zi tadqiqotchilar taxmin qilishlaricha, okeanlardagi har 10000 to'lqinning uchtasi yaramaslik maqomiga erishadi, ammo ba'zi joylarda, masalan qirg'oqning kirish joylari va daryolarning og'zida - bu o'ta to'lqinlar har 1000 to'lqindan uchtasini tashkil qilishi mumkin, chunki to'lqin energiyasi yo'naltirilgan bo'lishi mumkin.[42]

Shuningdek, Rog'un GES to'lqinlari paydo bo'lishi mumkin ko'llar. "Uch opa-singil" nomi bilan mashhur bo'lgan hodisa sodir bo'lganligi aytiladi Superior ko'li ketma-ket uchta katta to'lqin paydo bo'lganda. Ikkinchi to'lqin birinchi to'lqin tozalanmasdan kemaning pastki qismiga uriladi. Uchinchi kiruvchi to'lqin to'plangan ikkita yuvishga qo'shiladi va to'satdan tonna suv bilan kemaning pastki qismini ortiqcha yuklaydi. Bu hodisa - bu cho'kish sababi haqidagi turli xil nazariyalardan biridir SSEdmund Fitsjerald 1975 yil noyabr oyida Superior ko'lida.[43]

Haddan tashqari hodisalar, yolg'onchi to'lqinlar va soliton nazariyasiga nisbatan
Bular yigirmanchi va yigirma birinchi asrlardagi matematik va eksperimental fizikaning eng muhim kashfiyotlari deb hisoblanadi.

Optik fanlar guruhi, Avstraliya milliy universiteti[44]

Yalang'och to'lqinlar hodisasini jiddiy o'rganish 1995 yilgi Draupner to'lqinidan keyin boshlangan va taxminan 2005 yildan beri kuchaygan. Yolg'onchi to'lqinlarning ajoyib xususiyatlaridan biri shundaki, ular doimo yo'q joydan paydo bo'lib, tezda izsiz yo'qoladi. Yaqinda o'tkazilgan tadqiqotlar shuni ko'rsatdiki, o'rtacha dengiz holatidan besh baravar ko'p bo'lgan "o'ta yolg'onchi to'lqinlar" ham bo'lishi mumkin. Rog'un GESi to'lqinlari endi olimlar tomonidan odatdagi, Gauss taqsimlangan, statistik hodisalar uchun kutilganidan ko'ra tez-tez sodir bo'ladigan, ajratilgan katta amplituda to'lqinlarni tavsiflash uchun berilgan universal atama bo'lib qoldi. Rog'un GES to'lqinlari tabiatda hamma joyda tarqalgan bo'lib ko'rinadi va faqat okeanlar bilan chegaralanmaydi. Ular boshqa kontekstlarda paydo bo'ladi va yaqinda suyuq geliyda, chiziqli bo'lmagan optikada va mikroto'lqinli bo'shliqlarda qayd etilgan. Endi dengiz tadqiqotchilari tomonidan ushbu to'lqinlarning dengiz shamollari uchun odatiy modellar tomonidan hisobga olinmagan holda ma'lum bir dengiz to'lqinining turiga tegishli ekanligi keng tarqalgan.[45][46][47][48]

2012 yilda tadqiqotchilar Avstraliya milliy universiteti mavjudligini isbotladi yolg'onchi to'lqin teshiklari, yolg'onchi to'lqinning teskari profilidir. Ularning izlanishlari natijasida suv yuzasida, suv to'lqinli idishda yolg'onchi to'lqin teshiklari paydo bo'ldi.[49] Dengizda xalqshunoslik, qaroqchi teshiklari haqidagi hikoyalar, yolg'onchi to'lqinlarning hikoyalari kabi keng tarqalgan. Ular nazariy tahlildan kelib chiqadilar, ammo hech qachon eksperimental tarzda isbotlanmagan.

2019 yilda tadqiqotchilar Draupner to'lqinining o'xshash xususiyatlariga ega bo'lgan (tiklik va sinish) va mutanosib ravishda balandroq bo'lgan to'lqinni ishlab chiqarishga muvaffaq bo'lishdi, bu esa 120 daraja burchak ostida yig'iladigan bir nechta to'lqinlar yordamida amalga oshirildi. Oldingi tadqiqotlar to'lqin turli yo'nalishdagi to'lqinlarning o'zaro ta'siridan ("dengizlarni kesib o'tish") kelib chiqishini qat'iyan ta'kidlagan edi. Ularning tadqiqotlari shuni ham ta'kidladiki, to'lqinlarni buzadigan xatti-harakatlar kutilganidek emas edi. Agar to'lqinlar taxminan 60 darajadan kam burchak ostida uchrashgan bo'lsa, u holda to'lqinning yuqori qismi yon tomonga va pastga "sinib" ketgan ("sho'ng'in to'sar"). Ammo taxminan 60 darajadan va undan kattaroq to'lqin sindira boshladi vertikal ravishda yuqoriga qarab, odatdagidek to'lqin balandligini kamaytirmagan, aksincha, tepalikni yaratish ortdi u ("vertikal reaktiv"). Shuningdek, ular yolg'onchi to'lqinlarning tikligini shu tarzda takrorlash mumkinligini ko'rsatdilar. Va nihoyat, ular Draupner to'lqini uchun ishlatiladigan lazer kabi optik asboblar to'lqinning yuqori qismidagi buzadigan amallar bilan biroz chalkashib ketishi mumkinligini, agar u buzilsa va bu to'lqin balandligida taxminan 1-1,5 metrgacha bo'lgan noaniqliklarga olib kelishi mumkinligini kuzatdilar. . Ular xulosa qildilar "to'lqinlarni sindirishning boshlanishi va turi muhim rol o'ynaydi va kesishgan va o'tmaydigan to'lqinlar uchun sezilarli darajada farq qiladi. Eng muhimi, buzilish etarlicha katta o'tish burchaklari uchun eng kam amplituda cheklovga aylanadi va vertikalga yaqin jetlarning shakllanishini o'z ichiga oladi"..[50][51]

Draupner to'lqinining 2019 yilgi simulyatsiyasidan olingan tasvirlar, to'lqinning tikligi qanday shakllanishini va to'lqinlar har xil burchak ostida kesib o'tilganda, qanday qilib yolg'onchi to'lqinning tepasi sinishini ko'rsatib beradi. (To'liq aniqlik uchun rasmni bosing)
  • Birinchi qatorda (0 daraja) tepalik gorizontal ravishda sinadi va cho'kadi, to'lqin hajmini cheklaydi.
  • O'rta qatorda (60 daraja) biroz yuqoriga ko'tarilgan buzilish harakati mavjud
  • Draupner to'lqinining eng aniq simulyatsiyasi sifatida tavsiflangan uchinchi qatorda (120 daraja) to'lqin sinadi yuqoriga, vertikal jet sifatida va to'lqin tepalik balandligi buzilish bilan chegaralanmaydi.

Tadqiqot harakatlari

Hozirda yolg'onchi to'lqinlarga bag'ishlangan bir qator tadqiqot dasturlari mavjud, jumladan:

  • MaxWave loyihasi davomida GKSS tadqiqot markazi tadqiqotchilari tomonidan to'plangan ma'lumotlardan foydalanish ESA sun'iy yo'ldoshlar, yolg'onchi to'lqinlar uchun dalil sifatida tasvirlangan ko'plab radar imzolarini aniqladi. Radar aks sadolarini dengiz sathining balandligiga o'tkazishning eng yaxshi usullarini ishlab chiqish bo'yicha qo'shimcha tadqiqotlar olib borilmoqda, ammo hozirgi vaqtda bu usul isbotlanmagan.[37][52]
  • The Avstraliya milliy universiteti bilan hamkorlikda ishlash Gamburg Texnologiya Universiteti va Turin universiteti, yolg'onchi yoki qotil to'lqinlarni tushuntirishga harakat qilish uchun chiziqli bo'lmagan dinamikada tajribalar o'tkazdilar. "Lego Pirate" videosi keng qo'llanilgan va ularning tadqiqotlari shuni ko'rsatadiki, ular "o'ta yolg'onchi to'lqinlar" deb atagan narsalarni tasvirlash uchun atrofdagi boshqa to'lqinlardan besh baravar katta bo'lishi mumkin.[53][54][55]
  • Evropa kosmik agentligi radar sun'iy yo'ldoshi bilan yolg'onchi to'lqinlar bo'yicha tadqiqotlarni davom ettirmoqda.[56]
  • Amerika Qo'shma Shtatlarining dengiz tadqiqot laboratoriyasi, dengiz floti va dengiz piyodalari korpusining ilmiy bo'limi 2015 yilda modellashtirish ishlarining natijalarini e'lon qildi.[56][57][58]
  • Massachusets texnologiya instituti. Ushbu sohada izlanishlar davom etmoqda. Massachusetts Texnologiya Institutining ikki tadqiqotchisi dengiz muhandislik ta'limi konsortsiumi (NEEC) tomonidan qisman qo'llab-quvvatlanib, noyob, ekstremal suv to'lqinlarini qisqa muddatli prognoz qilish muammosini ko'rib chiqdilar va taxminan 25 to'lqinning samarali bashorat qilish vositasi bo'yicha o'z tadqiqotlarini ishlab chiqdilar va nashr etdilar. davrlar. Ushbu vosita kemalar va ularning ekipajlari halokatga olib kelishi mumkin bo'lgan ta'sir haqida ikki-uch daqiqa ogohlantirishi mumkin, bu esa ekipajga kemada (yoki dengizdagi platformada) muhim operatsiyalarni to'xtatishga imkon beradi. Mualliflar bunga yorqin misol sifatida samolyot tashuvchisiga qo'nishni ko'rsatmoqdalar.[58][59][60]
  • Kolorado universiteti va Stellenbosch universiteti.[56][61]
  • Kioto universiteti.[62]
  • Svinburn texnologiya universiteti yaqinda Avstraliyada yolg'onchi to'lqinlarning ehtimoli bo'yicha ish nashr etildi.[63]
  • Oksford universiteti. Muhandislik fanlari bo'limi 2014 yilda yovuz to'lqinlar haqidagi ilm-fanning keng qamrovli sharhini nashr etdi.[64][65] 2019 yilda Oksford va Edinburg universitetlari jamoasi Draupner to'lqinini laboratoriyada qayta yaratdi.[66]
  • G'arbiy Avstraliya universiteti.[64]
  • Tallin Texnologiya Universiteti Estoniyada.[67]
  • Ekstremal dengizlar loyihasi Evropa Ittifoqi tomonidan moliyalashtiriladi.[67][68]
  • Umea universiteti. 2006 yil avgust oyida Shvetsiyadagi Umea Universitetidagi tadqiqot guruhi buni normal holat deb ko'rsatdi stoxastik shamol qo'zg'atadigan to'lqinlar to'satdan hayvon to'lqinlarini keltirib chiqarishi mumkin. Beqarorliklarning chiziqli bo'lmagan evolyutsiyasi vaqtga bog'liq bo'lmagan chiziqli tenglamalar tizimini to'g'ridan-to'g'ri simulyatsiya qilish orqali o'rganildi.[69]
  • Buyuk ko'llar atrof-muhitni o'rganish laboratoriyasi. GLERL 2002 yilda izlanishlar olib borgan va bu uzoq vaqtdan beri yolg'onchi to'lqinlar kamdan-kam uchraydigan degan fikrlarni tarqatib yuborgan.[12]
  • Oslo universiteti. Quyidagi mavzular bo'yicha tadqiqotlar o'tkazgan: dengiz holatini kesib o'tish va buzg'unchilik to'lqini ehtimoli Prestij avariyasi; Lineer bo'lmagan shamol to'lqinlari, ularni oqim oqimlari bilan o'zgartirish va Norvegiyaning qirg'oq suvlariga tatbiq etish; Haqiqiy Okean to'lqinlarining umumiy tahlili (GROW); Dengiz tuzilmalari va haddan tashqari to'lqin hodisalari uchun oqim va to'lqinlarni modellashtirish; Uch o'lchamli tik sirt to'lqinlarini tezkor hisoblash va tajribalar bilan taqqoslash; va okeandagi juda katta ichki to'lqinlar.[70]
  • Milliy okeanografiya markazi Buyuk Britaniyada.[71]
  • Scripps Okeanografiya instituti Qo'shma Shtatlarda.[72]
  • Ritmare Italiyadagi loyiha.[73]

Sabablari

Yolg'on to'lqinlarni yaratish orqali eksperimental namoyish chiziqli emas jarayonlar (kichik miqyosda) a to'lqinli tank.
Lineer bo'lmagan qismning chiziqli qismi eritmasi Shredinger tenglamasi chuqur suvdagi murakkab to'lqin konvertining rivojlanishini tavsiflovchi.

Yalang'och to'lqinlar hodisasi hali ham faol izlanishlar masalasi bo'lganligi sababli, eng ko'p uchraydigan sabablar yoki ularning har bir joyda o'zgarib turishini aniq aytib berish erta. Eng yuqori taxmin qilinadigan xavf zonalari kuchli bo'lgan joyda ko'rinadi joriy to'lqinlarning asosiy harakat yo'nalishiga zid keladi; yaqin hudud Cape Agulhas Afrikaning janubiy uchidan shunday joylardan biri; iliq Agulxas oqimi janubi-g'arbiy tomon yuguradi, shamol esa hukmron g'arbiy. Biroq, ushbu tezis aniqlangan barcha to'lqinlarning mavjudligini tushuntirmagani uchun, bir nechta turli xil mexanizmlar, ehtimol lokalizatsiya o'zgarishi bilan. Freak to'lqinlari uchun tavsiya etilgan mexanizmlarga quyidagilar kiradi:

Tarqoq diqqatni jamlash
Ushbu gipotezaga ko'ra, qirg'oq shakli yoki dengiz tubining shakli bir nechta kichik to'lqinlarni fazada uchrashishga yo'naltiradi. Ularning tepalik balandliklari birlashib, g'alati to'lqin hosil qiladi.[74]
Oqimlarga e'tibor qaratish
Bir oqimdagi to'lqinlar qarama-qarshi oqimga suriladi. Bu to'lqin uzunligini qisqartirishga, sholning paydo bo'lishiga olib keladi (ya'ni to'lqin balandligining oshishi) va kelayotgan to'lqinli poezdlar yolg'onchi to'lqinga birlashishga olib keladi.[74] Bu Janubiy Afrika qirg'og'ida sodir bo'ladi, qaerda Agulxas oqimi qarshi chiqadi g'arbiy.[65]
Lineer bo'lmagan effektlar (modulyatsion beqarorlik )
Yalang'och to'lqin kichik to'lqinlarning tasodifiy fonida tabiiy, chiziqli bo'lmagan jarayonlar bilan yuzaga kelishi mumkin.[16] Bunday holatda u taxmin qiladiki, g'ayritabiiy, beqaror to'lqin turi paydo bo'lishi mumkin, u boshqa to'lqinlardan energiyani «so'rib oladi», u juda vertikal holatga kelguncha va birozdan keyin qulab tushadi. Buning oddiy modellaridan biri sifatida tanilgan to'lqin tenglamasidir chiziqli bo'lmagan Shredinger tenglamasi (NLS), unda normal va mukammal javob beradigan (standart chiziqli model bo'yicha) to'lqin oldinga va orqaga to'lqinlardan energiyani "so'rib" boshlaydi va ularni boshqa to'lqinlarga nisbatan kichik to'lqinlarga kamaytiradi. NLS chuqur suv sharoitida ishlatilishi mumkin. Sayoz suvda to'lqinlar Korteweg – de Fris tenglamasi yoki Bussinesq tenglamasi. Ushbu tenglamalar chiziqli bo'lmagan hissa qo'shadi va bitta to'lqinli echimlarni ko'rsatadi. Lineer bo'lmagan Shredinger tenglamasiga (Peregrine Qarori) mos keladigan kichik miqyosdagi yolg'onchi to'lqin 2011 yilda laboratoriya suv omborida ishlab chiqarilgan.[75] Xususan, o'rganish solitonlar va ayniqsa Peregrin solitonlari, suv havzalarida chiziqli bo'lmagan ta'sirlar paydo bo'lishi mumkin degan fikrni qo'llab-quvvatladilar.[65][76][77][78]
To'lqin spektrining normal qismi
Rog'un GESi to'lqinlari umuman g'alati emas, ammo kamdan-kam uchqun bo'lsa ham normal to'lqinlarni yaratish jarayonining bir qismidir.[74]
Elementar to'lqinlarning konstruktiv aralashuvi
Rog'un GES to'lqinlari chiziqli bo'lmagan ta'sirlar bilan kuchaytirilgan elementar 3D to'lqinlarning konstruktiv aralashuvidan (dispersiv va yo'naltirilgan fokuslanish) kelib chiqishi mumkin.[11][79]
Shamol to'lqini o'zaro ta'sirlar
Shamolning o'zi yolg'onchi to'lqinni keltirib chiqarishi ehtimoldan yiroq emas, ammo uning ta'siri boshqa mexanizmlar bilan birgalikda freak to'lqinlari hodisalarini to'liqroq tushuntirib berishi mumkin. Okean ustidan shamol esganda energiya dengiz sathiga uzatiladi. Bo'rondan kuchli shamollar okean oqimining qarama-qarshi tomonida esganda, kuchlar tasodifiy yolg'onchi to'lqinlarni hosil qilish uchun etarlicha kuchli bo'lishi mumkin. Shamol to'lqinlarining paydo bo'lishi va o'sishi uchun beqarorlik mexanizmlari nazariyalari, garchi yolg'onchi to'lqinlarning sabablari haqida bo'lmasa ham - Fillips tomonidan berilgan[80] va Miles.[65][81]
Termal kengayish
Iliq suv ustunidagi barqaror to'lqinlar guruhi sovuq suv ustuniga o'tsa, to'lqinlarning kattaligi o'zgarishi kerak, chunki tizimda energiya saqlanishi kerak. Shunday qilib to'lqinlar guruhidagi har bir to'lqin kichrayadi, chunki sovuq suv zichlikka asoslangan holda ko'proq to'lqin energiyasini ushlab turadi. Endi to'lqinlar bir-biridan uzoqroq masofada joylashgan va tortishish kuchi tufayli ular bo'shliqni to'ldirish va barqaror to'lqinlar guruhiga aylanish uchun ko'proq to'lqinlarga tarqaladi. Agar barqaror to'lqinlar guruhi sovuq suvda bo'lsa va iliq suv ustuniga o'tsa, to'lqinlar kattalashib, to'lqin uzunligi qisqaroq bo'ladi. To'lqinlar tortishish kuchi tufayli to'lqinlar amplitudasini almashtirishga urinib, muvozanatni izlaydilar. Biroq, to'lqinning barqaror guruhidan boshlab to'lqin energiyasi guruhning markaziga qarab siljishi mumkin. Agar to'lqinlar guruhining old qismi ham, orqasi ham energiyani markazga siljitsa, u yolg'onchi to'lqinga aylanishi mumkin. Bu faqat to'lqin guruhi juda katta bo'lgan taqdirda sodir bo'ladi.[iqtibos kerak ]

NLS tenglamasida ko'rilgan fazoviy-vaqtli fokuslash, chiziqli bo'lmaganlikni olib tashlaganda ham sodir bo'lishi mumkin. Bunday holda, diqqat markazida bo'lish birinchi navbatda har qanday energiya uzatish jarayonlariga emas, balki fazaga tushadigan turli xil to'lqinlarga bog'liq. RH Gibbs (2005) tomonidan to'liq chiziqli bo'lmagan modeldan foydalangan holda yolg'on to'lqinlarni tahlil qilish ushbu rejimni shubha ostiga qo'yadi, chunki odatdagi to'lqin guruhi suvning sezilarli devorini ishlab chiqaradigan joyga e'tiborini qaratganligi ko'rsatilgan. balandlik.

Yalang'och to'lqin va undan oldin va keyin tez-tez ko'rinib turadigan chuqurlik bir necha daqiqaga cho'zilishi yoki buzilishidan oldin yoki yana kattalashishi mumkin. Birgina yolg'onchi to'lqindan tashqari, yolg'onchi to'lqin bir nechta yolg'onchi to'lqinlardan iborat to'lqin paketining bir qismi bo'lishi mumkin. Bunday yolg'on to'lqinli guruhlar tabiatda kuzatilgan.[82]

Qo'rqinchli to'lqinlarning uchta toifasi mavjud:

  • Okean bo'ylab 10 km (6 milya) masofani bosib o'tgan "suv devorlari"[iqtibos kerak ]
  • "Uch opa-singil", uchta to'lqinli guruhlar[83]
  • Yagona, ulkan bo'ron to'lqinlari, bo'ron to'lqinlarining balandligini to'rt baravargacha oshirib, bir necha soniyadan so'ng qulab tushdi[84]

Ilmiy qo'llanmalar

Yalang'och to'lqin hodisalarini sun'iy ravishda rag'batlantirish imkoniyati tadqiqotlarni moliyalashtirishni jalb qildi DARPA, agentligi Amerika Qo'shma Shtatlari Mudofaa vazirligi. Bahram Jalali va boshqa tadqiqotchilar UCLA mikrostrukturali o'rganildi optik tolalar ostonasiga yaqin soliton superkontinum avlod va kuzatilgan firibgar to'lqin hodisalari. Effektni modellashtirgandan so'ng, tadqiqotchilar har qanday muhitda yolg'onchi to'lqinlarni yaratish uchun tegishli dastlabki shartlarni muvaffaqiyatli tavsiflaganliklarini e'lon qilishdi.[85] Optikada olib borilgan qo'shimcha ishlar chiziqli bo'lmagan strukturaning rolini ko'rsatdi Peregrin soliton paydo bo'ladigan va iz qoldirmasdan yo'qoladigan to'lqinlarni tushuntirishi mumkin.[86][87]

Xabar qilingan uchrashuvlar

Ushbu uchrashuvlarning aksariyati faqat ommaviy axborot vositalarida xabar qilinadi va ochiq okean yolg'onchi to'lqinlarining namunalari emas. Ko'pincha, ommaviy madaniyatda, xavf ostida bo'lgan ulkan to'lqin erkin tarzda a deb belgilanadi yolg'onchi to'lqin, xabar qilingan hodisa ilmiy ma'noda yolg'onchi to'lqin ekanligi aniqlanmagan (va ko'pincha buni amalga oshirish mumkin emas) - ya'ni atrofdagi to'lqinlar kabi xususiyatlarga ko'ra juda boshqacha tabiatga ega dengiz davlati va yuzaga kelish ehtimoli juda past (a bo'yicha Gauss jarayoni ta'rifi amal qiladi chiziqli to'lqinlar nazariyasi ).

Ushbu bo'limda taniqli hodisalarning cheklangan tanlovi keltirilgan.

19-asr

  • Eagle Island dengiz chiroqlari (1861) - suv inshootning sharqiy minorasining oynasini sindirdi va uni suv bosdi, bu 40 m (130 fut) jarlikdan o'tib, 26 m (85 fut) minorani bosib olgan to'lqinni nazarda tutdi.[88]
  • Flannan orollari dengiz chiroqlari (1900) - dengiz sathidan 34 metr (112 fut) balandlikda bo'lgan to'lqin shikastlangan uskunalar topilgan bo'rondan keyin uchta dengiz chiroqlari g'oyib bo'ldi.[89][90]

20-asr

  • SS Kronprinz Vilgelm, 1901 yil 18-sentabr - o'z davridagi eng zamonaviy nemis okean layneri (g'olib Moviy Riband ) Cherbourgdan Nyu-Yorkka birinchi safarida katta to'lqin tufayli zarar ko'rgan. To'lqin kemani boshiga urdi.[91]
  • RMS Lusitania (1910) - 1910 yil 10-yanvarga o'tar kechasi 23 metrlik (75 fut) to'lqin kemani kamon ustiga urib, prognoz pastki qismiga zarar etkazdi va ko'prik oynalarini sindirdi.[92]
  • Jeyms Kairdning sayohati (1916) – Ser Ernest Shaklton Fil orolidan Janubiy Jorjia oroliga qutqaruv kemasini boshqarishda u "ulkan" deb atagan to'lqinga duch keldi.[93]
  • RMS Gomerik (1924) - Qo'shma Shtatlarning Sharqiy sohilidagi bo'ron bilan suzib ketayotganda 24 metr (80 fut) to'lqini urib, etti kishini yaraladi, ko'plab deraza va illyomlarni sindirdi, qutqaruv kemalaridan birini olib ketdi va stullarni tortib oldi. ularning biriktirilishidan boshqa armatura.[94]
  • USS Ramapo (AO-12) (1933) - 34 metrga uchburchakda (112 fut).[95]
  • RMSQirolicha Maryam (1942) - 28 metrlik (92 fut) to'lqin bilan o'ralgan va sekin yurishdan oldin taxminan 52 daraja qisqacha sanab o'tilgan.[19]
  • SS Mikelanjelo (1966) - ustki qismda yirtilgan teshik, og'ir shisha suv sathidan 24 metr (80 fut) balandlikda sindirib tashlangan va uch kishi o'lgan.[95]
  • SSEdmund Fitsjerald (1975) - Yo'qotilgan Superior ko'li. Sohil xavfsizlik xizmati hisobotida lyuklarga suv kirishi sabab bo'ldi, bu asta-sekin to'siqni to'ldirdi yoki alternativa navigatsiya yoki xaritada xatolarga yo'l qo'yib, shikastlanishiga olib keldi shoals. Biroq, yaqin atrofdagi yana bir kema SSArtur M. Anderson, xuddi shunday paytda ikkita yolg'onchi to'lqin va ehtimol uchinchisi tomonidan urilgan va bu taxminan o'n daqiqadan so'ng cho'kish bilan bir vaqtga to'g'ri kelgan.[43]
  • XONIMMyunxen (1978) - Dengizda adashganlar, faqat tarqoq qoldiqlar va to'satdan shikastlanish belgilarini qoldirgan, shu jumladan suv sathidan 20 metr (66 fut) balandlikdagi kuchlar. Ehtimol, bir nechta to'lqinlar ishtirok etgan bo'lsa-da, bu g'alati to'lqin tufayli cho'kish ehtimoli katta bo'lib qolmoqda.[16]
  • Esso Languedoc (1980) - 25-30 metr (80 dan 100 fut) to'lqin frantsuzlarning orqa qismidan pastki bo'ylab yuvilgan. supertanker yaqin Durban, Janubiy Afrika va birinchi turmush o'rtog'i Filipp Lijur tomonidan suratga olingan.[96][97]
  • Fastnet dengiz chiroqi - 1985 yilda 48 metrlik (157 fut) to'lqin bilan urilgan [98]
  • Draupner to'lqini (Shimoliy dengiz, 1995) - Ilmiy dalillar bilan tasdiqlangan birinchi yolg'onchi to'lqin, uning maksimal balandligi 25,6 metr (84 fut) bo'lgan.[99]
  • RMSQirolicha Yelizaveta 2 (1995) - Shimoliy Atlantika okeanida 29 metrlik (95 fut) to'lqinga duch keldi Dovul Luis. Usta bu "zulmatdan chiqdi" va "shunga o'xshash" dedi Doverning oq qoyalari."[3] O'sha paytdagi gazeta xabarlari kruiz laynerini "urinish sifatida ta'riflagan"bemaqsad "cho'ktirmaslik uchun vertikalga yaqin to'lqin.

21-asr

Quantifying the impact of rogue waves on ships

Ziyon XONIMMyunxen in 1978 provided some of the first physical evidence of the existence of rogue waves. Myunxen was a state-of-the-art cargo ship with multiple water-tight compartments and an expert crew. She was lost with all crew and the wreck has never been found. The only evidence found was the starboard lifeboat, which was recovered from floating wreckage some time later. The lifeboats hung from forward and aft blocks 20 metres (66 ft) above the waterline. The pins had been bent back from forward to aft, indicating the lifeboat hanging below it had been struck by a wave that had run from fore to aft of the ship and had torn the lifeboat from the ship. To exert such force the wave must have been considerably higher than 20 metres (66 ft). At the time of the inquiry, the existence of rogue waves was considered so statistically unlikely as to be near impossible. Consequently, the Maritime Court investigation concluded that the severe weather had somehow created an 'unusual event' that had led to the sinking of the Myunxen.[16][107]

1980 yilda MV Derbishir was lost during Typhoon Orchid south of Japan along with all of her crew. The Derbishir was an ore-bulk-oil combination carrier built in 1976. At 91,655 gross register tons, she was — and remains — the largest British ship ever to have been lost at sea. The wreck was found in June 1994. The survey team deployed a remotely operated vehicle to photograph the wreck. A private report was published in 1998 that prompted the British government to reopen a formal investigation into the sinking. The government investigation included a comprehensive survey by the Vuds Hole okeanografiya instituti, which took 135,774 pictures of the wreck during two surveys. The formal forensic investigation concluded that the ship sank because of structural failure and absolved the crew of any responsibility. Most notably, the report determined the detailed sequence of events that led to the structural failure of the vessel. A third comprehensive analysis was subsequently done by Douglas Faulkner, professor of marine architecture and ocean engineering at the Glazgo universiteti. His 2001 report linked the loss of the Derbishir with the emerging science on freak waves, concluding that the Derbishir was almost certainly destroyed by a rogue wave.[108][109][110][111][112]

In 2004 an extreme wave was recorded impacting the Admiralty Breakwater, Alderney Kanal orollarida. Bu dengiz suvi is exposed to the Atlantic Ocean. The peak pressure recorded by a shore-mounted transducer was 745 kilopascals [kPa] (108.1 psi). This pressure far exceeds almost any design criteria for modern ships and this wave would have destroyed almost any merchant vessel.[9]

Work by Smith in 2007 confirmed prior forensic work by Faulkner in 1998 and determined that the Derbishir was exposed to a hydrostatic pressure of a "static head" of water of about 20 metres (66 ft) with a resultant static pressure of 201 kilopascals (18.7 kN/sq ft).[nb 1] This is in effect 20 metres (66 ft) of green water (possibly a super rogue wave)[nb 2] flowing over the vessel. The deck cargo hatches on the Derbishir were determined to be the key point of failure when the rogue wave washed over the ship. The design of the hatches only allowed for a static pressure of less than 2 metres (6.6 ft) of water or 17.1 kilopascals (1.59 kN/sq ft),[nb 3] meaning that the typhoon load on the hatches was more than ten times the design load. The forensic structural analysis of the wreck of the Derbishir is now widely regarded as irrefutable.[39]

In addition fast moving waves are now known to shuningdek exert extremely high dynamic pressure. It is known that plunging or breaking waves can cause short-lived impulse pressure spikes called Gifle peaks. These can reach pressures of 200 kilopascals (19 kN/sq ft) (or more) for milliseconds, which is sufficient pressure to lead to brittle fracture of mild steel. Evidence of failure by this mechanism was also found on the Derbishir.[108] Smith has documented scenarios where hydrodynamic pressure of up to 5,650 kilopascals (525 kN/sq ft) or over 500 metric tonnes per 1 square metre (11 sq ft) could occur.[nb 4][39]

Dizayn standartlari

1997 yil noyabrda Xalqaro dengiz tashkiloti (IMO) adopted new rules covering survivability and structural requirements for bulk carriers of 150 metres (490 ft) and upwards. The bulkhead and double bottom must be strong enough to allow the ship to survive flooding in hold one unless loading is restricted.[113]

It is now widely held[kim tomonidan? ] that rogue waves present considerable danger for several reasons: they are rare, unpredictable, may appear suddenly or without warning, and can impact with tremendous force. A 12-metre (39 ft) wave in the usual "linear" model would have a breaking force of 6 metric tons per square metre [t/m2] (8.5 psi). Although modern ships are designed to (typically) tolerate a breaking wave of 15 t/m2, a rogue wave can dwarf both of these figures with a breaking force far exceeding 100 t/m2.[3] Smith has presented calculations using the International Association of Classification Societies (IACS) Common Structural Rules (CSR) for a typical bulk carrier which are consistent.[nb 5][39]

Peter Challenor, a leading scientist in this field from the Milliy okeanografiya markazi in the United Kingdom, was quoted in Casey's book in 2010 as saying: "We don’t have that random messy theory for nonlinear waves. At all." He added, "People have been working actively on this for the past 50 years at least. We don’t even have the start of a theory."[29][35]

In 2006 Smith proposed that the International Association of Classification Societies (IACS) recommendation 34 pertaining to standard wave data be modified so that the minimum design wave height be increased to 65 feet (19.8 m). He presented analysis that there was sufficient evidence to conclude that 66 feet (20.1 m) high waves can be experienced in the 25-year lifetime of oceangoing vessels, and that 98 feet (29.9 m) high waves are less likely, but not out of the question. Therefore, a design criterion based on 36 feet (11.0 m) high waves seems inadequate when the risk of losing crew and cargo is considered. Smith has also proposed that the dynamic force of wave impacts should be included in the structural analysis.[114]The Norwegian offshore standards now take into account extreme severe wave conditions and require that a 10,000-year wave does not endanger the ships integrity.[115] Rosenthal notes that as at 2005 rogue waves were not explicitly accounted for in Classification Societies’ Rules for ships’ design.[115] Misol tariqasida, DNV GL, one of the world's largest international certification body and classification society with main expertise in technical assessment, advisory, and risk management publishes their Structure Design Load Principles which remain largely based on the 'Significant Wave height' and as at January 2016 still has not included any allowance for rogue waves.[116]

The U.S. Navy historically took the design position that the largest wave likely to be encountered was 21.4 m (70 ft). Smith observed in 2007 that the navy now believes that larger waves can occur and the possibility of extreme waves that are steeper (i.e. do not have longer wavelengths) is now recognized. The navy has not had to make any fundamental changes in ship design as a consequence of new knowledge of waves greater than 21.4 m (70 ft) because they build to higher standards.[39]

There are more than 50 classification societies worldwide, each with different rules, although most new ships are built to the standards of the 12 members of the Xalqaro tasniflash jamiyatlari assotsiatsiyasi, which implemented two sets of Common Structural Rules; one for oil tankers and one for bulk carriers; in 2006. These were later harmonised into a single set of rules.[117]

Shuningdek qarang

Izohlar

  1. ^ Ga teng 20,500 kgf/m2 yoki 20.5 t/m2.
  2. ^ Atama super rogue wave had not yet been coined by ANU researchers at that time.
  3. ^ Ga teng 1,744 kgf/m2 yoki 1.7 t/m2.
  4. ^ Ga teng 576,100 kgf/m2 yoki 576.1 t/m2.
  5. ^ Smith has presented calculations for a hypothetical bulk carrier with a length of 275 m and a displacement of 161,000 metric tons where the design hydrostatic pressure 8.75 m below the waterline would be 88 kN/m2 (8.9 t/m2). For the same carrier the design hydrodynamic pressure would be 122 kN/m2 (12.44 t/m2).

Adabiyotlar

  1. ^ a b Haver, Sverre (2003). Freak wave event at Draupner jacket January 1 1995 (PDF) (Hisobot). Statoil, Tech. Rep. PTT-KU-MA. Olingan 2015-06-03.
  2. ^ a b v d e "Rogue Waves – Monsters of the deep: Huge, freak waves may not be as rare as once thought". Economist Magazine. 2009 yil 17 sentyabr. Olingan 2009-10-04.
  3. ^ a b v "Freak waves" (PDF). Arxivlandi asl nusxasi (PDF) 2008-04-14. (1.07 MiB ), Mayoq #185, Skuld, 2005 yil iyun
  4. ^ Rogue quantum harmonic oscillations, Cihan Bayindir, Fizika A 547, 124462, 1 June 2020
  5. ^ Dynamics of nonautonomous rogue waves in Bose–Einstein condensate, Li-Chen Zhao, Fizika yilnomalari 329, 73-79, 2013
  6. ^ Rogue heat and diffusion waves, Cihan Bayindir, Xaos, solitonlar va fraktallar 139, 110047, October 2020
  7. ^ Financial rogue waves, Yan Zhen-Ya, Nazariy fizikadagi aloqalar 54, 5, 2010
  8. ^ Predictability of Rogue Events, Simon Birkholz, Carsten Brée, Ayhan Demircan, and Günter Steinmeyer, Jismoniy tekshiruv xatlari 114, 213901, 28 May 2015
  9. ^ a b "Rogue Waves: The Fourteenth 'Aha Huliko'A Hawaiian Winter Workshop" (PDF). Soest.hawaii.edu. Okeanografiya. 3 September 2005. pp. 66–70. Olingan 16 aprel, 2016.
  10. ^ "Kosmosdan g'alati to'lqinlar". BBC yangiliklari. 2004 yil 22-iyul. Olingan 22 may, 2010.
  11. ^ a b Benetazzo, Alvise; Barbariol, Francesco; Bergamasco, Filippo; Torsello, Andrea; Carniel, Sandro; Sclavo, Mauro (2015-06-22). "Observation of Extreme Sea Waves in a Space–Time Ensemble". Jismoniy Okeanografiya jurnali. 45 (9): 2261–2275. Bibcode:2015JPO....45.2261B. doi:10.1175/JPO-D-15-0017.1. ISSN  0022-3670.
  12. ^ a b "Task Report – NOAA Great Lakes Environmental Research Laboratory – Ann Arbor, MI, USA". Glerl.noaa.gov. Olingan 16 aprel, 2016.
  13. ^ a b Holliday, Naomi P. (March 2006). "Were extreme waves in the Rockall Trough the largest ever recorded?". Geofizik tadqiqotlar xatlari. 33 (5): L05613. Bibcode:2006GeoRL..33.5613H. doi:10.1029/2005GL025238.
  14. ^ a b Laird, Anne Marie (December 2006). "Observed Statistics of Extreme Waves". Doctoral Dissertation, Monterey, California Naval Postgraduate School: 2.
  15. ^ "Physics of Tsunamis". NOAA.gov. United States Department of Commerce. 2016 yil 27 yanvar. Olingan 29 yanvar 2016. They cannot be felt aboard ships, nor can they be seen from the air in the open ocean.
  16. ^ a b v d "Freak Wave – programme summary". www.bbc.co.uk/. BBC. 2002 yil 14-noyabr. Olingan 15 yanvar 2016.
  17. ^ Royal Commission on the Ocean Ranger Marine Disaster (Canada) (1985). Safety offshore Eastern Canada, summary of studies & seminars. Komissiya. ISBN  9780660118277.
  18. ^ Liu, Paul C. (2007). "A Chronology of Freaque Wave Encounters" (PDF). Geofizika. 24 (1): 57–70. Olingan 8 oktyabr, 2012.
  19. ^ a b v Bruce Parker (13 March 2012). Dengiz kuchi: Tsunamilar, bo'ronli jarrohlik amaliyotlari, Rogue to'lqinlari va ofatlarni bashorat qilish uchun bizning izlanishimiz. Sent-Martin matbuoti. ISBN  978-0-230-11224-7.
  20. ^ Ian Jones; Joyce Jones (2008). Oceanography in the Days of Sail (PDF). Xeyl va Iremonger. p. 115. ISBN  978-0-9807445-1-4. Arxivlandi asl nusxasi (PDF) 2016-03-02 da. Olingan 2016-01-15. Dumont d'Urville, in his narrative, expressed the opinion that the waves reached a height of 'at least 80 to 100 feet'. In an era when opinions were being expressed that no wave would exceed 30 feet, Dumont d'Urville's estimations were received, it seemed, with some scepticism. No one was more outspoken in his rejection than François Arago, who, calling for a more scientific approach to the estimation of wave height in his instructions for the physical research on the voyage of the Bonité, suggested that imagination played a part in estimations as high as '33 metres' (108 feet). Later, in his 1841 report on the results of the Vénus expedition, Arago made further reference to the 'truly prodigious waves with which the lively imagination of certain navigators delights in covering the seas'
  21. ^ ""The Wave": The growing danger of monster waves". salon.com. 26 sentyabr 2010 yil. Olingan 26 mart 2018.
  22. ^ a b Carlos Guedes Soares; T.A. Santos (3 October 2014). Maritime Technology and Engineering. CRC Press. ISBN  978-1-315-73159-9.
  23. ^ "US Army Engineer Waterways Experimental Station: Coastal Engineering Technical Note CETN I-60" (PDF). Chl.erdc.usace.army.mil. Mart 1995. Arxivlangan asl nusxasi (PDF) 2013 yil 21 fevralda. Olingan 16 aprel, 2016.
  24. ^ Draper, Laurence (July 1964). ""Freak" Ocean Waves" (PDF). Okean. 10 (4): 12–15.
  25. ^ Michel Olagnon, Marc Prevosto (20 October 2004). Rogue Waves 2004: Proceedings of a Workshop Organized by Ifremer and Held in Brest, France, 20-21-22 October 2004, Within the Brest Sea Tech Week 2004. pp. VIII. ISBN  9782844331502.
  26. ^ a b Draper, Laurence (July 1971). "Severe Wave Conditions at Sea" (PDF). Journal of the Institute of Navigation. 24 (3): 274–277. doi:10.1017/s0373463300048244.
  27. ^ Robert Gordon Pirie (1996). Oceanography: Contemporary Readings in Ocean Sciences. Oksford universiteti matbuoti. ISBN  978-0-19-508768-0.
  28. ^ M. Grant Gross (1 March 1996). Okeanografiya. Prentice Hall. ISBN  978-0-13-237454-5.
  29. ^ a b v d "The last word: Terrors of the sea". theweek.com. 2010 yil 27 sentyabr. Olingan 15 yanvar 2016.
  30. ^ "Factpages, Norwegian Petroleum Directorate". Norvegiya neft boshqarmasi. Olingan 12 sentyabr 2016.
  31. ^ a b v d e Bjarne Røsjø, Kjell Hauge (2011-11-08). "Proof: Monster Waves are real". ScienceNordic. "Draupner E had only been operating in the North Sea for around half a year, when a huge wave struck the platform like a hammer. When we first saw the data, we were convinced it had to be a technological error," says Per Sparrevik. He is the head of the underwater technology, instrumentation and monitoring at the Norwegian NGI ... but the data were not wrong. When NGI looked over the measurements and calculated the effect of the wave that had hit the platform, the conclusion was clear: The wave that struck the unmanned platform Draupner E on 1 January 1995 was indeed extreme.
  32. ^ Skourup, J; Hansen, N.-E. O .; Andreasen, K. K. (1997-08-01). "Non-Gaussian Extreme Waves in the Central North Sea". Journal of Offshore Mechanics and Arctic Engineering. 119 (3): 146. doi:10.1115/1.2829061. The area of the Central North Sea is notorious for the occurrence of very high waves in certain wave trains. The short-term distribution of these wave trains includes waves which are far steeper than predicted by the Rayleigh distribution. Such waves are often termed "extreme waves" or "freak waves". An analysis of the extreme statistical properties of these waves has been made. The analysis is based on more than 12 years of wave records from the Mærsk Olie og Gas AS operated Gorm Field, which is located in the Danish sector of the Central North Sea. From the wave recordings more than 400 freak wave candidates were found. The ratio between the extreme crest height and the significant wave height (20-min value) has been found to be about 1.8, and the ratio between extreme crest height and extreme wave height has been found to be 0.69. The latter ratio is clearly outside the range of Gaussian waves, and it is higher than the maximum value for steep nonlinear long-crested waves, thus indicating that freak waves are not of a permanent form, and probably of short-crested nature. The extreme statistical distribution is represented by a Weibull distribution with an upper bound, where the upper bound is the value for a depth-limited breaking wave. Based on the measured data, a procedure for determining the freak wave crest height with a given return period is proposed. A sensitivity analysis of the extreme value of the crest height is also made.
  33. ^ Haver S and Andersen O J (2010). Freak waves: rare realizations of a typical population or typical realizations of a rare population? (PDF). Proc. 10th Conf. of Int. Society for Offshore and Polar Engineering (ISOPE). Seattle: ISOPE. 123-130 betlar. Arxivlandi asl nusxasi (PDF) 2016-05-12. Olingan 18 aprel 2016.
  34. ^ Rogue Waves 2000. Ifremer and IRCN organised a workshop on "Rogue waves", 29–30 November 2000, during SeaTechWeek 2000, Le Quartz, Brest, France. Brest: iFremer. 2000 yil. Olingan 18 aprel 2016.
  35. ^ a b Susan Casey (2010). The Wave: In the Pursuit of the Rogues, Freaks and Giants of the Ocean. Ikki karra Kanada. ISBN  978-0-385-66667-1.
  36. ^ Holliday, N.P.; Yelland, M.Y.; Pascal, R.; Swail, V.; Taylor, P.K.; Griffiths, C.R.; Kent, E.C. (2006). "Were extreme waves in the Rockall Trough the largest ever recorded?". Geofizik tadqiqotlar xatlari. 33 (5): L05613. Bibcode:2006GeoRL..33.5613H. doi:10.1029/2005gl025238. In February 2000 those onboard a British oceanographic research vessel near Rockall, west of Scotland experienced the largest waves ever recorded by scientific instruments in the open ocean. Under severe gale force conditions with wind speeds averaging 21 ms1 a shipborne wave recorder measured individual waves up to 29.1 m from crest to trough, and a maximum significant wave height of 18.5 m. The fully formed sea developed in unusual conditions as westerly winds blew across the North Atlantic for two days, during which time a frontal system propagated at a speed close to the group velocity of the peak waves. The measurements are compared to a wave hindcast that successfully simulated the arrival of the wave group, but underestimated the most extreme waves.
  37. ^ a b "Critical review on potential use of satellite date to find rogue waves" (PDF). European Space Agency SEASAR 2006 proceedings. 2006 yil aprel. Olingan 23 fevral, 2008.
  38. ^ "Observing the Earth: Ship-Sinking Monster Waves revealed by ESA Satellites". www.ESA.int. ESA. 2004 yil 21-iyul. Olingan 14 yanvar 2016.
  39. ^ a b v d e Smith, Craig (2007). Extreme Waves and Ship Design (PDF). 10th International Symposium on Practical Design of Ships and Other Floating Structures. Houston: American Bureau of Shipping. p. 8. Olingan 13 yanvar 2016. Recent research has demonstrated that extreme waves, waves with crest to trough heights of 20 to 30 meters, occur more frequently than previously thought.
  40. ^ Jon H. Stil; Steve A. Thorpe; Karl K. Turekian (26 August 2009). Elements of Physical Oceanography: A derivative of the Encyclopedia of Ocean Sciences. Akademik matbuot. ISBN  978-0-12-375721-0.
  41. ^ "Rogue wave theory to save ships". Anu.edu.au. 2015 yil 29-iyul. Olingan 16 aprel, 2016.
  42. ^ Janssen, T. T.; Herbers, T. H. C. (2009). "Nonlinear Wave Statistics in a Focal Zone". Jismoniy Okeanografiya jurnali. 39 (8): 1948–1964. Bibcode:2009JPO....39.1948J. doi:10.1175/2009jpo4124.1. ISSN  0022-3670.
  43. ^ a b Volf, Yuliy F. (1979). "Superior kema halokati", p. 28. Lake Superior Marine Museum Association, Inc., Duluth, Minnesota, USA. ISBN  0-932212-18-8.
  44. ^ "Optical sciences group – Theoretical Physics – ANU". Https. Olingan 16 aprel, 2016.
  45. ^ Dysthe, K; Krogstad, H; Müller, P (2008). "Annual Review of Fluid Mechanics": 287–310. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  46. ^ Kharif, C; Pelinovsky, E (2003). "Physical mechanisms of the rogue wave phenomenon". Evropa mexanikasi jurnali B. 22 (6): 603–634. Bibcode:2003EJMF...22..603K. CiteSeerX  10.1.1.538.58. doi:10.1016/j.euromechflu.2003.09.002.
  47. ^ Onorato, M; Residori, S; Bortolozzo, U; Montina, A; Arecchi, F (10 July 2013). "Rogue waves and their generating mechanisms in different physical contexts". Fizika bo'yicha hisobotlar. 528 (2): 47–89. Bibcode:2013PhR...528...47O. doi:10.1016/j.physrep.2013.03.001.
  48. ^ Slunyaev, A; Didenkulova, I; Pelinovsky, E (November 2011). "Rogue waters". Zamonaviy fizika. 52 (6): 571–590. arXiv:1107.5818. Bibcode:2011ConPh..52..571S. doi:10.1080/00107514.2011.613256. S2CID  118626912. Olingan 16 aprel 2016.
  49. ^ Chabchoub, A; Hoffmann, N.P.; Akhmediev, N (1 February 2012). "Observation of rogue wave holes in a water wave tank". Geofizik tadqiqotlar jurnali: Okeanlar. 117 (C11): C00J02. Bibcode:2012JGRC..117.0J02C. doi:10.1029/2011JC007636.
  50. ^ Laboratory recreation of the Draupner wave and the role of breaking in crossing seas - McAllister va boshq - Journal of Fluid Mechanics, 2019, vol. 860, pp. 767-786, pub. Cambridge University Press, DOI 10.1017/jfm.2018.886
  51. ^ https://arstechnica.com/science/2019/01/oxford-scientists-successfully-recreated-a-famous-rogue-wave-in-the-lab
  52. ^ "Kosmosdan g'alati to'lqinlar". BBC News Online. 2004 yil 22-iyul. Olingan 8 may, 2006.
  53. ^ "Lego pirate proves, survives, super rogue wave". Phys.org. Olingan 15 aprel, 2016.
  54. ^ "Maritime security". Homelandsecuritynewswire.com. Olingan 15 aprel, 2016.
  55. ^ "Lego Pirate Proves, Survives, Super Rogue Wave". Scientificcomputing.com. 2012-04-11. Olingan 15 aprel, 2016.
  56. ^ a b v Broad, William J. (July 11, 2006). "Rogue Giants at Sea". The New York Times. Olingan 15 aprel, 2016.
  57. ^ "Scientists Model Rogue Waves". Maritime-execution.com. Olingan 15 aprel, 2016.
  58. ^ a b "Mapping a strategy for rogue monsters of the seas". Thenewstribune.com. Arxivlandi asl nusxasi 2016 yil 24 aprelda. Olingan 15 aprel, 2016.
  59. ^ Katherine Noyes (25 February 2016). "A new algorithm from MIT could protect ships from 'rogue waves' at sea". Cio.com. Olingan 8 aprel, 2016.
  60. ^ Will Cousins and Themistoklis P. Sapsis (5 January 2016). "Reduced-order precursors of rare events in unidirectional nonlinear water waves" (PDF). Suyuqlik mexanikasi jurnali. 790: 368–388. Bibcode:2016JFM...790..368C. doi:10.1017/jfm.2016.13. hdl:1721.1/101436. S2CID  14763838. Olingan 8 aprel, 2016.
  61. ^ Stuart Thornton (3 December 2012). "Rogue Waves – National Geographic Society". Education.nationalgeographic.org. Olingan 16 aprel, 2016.
  62. ^ "Introduction – Nobuhito Mori". Oceanwave.jp. Olingan 15 aprel, 2016.
  63. ^ "Freak wave probability higher than thought ' News in Science (ABC Science)". Abc.net. 2011-10-05. Olingan 15 aprel, 2016.
  64. ^ a b "'Freak' ocean waves hit without warning, new research shows – ScienceDaily". Https. Olingan 15 aprel, 2016.
  65. ^ a b v d Thomas A A Adcock and Paul H Taylor (14 October 2014). "The physics of anomalous ('rogue') ocean waves". Fizikada taraqqiyot haqida hisobotlar. 77 (10): 105901. Bibcode:2014RPPh...77j5901A. doi:10.1088/0034-4885/77/10/105901. PMID  25313170. S2CID  12737418.
  66. ^ Mike McRae (January 23, 2019). "Scientists Recreated a Devastating 'Freak Wave' in The Lab, And It's Weirdly Familiar". Olingan 25 yanvar, 2019.
  67. ^ a b Stephen Ornes (11 Aug 2014). "Monster waves blamed for shipping disasters". Smh.com. Olingan 16 aprel, 2016.
  68. ^ "European Commission : CORDIS : Projects & Results Service : Periodic Report Summary – EXTREME SEAS (Design for ship safety in extreme seas)". Cordis.europa.eu. Olingan 16 aprel, 2016.
  69. ^ P. K. Shukla, I. Kourakis, B. Eliasson, M. Marklund and L. Stenflo: "Instability and Evolution of Nonlinearly Interacting Water Waves" nlin.CD/0608012, Jismoniy tekshiruv xatlari (2006)
  70. ^ "Mechanics – Department of Mathematics". University of Oslo, The Faculty of Mathematics and Natural Sciences. 2016 yil 27 yanvar. Olingan 17 aprel, 2016.
  71. ^ Alex, Cattrell (2018). "Can Rogue Waves Be Predicted Using Characteristic Wave Parameters?" (PDF). Geofizik tadqiqotlar jurnali: Okeanlar. 123 (8): 5624–5636. Bibcode:2018JGRC..123.5624C. doi:10.1029/2018JC013958.
  72. ^ Barnett, T. P.; Kenyon, K. E. (1975). "Recent advances in the study of wind waves". Fizikada taraqqiyot haqida hisobotlar. 38 (6): 667. Bibcode:1975RPPh...38..667B. doi:10.1088/0034-4885/38/6/001. ISSN  0034-4885.
  73. ^ "The RITMARE flagship project". Olingan 11 oktyabr, 2017.
  74. ^ a b v "Rogue Waves". Okeanni bashorat qilish markazi. Milliy ob-havo xizmati. 2005 yil 22 aprel. Olingan 8 may, 2006.
  75. ^ Adrian Cho (13 May 2011). "Ship in Bottle, Meet Rogue Wave in Tub". Ilm hozir. 332 (6031): 774. Bibcode:2011Sci...332R.774.. doi:10.1126/science.332.6031.774-b. Olingan 2011-06-27.
  76. ^ "Math explains water disasters – ScienceAlert". Sciencealert.com. 26 avgust 2010 yil. Olingan 15 aprel, 2016.
  77. ^ "Bristol universiteti". Bris.ac.uk. 2010 yil 22-avgust. Olingan 15 aprel, 2016.
  78. ^ Akhmediev, N.; Soto-Krespo, J. M.; Ankiewicz, A. (2009). "How to excite a rogue wave". Jismoniy sharh A. 80 (4): 043818. Bibcode:2009PhRvA..80d3818A. doi:10.1103/PhysRevA.80.043818. hdl:10261/59738.
  79. ^ Fedele, Francesco; Brennan, Jozef; Ponce de León, Sonia; Dudley, John; Dias, Frédéric (2016-06-21). "Real world ocean rogue waves explained without the modulational instability". Ilmiy ma'ruzalar. 6: 27715. Bibcode:2016NatSR...627715F. doi:10.1038/srep27715. ISSN  2045-2322. PMC  4914928. PMID  27323897.
  80. ^ Phillips 1957, Suyuqlik mexanikasi jurnali
  81. ^ Miles, 1957, Suyuqlik mexanikasi jurnali
  82. ^ Frederic-Moreau. The Glorious Three, translated by M. Olagnon and G.A. Chase / Rogue Waves-2004, Brest, France
  83. ^ Harakat qiling yoki Caledonian Star report, March 2, 2001, 53 ° 03′S 63 ° 35′W / 53.050°S 63.583°W / -53.050; -63.583
  84. ^ XONIM Bremen report, February 22, 2001, 45 ° 54′S 38 ° 58′W / 45.900°S 38.967°W / -45.900; -38.967
  85. ^ R. Colin Johnson (December 24, 2007). "EEs Working With Optical Fibers Demystify 'Rogue Wave' Phenomenon". Elektron muhandislik Times (1507): 14, 16.
  86. ^ Kibler, B.; Fatome, J.; Finot, C .; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J.M. (2010). "The Peregrine soliton in nonlinear fibre optics". Tabiat fizikasi. 6 (10): 790–795. Bibcode:2010NatPh...6..790K. CiteSeerX  10.1.1.222.8599. doi:10.1038/nphys1740.
  87. ^ "Peregrine's 'Soliton' observed at last". bris.ac.uk. Olingan 2010-08-24.
  88. ^ "Eagle Island Island Lighthouse". Irlandiya chiroqlari komissarlari. Olingan 28 oktyabr 2010.
  89. ^ Haswell-Smit, Xemish (2004). Shotlandiya orollari. Edinburg: Canongate. pp. 329–31. ISBN  978-1-84195-454-7.
  90. ^ Munro, R.W. (1979) Shotlandiya dengiz chiroqlari. Stornoway. Thule Press. ISBN  0-906191-32-7. Munro (1979) pages 170–1
  91. ^ The New York Times, September 26, 1901, p. 16
  92. ^ Freaquewaves (17 December 2009). "Freaque Waves: The encounter of RMS Lusitania". freaquewaves.blogspot.com. Olingan 26 mart 2018.
  93. ^ "Arxivlangan nusxa" (PDF). Arxivlandi asl nusxasi (PDF) 2009-01-06 da. Olingan 2010-01-10.CS1 maint: nom sifatida arxivlangan nusxa (havola), Müller, et al., "Rogue Waves," 2005
  94. ^ Kerbrech, Richard De (2009). White Star Line kemalari. Ian Allan nashriyoti. p. 190. ISBN  978-0-7110-3366-5.
  95. ^ a b Rogue Giants at Sea, Broad, William J, Nyu-York Tayms, July 11, 2006
  96. ^ "Ship-sinking monster waves revealed by ESA satellites", ESA News, July 21, 2004, accessed June 18, 2010 [1]
  97. ^ Kastner, Jefri. "Dengiz hayvonlari". Shkaf jurnali. Olingan 10 oktyabr 2017.
  98. ^ "The Story of the Fastnet – Iqtisodchi Magazine December 18th 2008" [2]
  99. ^ esa. "ESA sun'iy yo'ldoshlari tomonidan kema cho'kayotgan monster to'lqinlari". esa.int. Olingan 26 mart 2018.
  100. ^ Ivan bo'roni yolg'onchi to'lqinni qayta ko'rib chiqishga undaydi, Ro'yxatdan o'tish, 2005 yil 5-avgust
  101. ^ "NRL Ivan bo'roni paytida rekord to'lqinni o'lchaydi - AQSh dengiz tadqiqot laboratoriyasi". www.nrl.navy.mil. 2017-02-17. Olingan 26 mart 2018.
  102. ^ Deadliest Catch Season 2, Episode 4 "Finish Line" Original airdate: April 28, 2006; approx time into episode: 0:40:00–0:42:00. Edited footage viewable online at Discovery.com Arxivlandi 2009-08-06 da Orqaga qaytish mashinasi
  103. ^ "Monster waves threaten rescue helicopters" (PDF). (35.7 KiB ), AQSh dengiz instituti, 2006 yil 15-dekabr
  104. ^ "Dos muertos y 16 heridos por una ola gigante en un crucero con destino a Cartagena". La Vanguardia. 3 mart 2010 yil.
  105. ^ "Giant rogue wave slams into ship off French coast, killing 2". FoxNews. 3 mart 2010. Arxivlangan asl nusxasi 2010-03-06 da. Olingan 2010-03-04.
  106. ^ Matthew Cappucci (September 9, 2019). "Hurricane Dorian probably whipped up a 100-foot rogue wave near Newfoundland". Washington Post. Olingan 10 sentyabr, 2019.
  107. ^ Keith McCloskey (15 July 2014). The Lighthouse: The Mystery of the Eilean Mor Lighthouse Keepers. History Press Limited kompaniyasi. ISBN  978-0-7509-5741-0.
  108. ^ a b Faulkner, Douglas (1998). An Independent Assessment of the Sinking of the M.V. Derbishir. SNAME Transactions, Royal Institution of Naval Architects. pp. 59–103. Arxivlandi asl nusxasi 2016-04-18. The author's starting point therefore was to look for an extraordinary cause. He reasoned that nothing could be more extraordinary than the violence of a fully arisen and chaotic storm tossed sea. He therefore studied the meteorology of revolving tropical storms and freak waves and found that steep elevated waves of 25 m to 30 m or more were quite likely to have occurred during typhoon Orchid.
  109. ^ Faulkner, Douglas (2000). Rogue Waves – Defining Their Characteristics for Marine Design (PDF). Rogue Waves 2000 Workshop. Brest: French Research Institute for Exploitation of the Sea. p. 16. Olingan 15 yanvar 2016. This paper introduces the need for a paradigm shift in thinking for the design of ships and offshore installations to include a Survival Design approach additional to current design requirements.
  110. ^ Brown, David (1998). "The Loss of the 'DERBYSHIRE'" (Texnik hisobot). Toj. Arxivlandi asl nusxasi 2013-03-22.
  111. ^ "Ships and Seafarers (Safety)". Parlament muhokamalari (Xansard). Jamiyat palatasi. 25 June 2002. col. 193WH–215WH. MV Derbishir was registered at Liverpool and, at the time, was the largest ship ever built: it was twice the size of the Titanic.
  112. ^ Lerner, S.; Yoerger, D.; Crook, T. (May 1999). "Navigation for the Derbishir Phase2 Survey" (Texnik hisobot). Woods Hole Oceanographic Institution MA. p. 28. WHOI-99-11. In 1997, the Deep Submergence Operations Group of the Woods Hole Oceanographic Institution conducted an underwater forensic survey of the UK bulk carrier MV Derbishir with a suite of underwater vehicles. This report describes the navigation systems and methodologies used to precisely position the vessel and vehicles. Precise navigation permits the survey team to control the path of the subsea vehicle in order to execute the survey plan, provides the ability to return to specific targets, and allows the assessment team to correlate observations made at different times from different vehicles. In this report, we summarize the techniques used to locate Argo as well as the repeatability of those navigation fixes. To determine repeatability, we selected a number of instances where the vehicle lines crossed. By registering two images from overlapping areas on different tracklines, we can determine the true position offset. By comparing the position offset derived from the images to the offsets obtained from navigation, we can determine the navigation error. The average error for 123 points across a single tie line was 3.1 meters, the average error for a more scattered selection of 18 points was 1.9 meters.
  113. ^ "Improving the safety of bulk carriers" (PDF). IMO. Arxivlandi asl nusxasi (PDF) 2009-07-07 da. Olingan 2009-08-11.
  114. ^ Smith, Craig (2006). Ekstremal to'lqinlar. Jozef Genri Press. ISBN  9780309100625. There is sufficient evidence to conclude that 66-foot high waves can be experienced in the 25-year lifetime of oceangoing vessels, and that 98-foot high waves are less likely, but not out of the question. Therefore a design criterion based on 36-foot high waves seems inadequate when the risk of losing creq and cargo is considered.
  115. ^ a b Rosenthal, W (2005). "Results of the MAXWAVE project" (PDF). www.soest.hawaii.edu. Olingan 14 yanvar 2016. The Norwegian offshore standards take into account extreme severe wave conditions by requiring that a 10,000-year wave does not endanger the structure’s integrity (Accidental Limit State, ALS).
  116. ^ "Rules for Classification and Construction" (PDF). www.gl-group.com/. Hamburg, Germany: Germanischer Lloyd SE. 2011. Arxivlangan asl nusxasi (PDF) 2014-09-12. Olingan 13 yanvar 2016. General Terms and Conditions of the respective latest edition will be applicable. See Rules for Classification and Construction, I – Ship Technology, Part 0 – Classification and Surveys.
  117. ^ "International Association of Classification Societies". IACS. IACS. Olingan 1 iyun 2020.

Qo'shimcha o'qish

Tashqi havolalar

Extreme seas project

MaxWave report and WaveAtlas

Boshqalar