Sovuq oqim - Cold seep

Dengiz yashash joylari
Lamellibrachia luymesi1.png
Naycha qurtlari Meksika ko'rfazidagi to'rtta sovuq suv havzalari jamoalaridan birida dominant turlar qatoriga kiradi.

A sovuq o'tish (ba'zan a sovuq shamollatish) ning maydoni okean tubi qayerda vodorod sulfidi, metan va boshqalar uglevodorod - boy suyuqlik oqishi, ko'pincha a shaklida bo'ladi sho'r suv havzasi. Sovuq chiqindi harorati atrofdagi dengiz suvidan pastroq degani emas. Aksincha, uning harorati ko'pincha biroz yuqoriroq bo'ladi.[1] "Sovuq" a ning juda iliq (kamida 60 ° C yoki 140 ° F) sharoitlariga nisbatan gidrotermal shamollatish. Sovuq oqimlar a ni tashkil qiladi biom bir nechtasini qo'llab-quvvatlash endemik turlari.

Sovuq oqimlar vaqt o'tishi bilan noyob topografiyani rivojlantiradi, bu erda metan va dengiz suvlari o'rtasida reaktsiyalar paydo bo'ladi karbonat tosh shakllari va riflar. Ushbu reaktsiyalar bakterial faollikka ham bog'liq bo'lishi mumkin. Ikaite, gidroksidi kaltsiy karbonat, sovuq tushganda oksidlovchi metan bilan bog'lanishi mumkin.

Turlari

Ushbu kraterlar shakllanishini belgilaydi sho'r suv havzalari, tuz dengiz ostidan o'tib, yaqin atrofdagi substratni yopib qo'ygan.

Sovuq suzish turlarini chuqurlikka qarab ajratish mumkin, chunki sayoz sovuq sızıntılar va chuqur sovuq sızıntılar.[2] Sovuq sızıntıları quyidagicha batafsil ajratish mumkin:

Formatsiya va ekologik merosxo'rlik

Sababi tufayli dengiz tubidagi yoriqlar ustida sovuq sızmalar paydo bo'ladi tektonik faoliyat. Yog ' va metan bu yoriqlardan "chiqib ketadi", cho'kindi jinslarga tarqaladi va kengligi bir necha yuz metrga chiqadi.[3]

Metan (CH
4
) biz odatda deb ataydigan narsaning asosiy komponentidir tabiiy gaz.[3] Metan odam uchun muhim energiya manbai bo'lishdan tashqari, sovuq suv o'tkazmasining asosini ham tashkil etadi ekotizim.[3] Sovuq oqim biota 200 metrdan (660 fut) pastda odatda juda katta tizimli ixtisoslashuv va ishonchga ega kemoototrofiya raf chuqurliklaridan ko'ra.[4] Chuqur cho'kindi jinslar juda xilma-xil.[4] Ular har xil geokimyoviy va mutaxassis aralashmasi yashaydigan yashash joylarining murakkab mozaikasida aks etadigan mikrob jarayonlari (geterotrofik va simbiont bilan bog'liq) va fon faunasi.[4]

Xemosintetik jamoalar

Bakterial mat sulfid oksidlovchi bakteriyalardan iborat Beggiatoa spp. seep da Bleyk Ridj, Janubiy Karolinadan tashqarida. Qizil nuqtalar masofani aniqlaydigan lazer nurlari.

Sovuq suv o'tkazgichlari va gidrotermal teshiklarda biologik tadqiqotlar asosan yo'naltirilgan mikrobiologiya va rivojlanib borayotgan taniqli makro-umurtqasizlar xemosintetik mikroorganizmlar.[2] Kichkintoy bo'yicha juda kam tadqiqotlar qilingan bentik kattalikdagi kasr meiofauna (<1 mm).[2]

Jamiyat tarkibining turlarning turlaridan ikkinchisiga tartibli o'tishi deyiladi ekologik merosxo'rlik:[3]

Ushbu chuqur dengiz energiya manbalaridan foydalanadigan birinchi turdagi organizm bakteriyalar.[3] Birlashtirish bakterial paspaslar sovuq seeplarda bu bakteriyalar metanni metabolizm qiladi va vodorod sulfidi (sızıntılardan chiqadigan boshqa gaz) energiya uchun.[3] Kimyoviy moddalardan energiya olishning bu jarayoni ma'lum ximosintez.[3]

Sho'r suv havzasining chetida joylashgan midiya to'shagi

Ushbu dastlabki bosqichda, metan nisbatan ko'p bo'lganida, zich midiya ko'rpa-to'shaklar sovuq suv o'tkazgich yaqinida ham shakllanadi.[3] Ko'pincha turkumga kiradigan turlardan iborat Batimodiolus, bu midiya to'g'ridan-to'g'ri ovqat iste'mol qilmaydi.[3] Buning o'rniga ular oziqlanmoqda simbiyotik matandan hosil bo'lgan qarindoshlariga o'xshash metandan energiya ishlab chiqaradigan bakteriyalar.[3] Xemosintezli bivalvlar sovuq seepsiya faunasining taniqli tarkibiy qismlaridir va ushbu muhitda besh oiladan iborat: Solemyidae, Lucinidae, Vesikomyidae, Thyasiridae va Mytilidae.[5]

Ushbu mikrob faolligi ishlab chiqaradi kaltsiy karbonat bo'yicha depozit qilingan dengiz tubi va tosh qatlamini hosil qiladi.[3] Bir necha o'n yillar davom etgan davrda ushbu tosh shakllari o'ziga jalb qiladi siboglinid tubeworms, ular midiya bilan birga joylashadi va o'sadi.[3] Midiya singari, tubeworms hamosintetik bakteriyalarga tayanadi (bu holda, kerak bo'lgan tur vodorod sulfidi metan o'rniga) tirik qolish uchun.[3] Har qanday simbiotik munosabatlarga o'xshab, tubeworm ham o'z bakteriyalarini atrof-muhitdan vodorod sulfidini o'zlashtirish orqali ta'minlaydi.[3] Sulfid nafaqat suvdan keladi, balki qattiq "karbonat" substratda "buta" shakllanadigan "tuban" keng tizim orqali cho'kindidan qazib olinadi.[3] Naychali kurtak tupida yuzlab individual qurtlar bo'lishi mumkin, ular cho'kindidan bir metr yoki undan ko'proq o'sishi mumkin.[3]

Sovuq sızıntılar abadiy davom etmaydi. Gazni suzish tezligi asta-sekin pasayib borishi bilan metanga chanqoq bo'lgan qisqaroq midiya (aniqrog'i, ularning metanga chanqoq bakterial simbiontlari) yo'q bo'lib keta boshlaydi.[3] Ushbu bosqichda tubeworms seep jamoasida dominant organizmga aylanadi.[3] Cho'kindida bir qancha sulfid bor ekan, sulfid qazib oladigan tubeworms davom etishi mumkin.[3] Bir tubeworm qurtining turlari Lamellibrachia luymesi Bunday sharoitda 250 yildan ortiq yashashi taxmin qilinmoqda.[3]

Ildiz chuvalchanglarining "ildizlari", shuningdek, bu tuban qurtlar ichidagi bakteriyalarga cho'kindidan vodorod sulfid etkazib berishni ta'minlaydi.
Simbiyotik vestimentiferan tubeworm Lamellibrachia luymesi Meksika ko'rfazidagi 550 m chuqurlikdagi sovuq oqimdan. Baza atrofidagi cho'kindilarda sulfid oksidlovchi bakteriyalarning to'q sariq bakterial matlari mavjud Beggiatoa spp. va turli xil qisqichbaqalar va salyangozlarning bo'sh qobiqlari, ular ham sızmaların oddiy aholisi.[6]
Tubeworms, yumshoq mercanlar va Florida Escarpment-dan 3000 m (9800 fut) pastda joylashgan dengiz tubidagi kemosentetik midiya. Eelpouts, a Galatheid Qisqichbaqa va an alvinokarid qisqichbaqalar namuna olish mashqlari paytida zararlangan midiya bilan oziqlanadi.

Boshqa jamoalar bilan taqqoslash

Lamellibraxiya naycha qurtlari va midiya

Sovuq oqadi va gidrotermal teshiklar chuqur okeanlarning suyanmagan jamoalari fotosintez oziq-ovqat va energiya ishlab chiqarish uchun.[2] Ushbu tizimlar asosan boshqariladi xemosintetik olingan energiya.[2] Ikkala tizim ham umumiy xususiyatlarga ega, masalan, kamaytirilgan kimyoviy birikmalar mavjudligi (H2S va uglevodorodlar ), mahalliy gipoksiya yoki hatto anoksiya, bakteriyalar populyatsiyasining ko'pligi va metabolik faolligi va hosil bo'lishi avtonom, tomonidan organik material kemoototrofik bakteriyalar.[2] Ikkala gidrotermal shamollatish va sovuq sızıntılar, mahalliy xilma-xilligi bilan birgalikda muntazam ravishda yuqori darajada metazoan biomassasi darajasini ko'rsatadi.[2] Bu poydevor turlarining zich agregatlari va mavjudligi bilan izohlanadi epizootik ushbu birikmalar ichida yashovchi hayvonlar.[2] Ijtimoiy darajadagi taqqoslashlar shuni ko'rsatadiki, shamollash, chiqib ketish va organik kuzgi makrofauna oilaviy tarkibi jihatidan bir-biridan juda ajralib turadi, garchi ular ko'p ustunlik qilsa taksonlar juda sulfidli yashash joylari orasida.[4]

Shu bilan birga, gidrotermal shamollatish va sovuq oqimlar ko'p jihatdan farq qiladi. Shamollatishning barqarorligi bilan solishtirganda, shamollatish teshiklari mahalliy darajada yuqori harorat, kuchli o'zgaruvchan harorat, pH, sulfid va kislorod kontsentratsiyasi, ko'pincha cho'kindilarning yo'qligi, nisbatan yoshlik va ko'pincha oldindan aytib bo'lmaydigan sharoitlar, masalan suyuqlik yoki vulqon otilishi.[2] Gidrotermal teshiklardan farqli o'laroq, ular uchuvchan va vaqtinchalik atrof-muhit, sovuq suv oqimi sekin va ishonchli darajada ajralib chiqadi. Ehtimol, sovuqroq harorat va barqarorlik tufayli ko'plab sovuq organizmlar gidrotermal teshiklarda yashovchilarga qaraganda ancha uzoq umr ko'rishadi.

Sovuq seep jamoasining tugashi

Va nihoyat, sovuq seeplar harakatsiz bo'lib qolganda, tubeworms ham yo'q bo'lib, yo'lni tozalaydi mercanlar endi ochiq karbonat substratiga joylashish uchun.[3] Marjonlar dengiz tubidan oqayotgan uglevodorodlarga ishonmaydi.[3] Bo'yicha tadqiqotlar Lophelia pertusa ular o'zlarining oziqlanishlarini birinchi navbatda okean sathidan olishni taklif qilishadi.[3] Xemosintez ularning joylashishi va o'sishida juda kichik rol o'ynaydi, agar mavjud bo'lsa.[3] Chuqur suvli marjonlar xemosintezga asoslangan organizmlarga o'xshamasa ham, ulardan oldin kelgan xemosintetik organizmlar marjonlarning mavjud bo'lishiga imkon beradi.[3] O'rnatish haqidagi ushbu gipoteza chuqur suv mercan riflar gidravlik nazariya deb ataladi.[7][8]

Tarqatish

1983 yilda Charlz Pol va uning Florida shtatidagi Oskarpmentdagi hamkasblari tomonidan sovuq seepslar aniqlangan Meksika ko'rfazi 3200 metr chuqurlikda (10500 fut).[9] O'shandan beri dunyo okeanining boshqa ko'plab qismlarida suv o'tkazmalari topilgan. Ko'pchilik beshta guruhga birlashtirilgan biogeografik viloyatlar: Meksika ko'rfazi, Atlantika, O'rta er dengizi, Sharqiy Tinch okeani va G'arbiy Tinch okeani,[10] ammo ostidan sovuq seepslar ham ma'lum muzli tokcha yilda Antarktida,[11] The Shimoliy Muz okeani, Shimoliy dengiz, Skagerrak, Kattegat, Kaliforniya ko'rfazi, Qizil dengiz, Hind okeani, yopiq Avstraliyaning janubi va ichki qismida Kaspiy dengizi.[12] Yaqinda metan oqimi topilishi bilan Janubiy okean,[13] sovuq seepslar hozirgi kunda barcha yirik okeanlarda ma'lum.[4] Sovuq seepslar kontinental qirg'oqlarda yuqori mahsuldorlik va tektonik faollik yuqori bo'lgan joylarda keng tarqalgan bo'lib, bu erda er qobig'ining deformatsiyasi va zichlash metanga boy suyuqlik chiqindilarini qo'zg'atadi.[4] Sovuq sızıntılar yam-yashil taqsimlanadi va ular okean qirg'oqlari yaqinida tez-tez uchraydi intertidal ga hadal chuqurlik.[4] Chilida oraliq zonadan sovuq seepslar ma'lum,[14] Kattegatda metan oqimi "ko'pikli riflar" deb nomlanadi va odatda 0-30 m chuqurlikda (0-100 fut),[15] Kaliforniyaning shimoliy qismida esa ular 35–55 m (115-180 fut) gacha sayoz joylashgan.[12] Sovuq suv o'tkazgichlarining aksariyati odatdagidan ko'ra ancha chuqurroq joylashgan akvalang yordamida suv ostida suzish, va ma'lum bo'lgan eng chuqur seep hamjamiyati topilgan Yaponiya xandagi 7326 m (24,035 fut) chuqurlikda.[16]

Bugungi kunda mavjud bo'lgan sovuq sızıntılardan tashqari, qadimgi suv o'tkazmaydigan tizimlarning qoldiqlari dunyoning bir necha qismida topilgan. Ulardan ba'zilari ilgari qamrab olingan joylarda uzoqroqda joylashgan tarixgacha bo'lgan okeanlar.[12][17]

Meksika ko'rfazida

Suv ostida ishlaydigan odam DSV Alvin 1983 yilda Meksika ko'rfazida ximosentetik jamoalarni kashf etishga imkon berdi.

Kashfiyotlar

Meksika ko'rfazidagi xemosintetik jamoalar 1990-yillardan buyon keng o'rganilib kelinmoqda va yuqori qiyalikda birinchi bo'lib topilgan jamoalar dunyodagi eng yaxshi tushunilgan seep jamoalari bo'lishi mumkin. Ushbu ajoyib hayvonlarni kashf etish tarixi 1980-yillardan beri sodir bo'lgan. Har bir yirik kashfiyot dunyodagi istalgan birinchi gidrotermal shamollatish jamoalaridan Meksika ko'rfazidagi birinchi sovuq suv havzalari jamoalariga qadar kutilmagan edi.[18]

Jamoalar 1983 yilda Meksikaning Sharqiy ko'rfazida odam boshqariladigan suvosti yordamida topilgan DSV Alvin, pastki qismini tekshiradigan kruiz paytida Florida Escarpment ular kutilmaganda kashf etgan "sovuq" sho'r suv oqadigan joylarda tubeworms va midiya (Paull va boshq., 1984).[18] Ikki guruh bir vaqtning o'zida 1984 yilning noyabrida Meksikaning Markaziy ko'rfazida xemosintetik jamoalarni topdilar. Tergov davomida Texas A&M universiteti ta'sirini aniqlash yog 'oqishi kuni bentik ekologiya (ushbu tergovga qadar, neft suzishining barcha ta'siri zararli deb taxmin qilingan), pastki trawllar kutilmaganda xemosintetik organizmlarning keng kollektsiyalari, shu jumladan naycha qurtlari va klyumerlarini qayta tikladilar (Kennicutt va boshq., 1985). Xuddi shu paytni o'zida, LGL Ecological Research Associates ko'p yillik qism sifatida tadqiqot kruizini o'tkazdi MMS Shimoliy ko'rfazdagi Meksika ko'rfazi qit'asini o'rganish (Gallaway va boshq., 1988). Pastki fotosurat (kema bortida qayta ishlangan) natijasida aniq tasvirlar paydo bo'ldi vesikomid 1977 yilda Tinch okeanida kameralar tomonidan sled qilingan birinchi kashfiyot singari tasodifan xlamosintetik jamoalar. Xuddi shu LGL / MMS kruiz paytida fotosuratlar, shuningdek, Meksikaning Markaziy ko'rfazidagi in situ naycha-qurtlar jamoalarini birinchi marta hujjatlashtirdi (ishlov berilmagan) kruizdan keyin; Boland, 1986) dastlabki suv osti tekshiruvlari va o'zlarining shaxsiy tavsiflaridan oldin Bush tepaligi (27 ° 47′02 ″ N 91 ° 30′31 ″ V / 27.78389 ° N 91.50861 ° Vt / 27.78389; -91.50861 (Bush tepaligi)) 1986 yilda (Rosman va boshq., 1987a; MacDonald va boshq., 1989b). Ushbu sayt akustik "o'chirish" zonalari yoki uglevodorodlarning oqishi natijasida substrat tuzilmasining maqsadiga erishilgan. Bu R / V-da xuddi shu kruiz paytida akustik pinger tizimi yordamida aniqlandi Edvin havolasi (eskisi, atigi 113 fut (34 m)), ulardan birini ishlatgan Jonson dengiz havolasi suv osti kemalari. Bu joy zich tubeworm va midiya to'planishi bilan bir qatorda ko'p sonli karbonat chiqindilari bilan ajralib turadi gorgonian va Lofeliya marjon koloniyalari. Bush Tepasi dunyodagi eng yaxshi o'rganilgan ximosentetik joylardan biriga aylandi.[18]

Tarqatish

Meksika ko'rfazining shimoliy qismidagi xemosintetik jamoalar 2000 yilda ma'lum bo'lgan sovuq seepslar atrofida

Fors ko'rfazi yonbag'ridagi katta chuqurlikdagi ma'lum bo'lgan uglevodorod kashfiyotlari va xemosintetik jamoalar, uglevodorodlar oqimi va autigenik minerallar, shu jumladan dengiz tubidagi karbonatlar (Sassen va boshq., 1993a va b). Uglevodorod suv omborlari Ko'rfaz ostidan bir necha kilometr uzoqlikda joylashgan bo'lsa, xemosintetik jamoalar bir necha metr qalinlikdagi ingichka cho'kindi qatlamlari bo'lgan alohida joylarda paydo bo'ladi.[18]

Meksika ko'rfazining shimoliy qismiga a kiradi stratigrafik qalinligi 10 km (6 milya) dan ortiq bo'lgan qismga tuz harakati ta'sir ko'rsatdi. Mezozoy manba jinslari Yuqori yura ga Yuqori bo'r Fors ko'rfazi yonbag'ir konlarining ko'p qismida neft hosil qiladi (Sassen va boshq., 1993a va b). Migratsiya kanallari yangi uglevodorod materiallarini suv sathiga qarab 6-8 km (4-5 milya) vertikal shkala orqali etkazib beradi. Uglevodorod migratsiyasining sirtqi ifodalari sızıntılar deb nomlanadi. Geologik dalillar shuni ko'rsatadiki, uglevodorod va sho'r suv oqimi fazoviy diskret hududlarda ming yillar davomida saqlanib kelmoqda.[18]

Manba tizimlaridan neft va gaz migratsiyasining vaqt ko'lami (ko'tarilish kuchi va bosimning kombinatsiyasi) million yillar miqyosida (Sassen, 1997). Uglevodorod manbalaridan yoriqlar orqali sirtga chiqib ketish, cho'kindi jinslar, karbonat chiqindilari va hidrat konlar, shuning uchun tegishli uglevodorod seepi jamoalari gidrotermal teshiklari atrofida joylashgan xemosintetik jamoalarga qaraganda kattaroq (kengligi bir necha yuz metr). Sharqiy Tinch okeani (MacDonald, 1992).[18] Dengiz uchastkalarida uglevodorodlar kontsentratsiyasida katta farqlar mavjud. Roberts (2001) juda sekin sızmadan tortib to tez shamolga qadar o'zgarib turadigan oqim tezligi sharoitida kutilgan javoblar spektrini taqdim etdi.[18][19] Juda sekin suzish joylari murakkab ximosintetik jamoalarni qo'llab-quvvatlamaydi; aksincha, ular odatda oddiyni qo'llab-quvvatlaydi mikrobial paspaslar (Beggiatoa sp.).[18]

Yuqori qiyalik muhitida karbonatli yog'ingarchilik natijasida hosil bo'lgan qattiq substratlar xemosintetik bo'lmagan hayvonlar, shu jumladan turli xil o'tiradigan joylarni birlashtirishi mumkin. cnidarians kabi mercanlar va dengiz anemonlari. Spektrning tez oqimida suyuqlangan cho'kma odatda dengiz tubiga tushadigan uglevodorodlar va qatlam suyuqliklariga hamroh bo'ladi. Loydan vulqonlar va loy oqadi natija. Qaerdadir bu ikki so'nggi a'zolar o'rtasida aholi zich joylashgan va xilma-xil xemosintetik organizmlarning (mikrobial paspaslar, siboglinid naycha qurtlari, batimodiolin Midiya, lyukinid va vesikomid mollyuskalar va ular bilan bog'liq organizmlar). Ushbu joylar tez-tez er yuzasi yoki er yuzi bilan bog'liq gaz gidrat depozitlar. Ular, shuningdek, litifikatsiyalangan dengiz sathining mahalliy hududlariga, odatda autigenik karbonatlarga ega, lekin ba'zan ko'proq ekzotik minerallarga ega. barit mavjud.[18]

Meksika ko'rfazining shimoliy qismida 2006 yilda ma'lum bo'lgan sovuq seeps atrofidagi xemosintetik jamoalarga 50 dan ortiq jamoalar kiradi

Meksika ko'rfazidagi ximosintetik jamoalarning keng tarqalgan tabiati birinchi bo'lib Texas A&M universiteti Geologik va ekologik tadqiqotlar guruhi (GERG) tomonidan shartnoma asosida olib borilgan tadqiqotlar davomida hujjatlashtirildi. Offshore Operatorlar qo'mitasi (Brooks va boshq., 1986).[18] Ushbu so'rovnoma eng keng tarqalgan va keng qamrovli bo'lib qolmoqda, garchi o'sha vaqtdan beri ko'plab qo'shimcha jamoalar hujjatlashtirilgan.[18] Sanoatni o'rganish Meksika ko'rfazidagi energiya zaxiralari shuningdek, Meksikaning Markaziy ko'rfazidagi ma'lum bo'lgan eng chuqur hodisani o'z ichiga olgan ko'plab chuqurliklarda ko'plab yangi jamoalarni hujjatlashtirdi. Alaminos kanyon bloki 818, 2,750 m (9,022 fut) chuqurlikda.[18] Uglevodorod chiqindisiga bog'liq bo'lgan xemosintetik organizmlarning paydo bo'lishi suvning 290 m (951 fut) chuqurlikdagi sayozligida (Roberts va boshq., 1990) va 2,744 m (9,003 fut) chuqurlikda hujjatlashtirilgan.[18] Ushbu chuqurlik, xususan, Meksika ko'rfazining chuqur suv mintaqasida joylashgan xemosintetik jamoalarni joylashtiradi, bular suvning chuqurligi 305 metrdan (1000 fut) oshgan.[18]

Xemosintetik jamoalar topilmadi kontinental tokcha ammo ular qazilma materiallarida 200 metrdan (656 fut) pastroq suvda ko'rinadi.[18] Buni tushuntirib beradigan bir nazariya shundan iborat yirtqichlik bosim bilan bog'liq bo'lgan vaqt davomida sezilarli darajada o'zgarib turdi (Callender va Powell 1999).[18][20] Hozir 43 da 50 dan ortiq jamoalar mavjudligi ma'lum Tashqi kontinental tokcha (OCS) bloklari.[18] Meksika ko'rfazidagi barcha xemosentetik jamoalarni aniqlash uchun muntazam ravishda tadqiqot o'tkazilmagan bo'lsa-da, bunday jamoalar yana ko'p bo'lishi mumkinligini ko'rsatuvchi dalillar mavjud.[18] Kashfiyotlarning chuqurlik chegaralari, ehtimol, izlanish chegaralarini aks ettiradi (yo'qligi suv osti kemalari 1000 m dan ortiq chuqurlikka qodir (3,281 fut)).[18]

MacDonald va boshq. (1993 va 1996) tahlil qildilar masofadan turib zondlash mavjudligini ochib beradigan kosmosdan olingan tasvirlar yog 'parchalari shimoliy-markaziy Meksika ko'rfazi bo'ylab.[18][21][22] Natijalar Meksikaning ko'rfazida, ayniqsa 1000 m (3281 fut) dan yuqori suv chuqurliklarida tabiiy neftning keng tarqalishini tasdiqladi.[18] Jami 58 ta potentsial joylar hujjatlashtirilgan bo'lib, dengiz sathidagi manbalar ko'p yillik yog 'qatlamlarini ishlab chiqarishga qodir edi (MacDonald va boshq., 1996).[18] Sızdırmazlığın taxminiy tezligi 4 barr / d (0,64 m) gacha3/ d) 70 barobar / d gacha (11 m.)3/ d) 0,1 baravar / d dan kam (0,016 m) bilan taqqoslaganda3/ d) kema chiqindilari uchun (ikkalasi ham 1000 milya uchun normallashtirilgan)2 (640,000 ac)).[18] Ushbu dalillar uglevodorod chiqindilariga bog'liq bo'lgan xemosintetik jamoalar kutilayotgan maydonni sezilarli darajada oshiradi.[18]

Xemosintetik organizmlarning eng zich agregatlari suvning 500 m (1640 fut) va undan chuqurroq chuqurliklarida topilgan.[18] Ushbu jamoalar orasida eng taniqli odam birinchi bo'lib uni tasvirlab bergan tergovchilar tomonidan Bush Xill deb nomlangan (MacDonald va boshq., 1989b).[18] Bu ajablanarli darajada katta va zich bo'lib, tabiiy neft va gaz sızıntıyı amalga oshiradigan joyda ximosintetik naycha qurtlari va midiya. tuz diapir Yashil Kanyon Blokida 185. Suv oqadigan joy - bu atrofdagi dengiz sathidan taxminan 580 m (1903 fut) chuqurlikda 40 m (131 fut) balandlikda ko'tarilgan kichik knoll.[18]

Barqarorlik

Sassen (1997) ma'lumotlariga ko'ra hidratlar xemosintetik jamoalarda juda kam baholangan.[18] Muzlatilgan biologik o'zgarish gaz gidratlari davomida birinchi bo'lib topilgan MMS "Meksika ko'rfazidagi barqarorlik va o'zgarishlarning ximosintetik jamoalari" nomli tadqiqot.[23] Gidratlarning o'zgarishi dinamikasi uglevodorod gazlarining biogeokimyoviy jarayonlar uchun chiqarilishini tartibga solish mexanizmi sifatida katta rol o'ynashi va shuningdek, jamoat barqarorligida muhim rol o'ynashi mumkinligi taxmin qilingan (MacDonald, 1998b). Bush tepaligi joyi (500 m (1640 fut) chuqurlikda 4-5 ° C)) kabi ba'zi hududlarda suv osti suvlari bo'yicha qayd qilingan bir necha darajali ekskursiyalar, gidratlarning ajralishiga olib keladi, natijada gaz oqimlari ko'payadi (MacDonald va boshq., 1994). Garchi bu kabi halokatli bo'lmasa ham vulkanizm shamollatish joylarida o'rta okean tizmalari, sayoz gidrat hosil bo'lishi va harakatlanish dinamikasiga aniq ta'sir qiladi o'tiradigan hayvonlar sızdırmazlık to'sig'ining bir qismini tashkil etadi. Sayoz gidratning butun qatlami tubdan ajralib chiqishi va xemosintetik faunaning mahalliy jamoalariga katta ta'sir ko'rsatishi mumkin bo'lgan halokatli hodisa mavjud.[18] Chuqurroq chuqurlikda (> 1000 m,> 3281 fut), suv osti harorati sovuqroq (taxminan 3 ° C ga) va kamroq dalgalanmaya uchraydi. Keyinchalik barqaror va ehtimol chuqurroq gidratlarning hosil bo'lishi engil uglevodorod gazlarining cho'kindi yuzasiga oqishiga ta'sir qiladi va shu bilan xemosintetik jamoalarning sirt morfologiyasi va xususiyatlariga ta'sir qiladi. Bush Hill kabi murakkab jamoalar ichida, neft ilgari o'ylanganidan kamroq ahamiyatga ega ko'rinadi (MacDonald, 1998b).[18]

Orqali taponomik tadqiqotlar (chig'anoqlarning o'lim to'plamlari) va yadrolardan seep yig'ilish tarkibini talqin qilish, Pauell va boshq. (1998), umuman olganda, dengiz qirg'oqlari jamoalari 500-1000 yil davomida va, ehtimol, butun davomida doimiy bo'lib kelganligini xabar qildi Pleystotsen (<- shubhali. Golotsen ?). Ba'zi saytlar maqbul darajada saqlanib qoldi yashash joyi ustida vaqtning geologik o'lchovlari. Pauell 500-4000 yil davomida bir xil joylarda saqlanib qolgan midiya va klyushka jamoalarining dalillarini xabar qildi. Pauell shuningdek, turlarning tarkibi va trofik uglevodorod seepi jamoalarining qatlamlanishi vaqt bo'yicha o'zgaruvchan bo'lib, vaqtincha faqat sonlarning ko'pligi bilan o'zgarib turadi. U jamiyat turi o'zgargan (masalan, musseldan klyushka jamoalariga) yoki umuman g'oyib bo'lgan bir nechta holatlarni topdi. Faunal vorislik kuzatilmadi. Ajablanarlisi shundaki, o'tmishdagi halokatli hodisadan so'ng tiklanish sodir bo'lganda, xuddi o'sha kemosentetik turlari saytni egallab oldi. Dafn marosimlarida halokatli voqealar haqida ozgina dalillar mavjud edi, ammo ikkita misol Yashil Kanyon Blokidagi 234 midiya jamoalarida topilgan. Pauell (1995) tomonidan qayd etilgan eng e'tiborli kuzatuv har bir ximosintetik jamoa saytining o'ziga xosligi edi.[18]

Yog'ingarchilik autigenik karbonatlar va boshqa geologik hodisalar, shubhasiz, ko'p yillar davomida yuzaning oqishi shakllarini o'zgartiradi, garchi to'g'ridan-to'g'ri kuzatish orqali etti alohida o'rganish joylarida ximosintetik faunaning tarqalishi yoki tarkibida o'zgarishlar kuzatilmagan bo'lsa ham (MacDonald va boshq., 1995). Biroz ko'proq vaqt (19 yil) Bush Xill misolida keltirilishi mumkin, Meksikaning birinchi Markaziy ko'rfazi hamjamiyati tasvirlangan joyida 1986 yilda. Ushbu saytdagi 19 yillik tadqiqotlar tarixi davomida hayvonot dunyosi tarkibida ommaviy nobud bo'lish yoki katta hajmdagi siljishlar kuzatilmagan (ilmiy maqsadlar uchun to'plamlar bundan mustasno).[18]

Barcha xemosintetik jamoalar kuchli bo'ronlar, shu jumladan, bo'ronlar ta'siridan tashqarida suv chuqurligida joylashgan va bu jamoalarning sirt bo'ronlari, shu jumladan, hech qanday o'zgarishi bo'lmagan bo'lar edi bo'ronlar.[18]

Biologiya

Midiya turlari Bathymodiolus childressi tarkibidagi dominant tur hisoblanadi mytilid Meksika ko'rfazidagi sovuq seep jamoalarining turi

MacDonald va boshq. (1990) to'rt umumiy jamiyat turini tavsifladi. Bu ustunlik qiladigan jamoalar Vestimentiferan naycha qurtlari (Lamellibraxiya c.f. barhami va Oskarpiya spp.), mytilid midiya (Seep Mytilid Ia, Ib va III va boshqalar), vesikomid mollyuskalar (Vesicomya cordata va Kaliptogen ponderoza ) va infaunal lyukinid yoki tirasidid mollyuskalar (Lucinoma sp. yoki Thyasira sp.). Bakterial paspaslar shu kungacha tashrif buyurgan barcha saytlarda mavjud. Ushbu hayvonot olami guruhlari birlashish usuli, agregatlar kattaligi, ular yashaydigan yashash joylarining geologik va kimyoviy xossalari va ma'lum darajada ular bilan sodir bo'ladigan geterotrofik hayvonot dunyosi jihatidan o'ziga xos xususiyatlarni namoyish etishga moyildirlar. Meksikaning ko'rfazidagi ushbu sovuq suv havzalarida topilgan ko'plab turlar ilm-fan uchun yangi va qolaveradi ta'riflanmagan.[18]

Shaxsiy lamellibranxid naycha qurtlari, seepslarda topilgan ikkita taksoning uzunroqlari 3 m uzunlikka etishi va yuzlab yillar yashashi mumkin (Fisher va boshq., 1997; Bergquist va boshq., 2000). O'sish sur'atlari Qayta tiklangan naycha qurtlari o'zgaruvchan bo'lib, bir yilda 13 kishining o'sishidan 9,6 sm / yilgacha (3,8 dyuym) o'sishga qadar o'zgargan. Lamellibraxiya individual (MacDonald, 2002). O'rtacha o'sish sur'ati 2,19 sm / yil (0,86 dyuym / yil) ni tashkil etdi Oskarpiya o'xshash turlari va lamellibraxidlar uchun 2,92 sm / yil (1,15 dyuym / yil). Bu ularning o'sish sur'atlariga qaraganda sekinroq gidrotermal shamollatish qarindoshlar, lekin Lamellibraxiya shaxslar ma'lum bo'lgan eng yirik gidrotermal shamollatish turlaridan 2-3 baravar ko'p bo'lishi mumkin.[18] Jismoniy shaxslar Lamellibraxiya sp. bir necha marta 3 metrdan (10 fut) ko'proq to'plangan, bu 400 yoshdan oshgan ehtimol yoshni anglatadi (Fisher, 1995). Vestimentiferan naychadagi qurtlarni yumurtalash mavsumiy emas va yollash epizodikdir.[18]

Tubewormmlar erkak yoki ayoldir. Yaqinda o'tkazilgan bir kashfiyot shuni ko'rsatadiki, urg'ochi urg'ochi Lamellibraxiya katta bivalve bilan o'ziga xos birlashma hosil qilgan ko'rinadi Acesta bullisi, tubewormning oldingi naycha teshigiga doimiy ravishda bog'lanib yashaydi va vaqti-vaqti bilan tuxum chiqishi bilan oziqlanadi (Järnegren va boshq., 2005). Ikki tomonlama va naychali qurtlar o'rtasidagi bu yaqin bog'liqlik 1984 yilda topilgan (Boland, 1986), ammo to'liq tushuntirilmagan. Deyarli barchasi etuk Acesta shaxslar erkaklarnikidan ko'ra ayollarda uchraydi. Jarnegren va boshqalarning ushbu dalillari va boshqa tajribalari. (2005) bu sirni hal qilganga o'xshaydi.[18]

Sovuq ko'rinadigan joylarda metanotrofik midiya uchun o'sish sur'atlari qayd etilgan (Fisher, 1995).[18] Umumiy o'sish sur'atlari nisbatan yuqori ekanligi aniqlandi. Voyaga etgan midiya o'sish sur'atlari xuddi shunday haroratda qirg'oq atrofidagi midiya bilan o'xshash edi. Shuningdek, Fisher uglevodorod seepsidagi balog'atga etmagan midiya dastlab tez o'sib borishini aniqladi, ammo o'sish darajasi kattalarda sezilarli darajada pasayadi; ular reproduktiv kattalikka juda tez o'sadi. Ham shaxslar, ham jamoalar juda uzoq umr ko'rishadi. Bular metan - mustaqil midiya Meksikaning ko'rfazidagi eng faol suzish joylari bilan bog'laydigan qattiq kimyoviy talablarga ega. Ularning tez o'sish sur'atlari natijasida bezovta qilingan suv o'tkazmaydigan joyning midiya rekolonizatsiyasi nisbatan tez sodir bo'lishi mumkin. Midiyalarda qattiq substratning ba'zi bir talablari borligi va dengiz sathida mos substrat ko'paytirilsa, ularning soni ko'payishi mumkinligi haqida ba'zi dalillar mavjud (Fisher, 1995). Ikkita bog'langan tur har doim midiya to'shaklari bilan bog'liq - gastropod Bathynerita naticoidea va kichik Alvinokarid qisqichbaqalar - bu endemik turlarning juda yaxshi ekanligidan dalolat beradi tarqalish qobiliyatlari va har xil sharoitlarga toqat qila oladi (MacDonald, 2002).[18]

Midiya yotoqlaridan farqli o'laroq, xemosintetik qisqichbaqalar ko'rgazma yuzasi hodisasi sifatida uzoq vaqt davomida davom etishi mumkin, chunki ular eriganligi past va cho'kma darajasi past. Pauell (1995) tomonidan tekshirilgan ko'pgina to'shak yotoqlari harakatsiz edi. Tirik shaxslar kamdan-kam uchragan. Pauellning ta'kidlashicha, 50 yillik vaqt ichida mahalliy qirilib ketish va qayta kolonizatsiya asta-sekin va nihoyatda kamdan kam bo'lishi kerak. Ushbu harakatsiz yotoqlardan farqli o'laroq, Meksikaning Markaziy ko'rfazida kashf etilgan birinchi jamoat ko'plab faol shudgorlashdan iborat edi. Ushbu jamoadan olingan tasvirlar uzunlik / chastota va tirik / o'lik nisbatlarini hamda fazoviy naqshlarni ishlab chiqish uchun ishlatilgan (Rosman va boshq., 1987a).[18]

Keng bakterial paspaslar erkin yashash bakteriyalar uglevodorodning barcha singib ketgan joylarida ham aniq. Ushbu bakteriyalar asosiy fauna bilan raqobatlashishi mumkin sulfid va metan energiya manbalari va shuningdek, umumiy ishlab chiqarishga katta hissa qo'shishi mumkin (MacDonald, 1998b). Oq, pigmentatsiyalanmagan paspaslar an avtotrofik oltingugurt bakteriyalari Beggiatoa turlari va apelsin matlari noma'lum xemosintetik metabolizmga ega edi (MacDonald, 1998b).[18]

Suyuq joylardagi heterotrofik turlar - bu seepsga xos turlarning aralashmasi (xususan mollyuskalar va qisqichbaqasimon umurtqasizlar) va atrofdagi muhitning normal komponenti. Carney (1993) birinchi bo'lib surunkali buzilish natijasida yuzaga kelishi mumkin bo'lgan muvozanat haqida xabar berdi. Ishni yollashning vaqti-vaqti bilan ketayotganligi sababli, yirtqichlar afzalliklarga ega bo'lishlari mumkin, natijada midiya to'shaklari mahalliy populyatsiyasida yo'q bo'lib ketishi mumkin. Seep tizimlari fon faunasi bilan o'zaro aloqada ekanligi aniq, ammo qarama-qarshi dalillar naycha qurtlari kabi ba'zi bir jamoat tarkibiy qismlarida aniq o'lja paydo bo'lishiga bog'liq (MacDonald, 2002). Yaqinda o'tkazilgan ushbu ishdan hayratlanarli natijalar shuki, nima uchun fon turlari seep ishlab chiqarishni aniq ko'rinib turganidan ko'proq foydalanmaydi. Aslida, seep bilan bog'liq iste'molchilar galateid Qisqichbaqa va nerit gastropodlarning izotopik imzolari bor edi, bu ularning dietalari seep va fon ishlab chiqarish aralashmasi ekanligini ko'rsatdi. Ba'zi saytlarda, endemik Seep ishlab chiqarishdan olingan barcha dietalar haqiqatan ham ularning parhezlarining 50 foizini fondan iste'mol qilmasa, ko'p narsalarni olishlari kutilgan seep umurtqasizlar.[18]

Atlantika okeanida

Atlantika ekvatorial kamarida sovuq seeps xaritasi.
BR - Bleyk Ridj diapir
BT - Barbados xandagi
OR - Orenok sektorlari
RaI - El-Pilar sektori
NIG - Nigeriyalik nishab
GUI - Guiness maydoni
REG - Regab pockmark.

G'arbdagi sovuq havzali jamoalar Atlantika okeani chuqurlikdagi 1000 dan 5000 m gacha (3300–16400 fut) chuqurlikdagi loy vulqonlari va diapirlarga bir nechta sho'ng'inlardan tasvirlangan. Barbados aktsionar prizma maydoni va Bleyk Ridj diapir o'chirildi Shimoliy Karolina. Yaqinda Atlantika sharqida, dengizdagi ulkan pakmark klasterida seep jamoalari topildi Gvineya ko'rfazi yaqinida Kongo chuqur kanal, shuningdek Kongo chekkasining boshqa joylarida, Gabon margin va Nigeriya margin va ichida Kadis ko'rfazi.[10]

Xemosimbiyotikning paydo bo'lishi Kadiz ko'rfazining keng loy vulqon dalalarida biota birinchi marta 2003 yilda xabar qilingan.[24] Xemosimbiyotik ikkilamchi Kadis ko'rfazidagi loy vulqonlaridan yig'ilgan 2011 yilda ko'rib chiqilgan.[5]

Shimoliy Atlantika okeanidan ham sovuq seepslar ma'lum,[2] hatto Shimoliy Muz okeanigacha, Kanadadan tashqarida va Norvegiya.[12]

400 dan 3300 metrgacha (1300-10800 fut) keng hayvonot namunalari olib borildi. Atlantika ekvatorial kamari Meksika ko'rfazidan Gvineya ko'rfazigacha, shu jumladan Barbados akkretsion prizmasi, Bleyk Ridge diapir, Sharqiy Atlantika Kongo va Gabon qirg'oqlaridan va yaqinda o'rganilgan Nigeriya chegarasi Dengiz hayotini ro'yxatga olish ChSs loyiha. Tur darajasida aniqlangan 72 taksondan jami 9 tur yoki turkum komplekslari amfi-Atlantika deb belgilangan.[10]

Atlantika ekvatorial kamarining megafauna jamiyati tuzilishiga geografik masofa emas, asosan chuqurlik ta'sir qiladi. Ikki tomonlama Batimodiolinalar (ichida Mytilidae ) turlari yoki turlari komplekslari Atlantika okeanida eng keng tarqalgan. The Bathymodiolus bumerang majmuasi Florida eskarpment joyida, Bleyk Ridge diapirida, Barbados prizmasida va Kongoning Regab joyida joylashgan. The Bathymodiolus childressi Kompleks, shuningdek, Atlantika ekvatorial kamari bo'ylab Meksika ko'rfazidan Nigeriya qirg'og'igacha, lekin Regab yoki Bleyk tizmalarida bo'lmagan holda keng tarqalgan. Komensal polinoid, Branchipolynoe seepensis Meksika ko'rfazi, Gvineya ko'rfazi va Barbadosdan ma'lum. Sharqdan g'arbiy Atlantika okeaniga tarqaladigan boshqa turlar: gastropod Kordesiya provannoidlari, qisqichbaqalar Alvinocaris muricola, galateydlar Munidopsis geyeri va Munidopsis livida va, ehtimol, gothurid Chiridota heheva.[10]

Shuningdek, sovuq suv oqimi topilgan Amazon "Deepsea" muxlisi. Raf chegarasi yaqinidagi yuqori aniqlikdagi seysmik profillar, er osti va kontsentratsiyalarida (taxminan 500 m) 20-50 m (66-164 fut) chuqurlikdagi yoriqlar va yoriqlar mavjudligini ko'rsatmoqda.2 yoki 5400 kvadrat metr) metan gazidan iborat. Bir nechta tadqiqotlar (masalan, Amazon Shelf Study -AMASEDS, LEPLAC, REMAC, GLORIYA, Okean burg'ulash dasturi ) Amazon fanati yonbag'rida gazni suzish uchun pastki simulyatsiya akslari (BSR), loy vulqonlari, cho'ntak izlari, cho'kindilarda gaz va chuqurroq uglevodorodlar paydo bo'lishiga asoslanib dalillar mavjudligini ko'rsatadi. Ushbu mintaqada metanning nisbatan sayoz chuqurlikda va gaz gidratlarining keng maydonlarida mavjudligi xaritada ko'rsatilgan. Shuningdek, gaz bacaları xabar qilingan va qidiruv quduqlari yoriq tekisliklari bo'ylab subkompyuter gaz birikmalarini va chok izlarini topgan. To'g'ri geologik va geofizik tushuncha Foz do Amazonas havzasi energiya kompaniyalari tomonidan allaqachon mavjud va foydalanilmoqda.[25]

Exploration of new areas, such as potential seep sites off of the east coast of the U.S. and the Laurentian fan where chemosynthetic communities are known deeper than 3,500 m (11,500 ft), and shallower sites in the Gulf of Guinea are need to study in the future.[10]

In the Mediterranean

The first biological evidence for reduced environments in the O'rtayer dengizi was the presence of Lucinidae va Vesicomyidae bivalve shells cored on the top of the Napoli mud volcano (33°43′52″N 24°40′52″E / 33.73111°N 24.68111°E / 33.73111; 24.68111 (Napoli mud Volcano); "Napoli" is only a name of a seamount. It locates south of Crete), located at 1,900 m depth on the Mediterranean Ridge ichida subduktsiya zonasi ning African plate. This was followed by the description of a new Lucinidae bivalve species, Lucinoma kazani, associated with bacterial endosymbionts. In the southeastern Mediterranean, communities of poliketlar and bivalves were also found associated with cold seeps and carbonates near Misr va G'azo sektori at depths of 500–800 m, but no living fauna was collected. Birinchi joyida observations of extensive living chemosynthetic communities in the Eastern Mediterranean Sea prompted cooperation between biologists, geokimyogarlar, and geologists. Davomida suv osti dives, communities comprising large fields of small bivalves (dead and alive), large siboglinid tube worms, isolated or forming dense aggregations, large gubkalar, and associated endemic fauna were observed in various cold seep habitats associated with carbonate crusts at 1,700–2,000 m depth. Two mud volcano fields were first explored, one along the Mediterranean Ridge, where most of them were partially (Napoli, Milano mud volcanoes) or totally (Urania, Maidstone mud volcanoes) affected by brines, and the other on the Anaximander mounds janubida kurka. The latter area includes the large Amsterdam mud volcano, which is affected by recent mudflows, and the smaller Kazan or Kula mud volcanoes. Gas hydrates have been sampled at the Amsterdam and Kazan mud volcanoes, and high methane levels have been recorded above the seafloor. Several provinces of the Nil deep-sea fan have been explored recently. These include the very active brine seepage named the Menes Caldera in the eastern province between 2,500 m and 3,000 m, the pockmarks in the central area along mid- and lower slopes, and the mud volcanoes of the eastern province, as well as one in the central upper slope (North Alex area) at 500 m depth.[26]

During these first exploratory dives, symbiont-bearing taxa that are similar to those observed on the Olimpi and Anaximander mud fields were sampled and identified. This similarity is not surprising, as most of these taxa were originally described from dredging in the Nile fan.[26] Up to five species of bivalves harboring bacterial symbionts colonized these methane- and sulfide-rich environments. Ning yangi turi Siboglinidae polychaete, Lamellibrachia anaximandri, the tubeworm colonizing cold seeps from the Mediterranean ridge to the Nile deep-sea fan, has just been described in 2010.[26][27] Moreover, the study of symbioses revealed associations with chemoautotrophic Bacteria, sulfur oxidizers in Vesicomyidae and Lucinidae bivalves and Siboglinidae tubeworms, and highlighted the exceptional diversity of Bacteria living in symbiosis with small Mytilidae. The Mediterranean seeps appear to represent a rich habitat characterized by megafauna turlarga boylik (masalan, gastropodlar ) or the exceptional size of some species such as sponges (Rhizaxinella pyrifera ) and crabs (Chaceon mediterraneus ), compared with their background counterparts. This contrasts with the low macro- and mega-faunal abundance and diversity of the deep Sharqiy O'rta er dengizi. Seep communities in the Mediterranean that include endemic chemosynthetic species and associated fauna differ from the other known seep communities in the world at the species level but also by the absence of the large size bivalve genera Calyptogena yoki Bathymodiolus. The isolation of the Mediterranean seeps from the Atlantic Ocean after the Messinian crisis led to the development of unique communities, which are likely to differ in composition and structure from those in the Atlantic Ocean. Further expeditions involved quantitative sampling of habitats in different areas, from the Mediterranean Ridge to the eastern Nile deep-sea fan.[26] Cold seeps discovered in the Marmara dengizi 2008 yilda[28] have also revealed chemosynthesis-based communities that showed a considerable similarity to the symbiont-bearing fauna of eastern Mediterranean cold seeps.[26]

In the Indian Ocean

In Makran Trench, a subduction zone along the northeastern margin of the Gulf of Oman adjacent to the southwestern coast of Pokiston and the southeastern coast of Eron, compression of an accretionary wedge has resulted in the formation of cold seeps and mud volcanoes.[29]

In the West Pacific

Mahalliy alyuminiy has been reported also in cold seeps in the northeastern kontinental qiyalik ning Janubiy Xitoy dengizi and Chen et al. (2011)[30] have proposed a theory of its origin as resulting by kamaytirish dan tetrahydroxoaluminate Al(OH)4 to metallic aluminium by bakteriyalar.[30]

Yaponiya

Chemosynthetic communities around Japan[31]
Sovuq oqim
Gidrotermal shamollatish
Kit tushishi

Deep sea communities around Japan are mainly researched by Japan Agency for Marine-Earth Science and Technology (JAMSTEC). DSV Shinkai 6500, Kaikō and other groups have discovered many sites.

Methane seep communities in Yaponiya are distributed along plate convergence areas because of the accompanying tektonik faoliyat. Many seeps have been found in the Japan Trench, Nankai Trough, Ryukyu Trench, Sagami ko'rfazi va Suruga ko'rfazi, va Yaponiya dengizi.[32]

Members of cold seep communities are similar to other regions in terms of family or genus, such as Polycheata; Lamellibrachia, Bivalavia; Solemyidae, Bathymodiolus in Mytilidae, Thyasiridae, Calyptogena in Vesicomyidae and so forth.[31] Many of species in cold seeps of Japan are endemik.[32]

In Kagoshima Bay, there are methane gas seepages called "tagiri" (boiling). Lamellibrachia satsuma live around there. The depth of this site is only 80 m, which is the shallowest point Siboglinidae living. L. satsuma may be kept in an aquarium for a long period in 1 atm. Two aquariums in Japan are keeping and displaying L. satsuma. An observation method to introduce it into a transparent vinyl tube is being developed.[33]

DSV Shinkai 6500 discovered vesicomyid clam communities in the Southern Mariana Forearc. They depend on methane which originates in serpentinite. Other chemosynthetic communities would depend on hydrocarbon origins organic substance in crust, but these communities depend on methane originating from inorganic substances from the mantle.[34][35]

In 2011, was performed around the Japan Trench which is epicenter of Thohoku zilzilasi. There are cracks, methane seepages and bacterial mats which were probably created by the earthquake.[36][37]

Yangi Zelandiya

Off the mainland coast of Yangi Zelandiya, shelf-edge instability is enhanced in some locations by cold seeps of methane-rich fluids that likewise support chemosynthetic faunas and carbonate concretions.[38][39][40][41] Dominant animals are tube worms of the family Siboglinidae and bivalves of families Vesicomyidae va Mytilidae (Bathymodiolus ). Many of its species appear to be endemic. Chuqur bottom trawling bor severely damaged cold seep communities and those ecosystems are threatened. Depths down to 2,000 m including cold seeps belongs among as-yet-unmapped topographic and chemical complexity of habitats. The scale of new-species discovery in these poorly studied or unexplored ecosystems is likely to be high.[41][38]

In the East Pacific

In the deep sea the COMARGE project has studied the biodiversity patterns along and across the Chili margin through a complexity of ecosystems such as methane seeps and oxygen minimum zones reporting that such habitat heterogeneity may influence the biodiversity patterns of the local fauna.[25][42][43][44] Seep fauna include bivalves of families Lucinidae, Thyasiridae, Solemyidae (Acharax sp.), and Vesicomyidae (Calyptogena gallardoi ) and polychaetes Lamellibrachia sp. and two other polychaete species.[43] Furthermore, in these soft reduced cho'kindi jinslar below the oxygen minimum zone off the Chilean margin, a diverse microbial community composed by a variety of large prokaryotlar (mainly large multi-cellular filamentous "mega bacteria" of the genera Thioploca va Beggiatoa, and of "macrobacteria" including a diversity of phenotypes), protistlar (ciliates, flagellates, and foraminifers), as well as small metazoans (mostly nematodes and polychaetes) has been found.[25][45] Gallardo et al. (2007)[45] argue that the likely chemolithotrophic metabolism of most of these mega- and macrobacteria offer an alternative explanation to fotoalbom findings, in particular to those from obvious non-littoral origins, suggesting that traditional hypotheses on the cyanobacterial origin of some fossils may have to be revised.[25]

Cold seeps (pockmark ) are also known from depths of 130 m in the Hekate bo'g'ozi, Britaniya Kolumbiyasi, Kanada.[46] Unobvious fauna (also unobvious for cold seeps) has been found there with these dominating species: sea snail Fusitriton oregonensis, anemone Metridium giganteum, encrusting sponges and bivalve Solemya reidi.[46]

Cold seeps with chemosynthetic communities along the USA Pacific coast occur in Monterey Canyon, faqat yopiq Monterey ko'rfazi, California on a mud volcano.[47] There have been found, for example Calyptogena mollyuskalar Calyptogena kilmeri va Calyptogena pacifica[48] va foraminiferan Spiroplectammina biformis.[49]

Additionally, seeps have been discovered offshore southern California in the inner California Borderlands along several fault systems including the San Clemente fault,[50] San Pedro fault,[51] and San Diego Trough fault.[52] Fluid flow at the seeps along the San Pedro and San Diego Trough faults appears controlled by localized restraining bends in the faults.[52]

In the Antarctic

The first cold seep was reported from Janubiy okean 2005 yilda.[13] The relatively few investigations to the Antarctic deep sea have shown the presence of deep-water habitats, including gidrotermal teshiklar, cold seeps, and mud volcanoes.[53] Dan tashqari Antarctic Benthic Deep-Sea Biodiversity Project (ANDEEP) cruises, little work has been done in the deep sea.[53] There are more species waiting to be described.[53]

Aniqlash

With continuing experience, particularly on the upper continental slope in the Gulf of Mexico, the successful prediction of the presence of tubeworm communities continues to improve, however chemosynthetic communities cannot be reliably detected directly using geophysical techniques. Hydrocarbon seeps that allow chemosynthetic communities to exist do modify the geological characteristics in ways that can be remotely detected, but the time scales of co-occurring active seepage and the presence of living communities is always uncertain. These known sediment modifications include (1) precipitation of authigenic carbonate in the form of micronodules, tugunlar, or rock masses; (2) formation of gas hydrates; (3) modification of cho'kindi composition through concentration of hard chemosynthetic organism remains (such as shell fragments and layers); (4) formation of interstitial gas bubbles or hydrocarbons; and (5) formation of depressions or pockmarks by gas expulsion. These features give rise to acoustic effects such as wipeout zones (no echoes), hard bottoms (strongly reflective echoes), bright spots (reflection enhanced layers), or reverberant layers (Behrens, 1988; Roberts and Neurauter, 1990). "Potential" locations for most types of communities can be determined by careful interpretation of these various geophysical modifications, but to date, the process remains imperfect and confirmation of living communities requires direct visual techniques.[18]

Fossilized records

Kech Bo'r cold seep deposit in the Per Shale, southwest South Dakota

Cold seep deposits are found throughout the Phanerozoic rock record, especially in the Late Mezozoy va Kaynozoy (see for example Kaim et al., 2008; Conti et al., 2017).[54][55] Bular fotoalbom cold seeps are characterized by mound-like topography (where preserved), coarsely crystalline carbonates, and abundant mollusks and brakiyopodlar.

Environmental Impacts

Major threats that cold seep ecosystems and their communities face today are seafloor litter, chemical contaminants and climate change. Seafloor litter alters the habitat, by providing hard substrate where none was available before or by overlying the sediment, inhibiting gas exchange, and interfering with organisms on the bottom of the sea. Studies of marine litter in the Mediterranean include surveys of seabed debris on the continental shelf, slope, and bathyal plain.[56][57] In most studies, plastic items accounted for much of the debris, sometimes as much as 90% or more of the total, owing to their ubiquitous use and poor degradability.

Weapons and bombs have also been discarded at sea and their dumping in open waters contributes to seafloor contamination. Another major threat to the benthic fauna is the presence of lost fishing gear, such as nets and longlines, which contribute to ghost fishing and can damage fragile ecosystems such as cold-water corals.

Chemical contaminants such as persistent organic pollutants, toxic metals (e.g., Hg, Cd, Pb, Ni), radioactive compounds, pesticides, herbicides, and pharmaceuticals are also accumulating in deep-sea sediments.[58] Topography (e.g. presence of canyons) and hydrography (e.g., cascading events) play a major role in the transportation and accumulation of these chemicals from the coast and shelf to the deep basins, affecting the local fauna. Recent studies have detected the presence of significant levels of dioxins in the commercial shrimp Aristeus antennatus [59] and significant levels of persistent organic pollutants in mesopelagic and bathypelagic cephalopods[60]

Climate driven processes and climate change will affect the frequency and intensity of cascading, with unknown effects on the benthic fauna. Another potential effect of climate change is related to energy transport from surface waters to the seafloor.[61] Primary production will change in the surface layers according to sun exposure, water temperature, major stratification of water masses, for example and this will affect the food chain down to the deep seafloor, which will be subject to differences in quantity, quality, and timing of organic matter input. As commercial fisheries move into deeper waters, all of these effects will affect the communities and populations of organisms in cold seeps and the deep sea in general.

Shuningdek qarang

Adabiyotlar

This article incorporates a jamoat mulki work of the United States Government from references[3][18] and CC-BY-2.5 from references[2][4][6][10][25][26][32][38][53] and CC-BY-3.0 text from the reference[5]

  1. ^ Fujikura, Katsunori; Okutani, Takashi; Maruyama, Tadashi (2008). Sensui chōsasen ga mita shinkai seibutsu : shinkai seibutsu kenkyū no genzai [Deep-sea life: biological observations using research submersibles]. Tokai University Press. ISBN  978-4-486-01787-5. p. 20.
  2. ^ a b v d e f g h men j k l m n o p q Vanreusel, A.; De Groote, A.; Gollner, S.; Bright, M. (2010). "Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review". PLOS ONE. 5 (8): e12449. Bibcode:2010PLoSO...512449V. doi:10.1371/journal.pone.0012449. PMC  2929199. PMID  20805986.
  3. ^ a b v d e f g h men j k l m n o p q r s t siz v w x y z Hsing P.-Y. (19 October 2010). "Gas-powered Circle of Life – Succession in a Deep-sea Ecosystem". NOAA Ocean Explorer | Lophelia II 2010: Oil Seeps and Deep Reefs | 18 October Log. Retrieved 25 January 2011.
  4. ^ a b v d e f g h Bernardino, A. F.; Levin, L. A.; Thurber, A. R.; Smith, C. R. (2012). "Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls". PLOS ONE. 7 (4): e33515. Bibcode:2012PLoSO...733515B. doi:10.1371/journal.pone.0033515. PMC  3319539. PMID  22496753.
  5. ^ a b v Oliver, G.; Rodrigues, C; Cunha, M. R. (2011). "Chemosymbiotic bivalves from the mud volcanoes of the Gulf of Cadiz, NE Atlantic, with descriptions of new species of Solemyidae, Lucinidae and Vesicomyidae". Hayvonot bog'i tugmachalari (113): 1–38. doi:10.3897/ZooKeys.113.1402. PMC  3187628. PMID  21976991.
  6. ^ a b Boetius, A (2005). "Microfauna–Macrofauna Interaction in the Seafloor: Lessons from the Tubeworm". PLOS biologiyasi. 3 (3): e102. doi:10.1371/journal.pbio.0030102. PMC  1065708. PMID  15760275.
  7. ^ Hovland, M.; Thomsen, E. (1997). "Cold-water corals—are they hydrocarbon seep related?". Dengiz geologiyasi. 137 (1–2): 159–164. Bibcode:1997MGeol.137..159H. doi:10.1016/S0025-3227(96)00086-2.
  8. ^ Hovland M. (2008). Deep-water coral reefs: unique biodiversity hot-spots. 8.10 Summary and re-iteration of the hydraulic theory. Springer, 278 pp. ISBN  978-1-4020-8461-4. Sahifalar 204 -205.
  9. ^ Paull; Hecker; Commeau; va boshq. (1984). "Biological communities at the Florida escarpment resemble hydrothermal vent taxa". Ilm-fan. 226 (4677): 965–967. Bibcode:1984Sci...226..965P. doi:10.1126/science.226.4677.965. PMID  17737352.
  10. ^ a b v d e f Olu, K.; Cordes, E. E.; Fisher, C. R.; Brooks, J. M.; Sibuet, M.; Desbruyères, D. (2010). "Biogeography and Potential Exchanges Among the Atlantic Equatorial Belt Cold-Seep Faunas". PLOS ONE. 5 (8): e11967. Bibcode:2010PLoSO...511967O. doi:10.1371/journal.pone.0011967. PMC  2916822. PMID  20700528.
  11. ^ "Demise of Antarctic Ice Shelf Reveals New Life". Milliy Ilmiy Jamg'arma. 2007. Olingan 14 fevral 2008.
  12. ^ a b v d Levin, L.A. (2005). "Ecology of cold seep sediments: Interactions if fauna with flow, chemistry and microbes". In Gibson, R.N.; R.J.A. Atkinson; J.D.M. Gordon (eds.). Oceanography and Marine Biology: An Annual Review. 43. pp. 1–46. ISBN  9780849335976.
  13. ^ a b Domack, E.; Ishman, S.; Leventer, A.; Sylva, S.; Willmott, V. (2005). "A chemotrophic ecosystem found beneath Antarctic Ice Shelf". Eos, tranzaktsiyalar Amerika Geofizika Ittifoqi. 86 (29): 269–276. Bibcode:2005EOSTr..86..269D. doi:10.1029/2005EO290001. S2CID  35944740.
  14. ^ Jessen; Pantoja; Gutierréz; va boshq. (2011). "Methane in shallow cold seeps at Mocha Island off central Chile". Continental Shelf Research. 31 (6): 574–581. Bibcode:2011CSR....31..574J. doi:10.1016/j.csr.2010.12.012.
  15. ^ "Red List – Submarine structures made by leaking gases" (PDF). HELCOM. 2013. Olingan 16 iyun 2017.
  16. ^ Fujikura; Kojima; Tamaki; va boshq. (1999). "The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench". Dengiz ekologiyasi taraqqiyoti seriyasi. 190: 17–26. Bibcode:1999MEPS..190...17F. doi:10.3354/meps190017.
  17. ^ Campbell, K.A.; J.D. Farmer; D. Des Marais (2002). "Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments". Geofluidlar. 2 (2): 63–94. doi:10.1046/j.1468-8123.2002.00022.x.
  18. ^ a b v d e f g h men j k l m n o p q r s t siz v w x y z aa ab ak reklama ae af ag ah ai aj ak al am an ao ap aq ar "Gulf of Mexico OCS Oil and Gas Lease Sales: 2007–2012. Western Planning Area Sales 204, 207, 210, 215, and 218. Central Planning Area Sales 205, 206, 208, 213, 216, and 222. Draft Environmental Impact Statement. Volume I: Chapters 1–8 and Appendices" (PDF). Minerallarni boshqarish xizmati Gulf of Mexico OCS Region, New Orleans. AQSh Ichki ishlar vazirligi. November 2006. pp. 3–27, 3–31. Arxivlandi asl nusxasi (PDF) on 26 March 2009.
  19. ^ Roberts, H. H. (2001). "Fluid and gas expulsion on the northern Gulf of Mexico continental slope: Mud-prone to mineral-prone responses". Natural Gas Hydrates. Geophysical Monograph Series. 124. Amerika Geofizika Ittifoqi. 145–161 betlar. Bibcode:2001GMS...124..145R. doi:10.1029/GM124p0145. ISBN  9781118668412. Arxivlandi asl nusxasi 2012 yil 28 oktyabrda. Olingan 26 mart 2012.
  20. ^ Callender, W. Russell; E. N. Powell (1999). "Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today?". International Journal of Earth Sciences. 88 (3): 377–391. Bibcode:1999IJEaS..88..377C. doi:10.1007/s005310050273.
  21. ^ MacDonald, I. R.; Guinasso, N. L.; Ackleson, S. G.; Amos, J. F.; Duckworth, R.; Sassen, R.; Brooks, J. M. (1993). "Natural oil slicks in the Gulf of Mexico visible from space". Geofizik tadqiqotlar jurnali. 98 (C9): 16351. Bibcode:1993JGR....9816351M. doi:10.1029/93JC01289.
  22. ^ MacDonald, I.R.; J.F. Reilly Jr.; W.E. Best; R. Vnkataramaiah; R. Sassen; N.S. Guinasso Jr.; J. Amos (1996). Remote sensing inventory of active oil seeps and chemosynthetic communities in the northern. Gulf of Mexico. In: Schumacher, D. and M.A. Abrams, eds. Hydrocarbon migration and its nearsurface expression. American Association of Petroleum Geologists Memoir 6. Amer Association of Petroleum Geologists. pp. 27–37. ISBN  978-0-89181-345-3.
  23. ^ I. R. McDonald, ed. (1998). "Stability and Change in Gulf of Mexico Chemosynthetic Communities" (PDF). U.S. Department of the Interior: OCS Study MMS 98-0034: Prepared by the Geochemical and Environmental Research Group: Texas A&M University. Olingan 17 iyul 2016.
  24. ^ Pinheiro, L. M.; Ivanov, M. K.; Sautkin, A.; Akhamanov, G.; Magalhães, V. H.; Volkonskaya, A.; Monteiro, J. H.; Somoza, L.; Gardner, J.; Hamouni, N.; Cunha, M. R. (2003). "Mud volcanoes in the Gulf of Cadiz: results from the TTR-10 cruise". Dengiz geologiyasi. 195 (1–4): 131–151. Bibcode:2003MGeol.195..131P. doi:10.1016/S0025-3227(02)00685-0.
  25. ^ a b v d e Miloslavich, P.; Klein, E.; Díaz, J. M.; Hernández, C. E.; Bigatti, G. (2011). "Marine Biodiversity in the Atlantic and Pacific Coasts of South America: Knowledge and Gaps". PLOS ONE. 6 (1): e14631. Bibcode:2011PLoSO...614631M. doi:10.1371/journal.pone.0014631. PMC  3031619. PMID  21304960.
  26. ^ a b v d e f Danovaro, R.; Company, J. B.; Corinaldesi, C.; D'Onghia, G.; Galil, B. (2010). "Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable". PLOS ONE. 5 (8): e11832. Bibcode:2010PLoSO...511832D. doi:10.1371/journal.pone.0011832. PMC  2914020. PMID  20689848.
  27. ^ Southward E., Andersen A., Hourdez S. (submitted 2010). "Lamellibrachia anaximandri n.sp., a new vestimentiferan tubeworm from the Mediterranean (Annelida)". Zoosistema.
  28. ^ Zitter, T. A. C; Henry, P.; Aloisi, G.; Delaygue, G.; Çagatay, M. N. (2008). "Cold seeps along the main Marmara Fault in the Sea of Marmara (Turkey)" (PDF). Deep-Sea Research Part I: Oceanographic Research Papers. 55 (4): 552–570. Bibcode:2008DSRI...55..552Z. doi:10.1016/j.dsr.2008.01.002.
  29. ^ Fischer, D. ; Bohrmann, G. ; Zabel, M. ; Kasten, S. (April 2009): Geochemical zonation and characteristics of cold seeps along the Makran continental margin off Pakistan EGU General Assembly Conference Abstracts. Qabul qilingan 19 noyabr 2020 yil.
  30. ^ a b Chen, Z.; Huang, C.-Y.; Zhao, M.; Yan, W.; Chien, C.-W.; Chen, M.; Yang, H.; Machiyama, H.; Lin, S. (2011). "Characteristics and possible origin of native aluminum in cold seep sediments from the northeastern South China Sea". Journal of Asian Earth Sciences. 40 (1): 363–370. Bibcode:2011JAESc..40..363C. doi:10.1016/j.jseaes.2010.06.006.
  31. ^ a b Fujikura 2008, p.450
  32. ^ a b v Fujikura, K.; Lindsay, D.; Kitazato, H.; Nishida, S.; Shirayama, Y. (2010). "Marine Biodiversity in Japanese Waters". PLOS ONE. 5 (8): e11836. Bibcode:2010PLoSO...511836F. doi:10.1371/journal.pone.0011836. PMC  2914005. PMID  20689840.
  33. ^ Miyake, Hiroshi; Jun HASHIMOTO; Shinji TSUCHIDA (2010). "Observation method of behaviour of vestimentifean tube-worm (Lamellibrachia satsuma) in its tube" (PDF). JAMSTEC深海研究. (16-I.生物学編). Olingan 30 mart 2012.
  34. ^ "マリアナ海溝、チャレンジャー海淵の近くにおいて、マントル物質から栄養を摂る生態系を発見~有人潜水調査船「しんかい6500」による成果~". 7 February 2012. Archived from asl nusxasi 2012 yil 23 sentyabrda. Olingan 29 mart 2012.
  35. ^ Ohara, Yasuhiko; Mark K. Reaganc; Katsunori Fujikurab; Hiromi Watanabeb; Katsuyoshi Michibayashid; Teruaki Ishiie; Robert J. Sternf; Ignacio Pujanaf; Fernando Martinezg; Guillaume Girardc; Julia Ribeirof; Maryjo Brounceh; Naoaki Komorid; Masashi Kinod (21 February 2012). "A serpentinite-hosted ecosystem in the Southern Mariana Forearc". Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 109 (8): 2831–2835. Bibcode:2012PNAS..109.2831O. doi:10.1073/pnas.1112005109. PMC  3286937. PMID  22323611.
  36. ^ "東北地方太平洋沖地震震源海域での有人潜水調査船「しんかい6500」による潜航調査で得られた画像について(速報)".海洋研究開発機構. 2011 yil 15-avgust. Olingan 29 mart 2012.
  37. ^ Kawagucci, Shinsuke; Yukari T. Yoshida; Takuroh Noguchi; Makio C. Honda; Hiroshi Uchida; Hidenori Ishibashi; Fumiko Nakagawa; Urumu Tsunogai; Kei Okamura; Yoshihiro Takaki; Takuro Nunoura; Junichi Miyazaki; Miho Hirai; Weiren Lin; Hiroshi Kitazato; Ken Takai (3 January 2012). "Disturbance of deep-sea environments induced by the M9.0 Tohoku Earthquake". Ilmiy ma'ruzalar. 2: 270. Bibcode:2012NatSR...2E.270K. doi:10.1038/srep00270. PMC  3280601. PMID  22355782.
  38. ^ a b v Gordon, D. P.; Bomont, J .; MacDiarmid, A.; Robertson, D. A.; Ahyong, S. T (2010). "Marine Biodiversity of Aotearoa New Zealand". PLOS ONE. 5 (8): e10905. Bibcode:2010PLoSO...510905G. doi:10.1371/journal.pone.0010905. PMC  2914018. PMID  20689846.
  39. ^ Lewis, K. B.; Marshall, B. A. (1996). "Seep faunas and other indicators of methane-rich dewatering on New Zealand convergent margins". Yangi Zelandiya Geologiya va Geofizika jurnali. 39 (2): 181–200. doi:10.1080/00288306.1996.9514704.
  40. ^ Orpin, A. R. (1997). "Dolomite chimneys as possible evidence of coastal fluid expulsion, uppermost Otago continental slope, southern New Zealand". Dengiz geologiyasi. 138 (1–2): 51–67. Bibcode:1997MGeol.138...51O. doi:10.1016/S0025-3227(96)00101-6.
  41. ^ a b Baco, A. R.; Rouden, A. A .; Levin, L. A.; Smith, C. R.; Bowden, D. (2009). "Initial characterization of cold seep faunal communities on the New Zealand margin". Dengiz geologiyasi. 272 (1–4): 251–259. Bibcode:2010MGeol.272..251B. doi:10.1016/j.margeo.2009.06.015.
  42. ^ Sellanes, J.; Neira, C.; Quiroga, E.; Teixido, N. (2010). "Diversity patterns along and across the Chilean margin: a continental slope encompassing oxygen gradients and methane seep benthic habitats". Dengiz ekologiyasi. 31 (1): 111–124. Bibcode:2010MarEc..31..111S. doi:10.1111/j.1439-0485.2009.00332.x. hdl:10261/56612.
  43. ^ a b Sellanes, J.; Quiroga, E.; Neira, C. (2008). "Megafauna community structure and trophic relationships at the recently discovered Concepción Methane Seep Area, Chile, ~36°S". ICES Marine Science Journal. 65 (7): 1102–1111. doi:10.1093/icesjms/fsn099.
  44. ^ Sellanes, J.; Quiroga, E.; Gallardo, V. A. (2004). "First direct evidence of methane seepage and associated chemosynthetic communities in the bathyal zone off Chile". Journal of the Marine Biological Association of the UK. 84 (5): 1065–1066. doi:10.1017/S0025315404010422h.
  45. ^ a b Gallardo, V. A.; Espinoza, C. (2007). Hoover, Richard B; Levin, Gilbert V; Rozanov, Alexei Y; Davies, Paul C. W (eds.). "Large multicellular filamentous bacteria under the oxygen minimum zone of the eastern South Pacific: a forgotten biosphere". Proc. SPIE. Instruments, Methods, and Missions for Astrobiology X. 6694: 66941H–11. Bibcode:2007SPIE.6694E..1HG. doi:10.1117/12.782209.
  46. ^ a b Barrie, J. V.; Cook, S.; Conway, K. W. (2010). "Cold seeps and benthic habitat on the Pacific margin of Canada". Continental Shelf Research. 31 (2 Supplement 1): S85–S92. Bibcode:2011CSR....31S..85V. doi:10.1016/j.csr.2010.02.013.
  47. ^ Lorenson T. D., Kvenvolden K. A., Hostettler F. D., Rosenbauer R. J., Martin J. B. & Orange D. L. (1999). "Hydrocarbons Associated with Fluid Venting Process in Monterey Bay, California". USGS Pacific Coastal & Marine Science Center.
  48. ^ Goffredi S. K. & Barry J. P. (2000). "Factors regulating productivity in chemoautotrophic symbioses; with emphasis on Calyptogena kilmeri va Calyptogena pacifica". Poster, Monterey ko'rfazidagi akvarium tadqiqot instituti. accessed 3 February 2011. PDF.
  49. ^ Bernxard, J. M .; Buck, K. R.; Barry, J. P. (2001). "Monterey Bay cold-seep biota: Assemblages, abundance, and ultrastructure of living foraminifera". Deep-Sea Research Part I: Oceanographic Research Papers. 48 (10): 2233–2249. Bibcode:2001DSRI...48.2233B. doi:10.1016/S0967-0637(01)00017-6.
  50. ^ Lonsdale, P. (1979). "A deep-sea hydrothermal site on a strike-slip fault". Tabiat. 281 (5732): 531–534. Bibcode:1979Natur.281..531L. doi:10.1038/281531a0.
  51. ^ Paull, C. K.; W. R. Normark; W. Ussler III; D. W. Caress & R. Keaten (2008). "Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California". Dengiz geologiyasi. 250 (3–4): 258–275. Bibcode:2008MGeol.250..258P. doi:10.1016/j.margeo.2008.01.011.
  52. ^ a b Maloney, J.M.; Grupe, B.M.; Pasulka, A.L.; Dawson, K.S.; Case, D.H.; Frieder, C.A.; Levin, L.A.; Driscoll, N.W. (2015). "Transpressional segment boundaries in strike-slip fault systems offshore southern California: Implications for fluid expulsion and cold-seep habitats" (PDF). Geofizik tadqiqotlar xatlari. 42 (10): 4080–4088. Bibcode:2015GeoRL..42.4080M. doi:10.1002/2015GL063778.
  53. ^ a b v d Griffiths, H. J. (2010). "Antarctic Marine Biodiversity – What Do We Know About the Distribution of Life in the Southern Ocean?". PLOS ONE. 5 (8): e11683. Bibcode:2010PLoSO...511683G. doi:10.1371/journal.pone.0011683. PMC  2914006. PMID  20689841.
  54. ^ Kaim, A.; Jenkins, R.; Warén, A. (2008). "Provannid and provannid-like gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea)". Linnean Jamiyatining Zoologik jurnali. 154 (3): 421–436. doi:10.1111/j.1096-3642.2008.00431.x.
  55. ^ Conti, S.; Fioroni, C.; Fontana, D. (2017). "Correlating shelf carbonate evolutive phases with fluid eexpulsion episodes in the foredeep Miocene, northern Apennines, Italy". Marine and Petroleum Geology. 79: 351–359. doi:10.1016/j.marpetgeo.2016.11.003. hdl:11380/1119044.
  56. ^ Galil, B.S.; Golik, A.; Turkay, M. (1995). "Litter at the bottom of the sea: A sea bed survey in the Eastern Mediterranean". Dengiz ifloslanishi to'g'risidagi byulleten. 30 (1): 22–24. doi:10.1016/0025-326x(94)00103-g.
  57. ^ Galgani, F.; Jaunet, S.; Campillo, A.; Guenegan, X.; His, E. (1995). "Distribution and abundance of debris on the continental shelf of the northwestern Mediterranean Sea". Dengiz ifloslanishi to'g'risidagi byulleten. 30 (11): 713–717. doi:10.1016/0025-326x(95)00055-r.
  58. ^ Richter, T.O.; de Stigter, H.C.; Boer, W.; Jesus, C.C.; van Weering, T.C.E. (2009). "Dispersal of natural and anthropogenic lead through submarine canyons in the Portuguese margin". Deep-Sea Research Part I. 56 (2): 267–282. Bibcode:2009DSRI...56..267R. doi:10.1016/j.dsr.2008.09.006.
  59. ^ Rotllant, G.; Holgado, A.E.; Sarda, F.; Abalos, M.; Company, J.B. (2006). "Dioxin compounds in the deep-sea rose shrimp Aristeus antennatus (Risso, 1816) throughout the Mediterranean Sea". Deep-Sea Research Part I. 53 (12): 1895–1906. Bibcode:2006DSRI...53.1895R. doi:10.1016/j.dsr.2006.09.004.
  60. ^ Unger, MA; Harvey, E.; Vadas, GG; Vecchione, M. (2008). "Persistent pollutants in nine species of deep-sea cephalopods". Dengiz ifloslanishi to'g'risidagi byulleten. 56 (8): 1486–1512. doi:10.1016/j.marpolbul.2008.04.018. PMID  18501382.
  61. ^ Smith, K.L.; Ruhl, H.A.; Bett, B.J.; Billet, D.S.M.; Lampitt, R.S. (2009). "Climate, carbon cycling, and deep ocean ecosystems". PNAS. 106 (46): 19211–19218. Bibcode:2009PNAS..10619211S. doi:10.1073/pnas.0908322106. PMC  2780780. PMID  19901326.

Qo'shimcha o'qish

Tashqi havolalar